1
|
Low ZXB, Yong SJ, Alrasheed HA, Al-Subaie MF, Al Kaabi NA, Alfaresi M, Albayat H, Alotaibi J, Al Bshabshe A, Alwashmi ASS, Sabour AA, Alshiekheid MA, Almansour ZH, Alharthi H, Al Ali HA, Almoumen AA, Alqasimi NA, AlSaihati H, Rodriguez-Morales AJ, Rabaan AA. Serotonergic psychedelics as potential therapeutics for post-COVID-19 syndrome (or Long COVID): A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111279. [PMID: 39909170 DOI: 10.1016/j.pnpbp.2025.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
RATIONALE In our ongoing battle against the coronavirus 2019 (COVID-19) pandemic, a major challenge is the enduring symptoms that continue after acute infection. Also known as Long COVID, post-COVID-19 syndrome (PCS) often comes with debilitating symptoms like fatigue, disordered sleep, olfactory dysfunction, and cognitive issues ("brain fog"). Currently, there are no approved treatments for PCS. Recent research has uncovered that the severity of PCS is inversely linked to circulating serotonin levels, highlighting the potential of serotonin-modulating therapeutics for PCS. Therefore, we propose that serotonergic psychedelics, acting mainly via the 5-HT2A serotonin receptor, hold promise for treating PCS. OBJECTIVES Our review aims to elucidate potential mechanisms by which serotonergic psychedelics may alleviate the symptoms of PCS. RESULTS Potential mechanisms through which serotonergic psychedelics may alleviate PCS symptoms are discussed, with emphasis on their effects on inflammation, neuroplasticity, and gastrointestinal function. Additionally, this review explores the potential of serotonergic psychedelics in mitigating endothelial dysfunction, a pivotal aspect of PCS pathophysiology implicated in organ dysfunction. This review also examines the potential role of serotonergic psychedelics in alleviating specific PCS symptoms, which include olfactory dysfunction, cognitive impairment, sleep disturbances, and mental health challenges. CONCLUSIONS Emerging evidence suggests that serotonergic psychedelics may alleviate PCS symptoms. However, further high-quality research is needed to thoroughly assess their safety and efficacy in treating patients with PCS.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Shin Jie Yong
- School of Medical and Life Sciences, Sunway University, Selangor, Malaysia.
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha F Al-Subaie
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi Health Services Company, Abu Dhabi, United Arab Emirates
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zainab H Almansour
- Biological Science Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Huda Alharthi
- Clinical Pharmacist, Pharmaceutical Care Department, King Faisal Medical Complex, Taif Health Cluster, Ministry of Health, Taif, Saudi Arabia
| | - Hani A Al Ali
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Adel A Almoumen
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Nabil A Alqasimi
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Alfonso J Rodriguez-Morales
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan.
| |
Collapse
|
2
|
Jacobs JT, Maior RS, Waguespack HF, Campos-Rodriguez C, Malkova L, Forcelli PA. Focal pharmacological manipulation of serotonin signaling in the amygdala does not alter social behavior. Psychopharmacology (Berl) 2025; 242:101-115. [PMID: 39019996 PMCID: PMC11889906 DOI: 10.1007/s00213-024-06651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Serotonin signaling plays critical roles in social and emotional behaviors. Likewise, decades of research demonstrate that the amygdala is a prime modulator of social behavior. Permanent excitotoxic lesions and transient amygdala inactivation consistently increase social behaviors in non-human primates. In rodents, acute systemic administration of drugs that increase serotonin signaling is associated with decreased social interactions. However, in primates, the direct involvement of serotonin signaling in the amygdala, particularly in affiliative social interaction, remains unexplored. Here, we examined the effects of serotonin manipulations within the amygdala on social behavior in eight pairs of familiar male macaques. We microinfused drugs targeting the serotonin system into either the basolateral (BLA) or central (CeA) amygdala and measured changes in social behavior. Surprisingly, the results demonstrated no significant differences in social behavior following the infusion of a selective serotonin reuptake inhibitor, 5-HT1A agonist or antagonist, 5-HT2A agonist or antagonist, or 5-HT3 agonist or antagonist into either the BLA or CeA. These findings suggest that serotonin signaling in the amygdala does not directly contribute to the regulation of social behavior between familiar conspecifics. Future research should explore alternative mechanisms and potential interactions with other brain regions to gain a comprehensive understanding of the complex neural circuitry governing social behavior.
Collapse
Affiliation(s)
- Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | | | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
3
|
Kelly TJ, Bonniwell EM, Mu L, Liu X, Hu Y, Friedman V, Yu H, Su W, McCorvy JD, Liu QS. Psilocybin analog 4-OH-DiPT enhances fear extinction and GABAergic inhibition of principal neurons in the basolateral amygdala. Neuropsychopharmacology 2024; 49:854-863. [PMID: 37752222 PMCID: PMC10948882 DOI: 10.1038/s41386-023-01744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Psychedelics such as psilocybin show great promise for the treatment of depression and PTSD, but their long duration of action poses practical limitations for patient access. 4-OH-DiPT is a fast-acting and shorter-lasting derivative of psilocybin. Here we characterized the pharmacological profile of 4-OH-DiPT and examined its impact on fear extinction learning as well as a potential mechanism of action. First, we profiled 4-OH-DiPT at all 12 human 5-HT GPCRs. 4-OH-DiPT showed strongest agonist activity at all three 5-HT2A/2B/2C receptors with near full agonist activity at 5-HT2A. Notably, 4-OH-DiPT had comparable activity at mouse and human 5-HT2A/2B/2C receptors. In a fear extinction paradigm, 4-OH-DiPT significantly reduced freezing responses to conditioned cues in a dose-dependent manner with a greater potency in female mice than male mice. Female mice that received 4-OH-DiPT before extinction training had reduced avoidance behaviors several days later in the light dark box, elevated plus maze and novelty-suppressed feeding test compared to controls, while male mice did not show significant differences. 4-OH-DiPT produced robust increases in spontaneous inhibitory postsynaptic currents (sIPSCs) in basolateral amygdala (BLA) principal neurons and action potential firing in BLA interneurons in a 5-HT2A-dependent manner. RNAscope demonstrates that Htr2a mRNA is expressed predominantly in BLA GABA interneurons, Htr2c mRNA is expressed in both GABA interneurons and principal neurons, while Htr2b mRNA is absent in the BLA. Our findings suggest that 4-OH-DiPT activates BLA interneurons via the 5-HT2A receptor to enhance GABAergic inhibition of BLA principal neurons, which provides a potential mechanism for suppressing learned fear.
Collapse
Affiliation(s)
- Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wantang Su
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Funk D, Araujo J, Slassi M, Lanthier J, Atkinson J, Feng D, Lau W, Lê A, Higgins GA. Effect of a single psilocybin treatment on Fos protein expression in male rat brain. Neuroscience 2024; 539:1-11. [PMID: 38184069 DOI: 10.1016/j.neuroscience.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Psilocybin has received attention as a treatment for depression, stress disorders and drug and alcohol addiction. To help determine the mechanisms underlying its therapeutic effects, here we examined acute effects of a range of behaviourally relevant psilocybin doses (0.1-3 mg/kg SC) on regional expression of Fos, the protein product of the immediate early gene, c-fos in brain areas involved in stress, reward and motivation in male rats. We also determined the cellular phenotypes activated by psilocybin, in a co-labeling analysis with NeuN, a marker of mature neurons, or Olig1, a marker of oligodendrocytes. In adult male Sprague-Dawley rats, psilocybin increased Fos expression dose dependently in several brain regions, including the frontal cortex, nucleus accumbens, central and basolateral amygdala and locus coeruleus. These effects were most marked in the central amygdala. Double labeling experiments showed that Fos was expressed in both neurons and oligodendrocytes. These results extend previous research by determining Fos expression in multiple brain areas at a wider psilocybin dose range, and the cellular phenotypes expressing Fos. The data also highlight the amygdala, especially the central nucleus, a key brain region involved in emotional processing and learning and interconnected with other brain areas involved in stress, reward and addiction, as a potentially important locus for the therapeutic effects of psilocybin. Overall, the present findings suggest that the central amygdala may be an important site through which the initial brain activation induced by psilocybin is translated into neuroplastic changes, locally and in other regions that underlie its extended therapeutic effects.
Collapse
Affiliation(s)
- Douglas Funk
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada.
| | - Joseph Araujo
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Mindset Pharma, Toronto M5V 0R2, Canada
| | | | | | | | - Daniel Feng
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Winnie Lau
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Anh Lê
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| | - Guy A Higgins
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
5
|
Madhyastha S, Rao MS, Renno WM. Serotonergic and Adrenergic Neuroreceptor Manipulation Ameliorates Core Symptoms of ADHD through Modulating Dopaminergic Receptors in Spontaneously Hypertensive Rats. Int J Mol Sci 2024; 25:2300. [PMID: 38396978 PMCID: PMC10888658 DOI: 10.3390/ijms25042300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The core symptoms of attention deficit hyperactivity disorder (ADHD) are due to the hypofunction of the brain's adrenergic (NE) and dopamine (DA) systems. Drugs that enhance DA and NE neurotransmission in the brain by blocking their transporters or receptors are the current therapeutic strategies. Of late, the emerging results point out the serotonergic (5-HT) system, which indirectly modulates the DA activity in reducing the core symptoms of ADHD. On this basis, second-generation antipsychotics, which utilize 5-HT receptors, were prescribed to children with ADHD. However, it is not clear how serotonergic receptors modulate the DA activity to minimize the symptoms of ADHD. The present study investigates the efficacy of serotonergic and alpha-2 adrenergic receptor manipulation in tackling the core symptoms of ADHD and how it affects the DA neuroreceptors in the brain regions involved in ADHD. Fifteen-day-old male spontaneously hypertensive rats (SHRs) received 5-HT1A agonist (ipsapirone) or 5-HT2A antagonist (MDL 100907) (i.p.) or alpha-2 agonist (GFC) from postnatal days 15 to 42 along with age-matched Wistar Kyoto rats (WKY) (n = 8 in each group). ADHD-like behaviors were assessed using a battery of behavioral tests during postnatal days 44 to 65. After the behavioral tests, rat brains were processed to estimate the density of 5-HT1A, 5-HT2A, DA-D1, and DA-D2 neuroreceptors in the prefrontal cortex, the striatum, and the substantia nigra. All three neuroreceptor manipulations were able to minimize the core symptoms of ADHD in SHRs. The positive effect was mainly associated with the upregulation of 5-HT2A receptors in all three areas investigated, while 5-HT1A was in the prefrontal cortex and the substantia nigra. Further, the DA-D1 receptor expression was downregulated by all three neuroreceptor manipulations except for alpha-2 adrenergic receptor agonists in the striatum and 5-HT2A antagonists in the substantia nigra. The DA-D2 expression was upregulated in the striatum while downregulated in the prefrontal cortex and the substantia nigra. In this animal model study, the 5-HT1A agonist or 5-HT2A antagonist monotherapies were able to curtail the ADHD symptoms by differential expression of DA receptors in different regions of the brain.
Collapse
Affiliation(s)
- Sampath Madhyastha
- Department of Anatomy, College of Medicine, Kuwait University, Safat 13110, Kuwait; (M.S.R.); (W.M.R.)
| | | | | |
Collapse
|
6
|
Chiu YT, Deutch AY, Wang W, Schmitz GP, Huang KL, Kocak DD, Llorach P, Bowyer K, Liu B, Sciaky N, Hua K, Chen C, Mott SE, Niehaus J, DiBerto JF, English J, Walsh JJ, Scherrer G, Herman MA, Wu Z, Wetsel WC, Roth BL. A suite of engineered mice for interrogating psychedelic drug actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559347. [PMID: 37808655 PMCID: PMC10557740 DOI: 10.1101/2023.09.25.559347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Psychedelic drugs like lysergic acid diethylamide (LSD) and psilocybin have emerged as potentially transformative therapeutics for many neuropsychiatric diseases, including depression, anxiety, post-traumatic stress disorder, migraine, and cluster headaches. LSD and psilocybin exert their psychedelic effects via activation of the 5-hydroxytryptamine 2A receptor (HTR2A). Here we provide a suite of engineered mice useful for clarifying the role of HTR2A and HTR2A-expressing neurons in psychedelic drug actions. We first generated Htr2a-EGFP-CT-IRES-CreERT2 mice (CT:C-terminus) to independently identify both HTR2A-EGFP-CT receptors and HTR2A-containing cells thereby providing a detailed anatomical map of HTR2A and identifying cell types that express HTR2A. We also generated a humanized Htr2a mouse line and an additional constitutive Htr2A-Cre mouse line. Psychedelics induced a variety of known behavioral changes in our mice validating their utility for behavioral studies. Finally, electrophysiology studies revealed that extracellular 5-HT elicited a HTR2A-mediated robust increase in firing of genetically-identified pyramidal neurons--consistent with a plasma membrane localization and mode of action. These mouse lines represent invaluable tools for elucidating the molecular, cellular, pharmacological, physiological, behavioral, and other actions of psychedelic drugs in vivo.
Collapse
Affiliation(s)
- Yi-Ting Chiu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ariel Y. Deutch
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Wei Wang
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Gavin P Schmitz
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Karen Lu Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - D. Dewran Kocak
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Pierre Llorach
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kasey Bowyer
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Kunjie Hua
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Chongguang Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah E. Mott
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jesse Niehaus
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Justin English
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jessica J. Walsh
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- New York Stem Cell Foundation ‒ Robertson Investigator, Chapel Hill, NC 27599, USA
| | - Melissa A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhuhao Wu
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
McDonald AJ. Functional neuroanatomy of monoaminergic systems in the basolateral nuclear complex of the amygdala: Neuronal targets, receptors, and circuits. J Neurosci Res 2023; 101:1409-1432. [PMID: 37166098 PMCID: PMC10524224 DOI: 10.1002/jnr.25201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review discusses neuroanatomical aspects of the three main monoaminergic systems innervating the basolateral nuclear complex (BNC) of the amygdala (serotonergic, noradrenergic, and dopaminergic systems). It mainly focuses on immunohistochemical (IHC) and in situ hybridization (ISH) studies that have analyzed the relationship of specific monoaminergic inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of the monoaminergic modulation of BNC circuitry. First, light and electron microscopic IHC investigations identifying the main BNC neuronal subpopulations and characterizing their local circuitry, including connections with discrete PN compartments and other INs, are reviewed. Then, the relationships of each of the three monoaminergic systems to distinct PN and IN cell types, are examined in detail. For each system, the neuronal targets and their receptor expression are discussed. In addition, pertinent electrophysiological investigations are discussed. The last section of the review compares and contrasts various aspects of each of the three monoaminergic systems. It is concluded that the large number of different receptors, each with a distinct mode of action, expressed by distinct cell types with different connections and functions, should offer innumerable ways to subtlety regulate the activity of the BNC by therapeutic drugs in psychiatric diseases in which there are alterations of BNC monoaminergic modulatory systems, such as in anxiety disorders, depression, and drug addiction. It is suggested that an important area for future studies is to investigate how the three systems interact in concert at the neuronal and neuronal network levels.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
8
|
Meng X, Grandjean J, Sbrini G, Schipper P, Hofwijks N, Stoop J, Calabrese F, Homberg J. Tryptophan Hydroxylase 2 Knockout Male Rats Exhibit a Strengthened Oxytocin System, Are Aggressive, and Are Less Anxious. ACS Chem Neurosci 2022; 13:2974-2981. [PMID: 36197033 PMCID: PMC9585586 DOI: 10.1021/acschemneuro.2c00448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023] Open
Abstract
The central serotoninergic system is critical for stress responsivity and social behavior, and its dysregulations have been centrally implicated in virtually all neuropsychiatric disorders. Genetic serotonin depletion animal models could provide a tool to elucidate the causes and mechanisms of diseases and to develop new treatment approaches. Previously, mice lacking tryptophan hydroxylase 2 (Tph2) have been developed, showing altered behaviors and neurotransmission. However, the effect of congenital serotonin deficiency on emotional and social behavior in rats is still largely unknown, as are the underlying mechanisms. In this study, we used a Tph2 knockout (Tph2-/-) male rat model to study how the lack of serotonin in the rat brain affects anxiety-like and social behaviors. Since oxytocin is centrally implicated in these behaviors, we furthermore explored whether the effects of Tph2 knockout on behavior would relate to changes in the oxytocin system. We show that Tph2-/- rats display reduced anxiety-like behavior and a high level of aggression in social interactions. In addition, oxytocin receptor expression was increased in the infralimbic and prelimbic cortices, paraventricular nucleus, dorsal raphe nucleus, and some subregions of the hippocampus, which was paralleled by increased levels of oxytocin in the medial frontal cortex and paraventricular nucleus but not the dorsal raphe nucleus, central amygdala, and hippocampus. In conclusion, our study demonstrated reduced anxiety but exaggerated aggression in Tph2-/- male rats and reveals for the first time a potential involvement of altered oxytocin system function. Meanwhile, the research of oxytocin could be distinguished in almost any psychiatric disorder including anxiety and mental disorders. This research potentially proposes a new target for the treatment of such disorders, from a genetic serotonin deficiency aspect.
Collapse
Affiliation(s)
- Xianzong Meng
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Joanes Grandjean
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
- Department
of Medical Imaging, Radboud University Medical
Centre, 6525 GA Nijmegen, The Netherlands
| | - Giulia Sbrini
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Pieter Schipper
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Nita Hofwijks
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Jesse Stoop
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Francesca Calabrese
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Judith Homberg
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
9
|
Hu H, Liu Y, Li K, Fang M, Zou Y, Wang J, Ge J. Retrograde fluorogold labeling of retinal ganglion cells in neonatal mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:878. [PMID: 34164512 PMCID: PMC8184436 DOI: 10.21037/atm-21-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background The neonatal period, especially postnatal day 10 (P10), is important for mouse retinal ganglion cells (RGCs) development, and an effective labeling technique to track neonatal RGCs is needed. Retrograde fluorogold (FG) labeling is widely used for adult mouse RGCs, but its applicability for the neonatal mouse is still unknown. This study aimed to evaluate the safety and efficiency of retrograde FG labeling in P10 mice. Methods The anatomic location of the superior colliculus (SC) of P10 wild-type C57/BL6J mice was clarified by histological brain section and hematoxylin and eosin (H&E) staining. Three doses of 3% FG were injected into the SC of 30 mice, and 3 days post-surgery, labeling efficiency was quantified by retinal flat-mounts, and labeling safety was evaluated by mice mortality. Results Samples of brain tissue from 2–3.5 mm posterior to the bregma, and from 0.5–2.0 mm lateral to the midline showed major SC-related structures. The FG-positive RGC density in the 0.3 µL group was 3,563.9±311.9 cells/mm2, significantly more than in the 0.6 µL group (1,718.6±177.1 cells/mm2) or 1.0 µL group (2,496.8±342.2 cells/mm2). The mortality rate was 10% in both the 0.3 and 0.6 µL groups, but 40% in the 1.0 µL group. Conclusions The appropriate labeling site in P10 mice was confirmed and 0.3 µL FG is an appropriate dose for retrograde labeling of RGCs.
Collapse
Affiliation(s)
- Huiling Hu
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Fang
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Yunyun Zou
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Yamaguchi T, Minami S, Ueda S. Effects of methylazoxymethanol-induced micrencephaly on parvalbumin-positive GABAergic interneurons in the rat rostral basolateral amygdala. Brain Res 2021; 1762:147425. [PMID: 33737065 DOI: 10.1016/j.brainres.2021.147425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/25/2022]
Abstract
The amygdala plays a crucial role in anxiety-related behavior and various neuropsychiatric disorders. The offspring of dams, administered methylazoxymethanol acetate (MAM) intraperitoneally at gestational day 15, exhibit micrencephaly and anxiety-related behavior, such as hyperactivity in rearing and crossing behavior, alongside a distinct Fos expression profile in the basolateral (BLA) and central amygdala. However, the histochemical underpinnings of these changes remain to be elucidated. To determine the histochemical alterations in MAM-induced model rats, we performed Nissl staining, immunohistochemistry for parvalbumin (PV) or calbindin (Calb), and immunohistochemistry for PV in conjunction with in situ hybridization for glutamate decarboxylase (GAD). We compared immunoreactivity in the BLA between normal and MAM-induced model rats and observed a significant decrease in the number of PV-positive neurons in MAM-induced model rats; however, no significant differences in the number of Nissl- and Calb-positive neurons were observed. We did not detect any significant between-group differences with regards to the effects of environmental enrichment on the number of PV-positive neurons in the BLA. Double-labeling for GAD and PV revealed that many PV-positive neurons colocalized with digoxigenin-GAD65/67 signals. In addition, GAD/PV double-positive neurons and the total number of GAD-positive neurons in the BLA were lower in the MAM-induced model rats. These results indicate that histochemical alterations observed in the BLA of the MAM-induced model rats may attribute to an aberrant GABAergic inhibitory system.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Shukuko Minami
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| |
Collapse
|
11
|
Wang Z, Li C, Ding J, Li Y, Zhou Z, Huang Y, Wang X, Fan H, Huang J, He Y, Li J, Chen J, Qiu P. Basolateral Amygdala Serotonin 2C Receptor Regulates Emotional Disorder-Related Symptoms Induced by Chronic Methamphetamine Administration. Front Pharmacol 2021; 12:627307. [PMID: 33628192 PMCID: PMC7897655 DOI: 10.3389/fphar.2021.627307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Globally, methamphetamine (MA) is the second most abused drug, with psychotic symptoms being one of the most common adverse effects. Emotional disorders induced by MA abuse have been widely reported both in human and animal models; however, the mechanisms underlying such disorders have not yet been fully elucidated. In this study, a chronic MA administration mouse model was utilized to elucidate the serotonergic pathway involved in MA-induced emotional disorders. After 4 weeks of MA administration, the animals exhibited significantly increased depressive and anxious symptoms. Molecular and morphological evidence showed that chronic MA administration reduced the expression of the 5-hydroxytryptamine (5-HT) rate-limiting enzyme, tryptophan hydroxylase 2, in the dorsal raphe and the concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid in the basolateral amygdala (BLA) nuclei. Alterations in both 5-HT and 5-HT receptor levels occurred simultaneously in BLA; quantitative polymerase chain reaction, western blotting, and fluorescence analysis revealed that the expression of the 5-HT2C receptor (5-HT2CR) increased. Neuropharmacology and virus-mediated silencing strategies confirmed that targeting 5-HT2CR reversed the depressive and anxious behaviors induced by chronic MA administration. In the BLA, 5-HT2CR-positive cells co-localized with GABAergic interneurons. The inactivation of 5-HT2CR ameliorated impaired GABAergic inhibition and decreased BLA activation. Thus, herein, for the first time, we report that the abnormal regulation of 5-HT2CR is involved in the manifestation of emotional disorder-like symptoms induced by chronic MA use. Our study suggests that 5-HT2CR in the BLA is a promising clinical target for the treatment of MA-induced emotional disorders.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Zhihua Zhou
- Department of Neurology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanjun Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jianwei Li
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Pereyra AE, Mininni CJ, Zanutto BS. Serotonergic modulation of basolateral amygdala nucleus in the extinction of reward-driven learning: The role of 5-HT bioavailability and 5-HT 1A receptor. Behav Brain Res 2021; 404:113161. [PMID: 33571570 DOI: 10.1016/j.bbr.2021.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 12/29/2022]
Abstract
Serotonin (5-HT) neurotransmission has been associated with reward-related behaviour. Moreover, the serotonergic system modulates the basolateral amygdala (BLA), a structure involved in reward encoding, and reward prediction error. However, the role played by 5-HT on BLA during a reward-driven task has not been fully elucidated. In this paper, we investigated whether serotonergic modulation of the BLA is involved in reward-driven learning. To this end, we trained Long Evans rats in an operant conditioning task, and examined the effects of fluoxetine treatment (a selective serotonin reuptake inhibitor, 10 mg/kg) in combination with BLA lesions with NMDA (20 mg/mL) on extinction learning. We also investigated whether intra-BLA injection of the serotonergic 5-HT1A receptor agonist 8-OH DPAT, or antagonist WAY-100635, alters extinction performance. We found that fluoxetine treatment strongly accelerated extinction learning, while BLA lesions partially reverted this effect and slightly impaired consolidation of extinction. Stimulation and inhibition of 5-HT1A receptors in BLA induced opposite effects to those of fluoxetine, impairing or accelerating extinction performance, respectively. Our findings suggest that 5-HT modulates reward-driven learning, and 5-HT1A receptors located in the BLA are relevant for extinction.
Collapse
Affiliation(s)
- A Ezequiel Pereyra
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina.
| | - Camilo J Mininni
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| | - B Silvano Zanutto
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| |
Collapse
|
13
|
Bernabe CS, Caliman IF, Truitt WA, Molosh AI, Lowry CA, Hay-Schmidt A, Shekhar A, Johnson PL. Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. J Psychopharmacol 2020; 34:400-411. [PMID: 32153226 PMCID: PMC9678127 DOI: 10.1177/0269881119900981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The central serotonergic system originating from the dorsal raphe nucleus (DR) plays a critical role in anxiety and trauma-related disorders such as posttraumatic stress disorder. Although many studies have investigated the role of serotonin (5-HT) within pro-fear brain regions such as the amygdala, the majority of these studies have utilized non-selective pharmacological approaches or poorly understood lesioning techniques which limit their interpretation. AIM Here we investigated the role of amygdala-projecting 5-HT neurons in the DR in innate anxiety and conditioned fear behaviors. METHODS To achieve this goal, we utilized (1) selective lesion of 5-HT neurons projecting to the amygdala with saporin toxin conjugated to anti-serotonin transporter (SERT) injected into the amygdala, and (2) optogenetic excitation of amygdala-projecting DR cell bodies with a combination of a retrogradely transported canine adenovirus-expressing Cre-recombinase injected into the amygdala and a Cre-dependent-channelrhodopsin injected into the DR. RESULTS While saporin treatment lesioned both local amygdalar 5-HT fibers and neurons in the DR as well as reduced conditioned fear behavior, optical activation of amygdala-projecting DR neurons enhanced anxious behavior and conditioned fear response. CONCLUSION Collectively, these studies support the hypothesis that amygdala-projecting 5-HT neurons in the DR represent an anxiety and fear-on network.
Collapse
Affiliation(s)
- Cristian S. Bernabe
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Izabela F. Caliman
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A. Truitt
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I. Molosh
- Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | | | - Anantha Shekhar
- Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L. Johnson
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
15
|
Yamamoto R, Furuyama T, Sugai T, Ono M, Pare D, Kato N. Serotonergic control of GABAergic inhibition in the lateral amygdala. J Neurophysiol 2019; 123:670-681. [PMID: 31875487 DOI: 10.1152/jn.00500.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Much evidence implicates the serotonergic regulation of the amygdala in anxiety. Thus the present study was undertaken to characterize the influence of serotonin (5-HT) on principal neurons (PNs) of the rat lateral amygdala (LA), using whole cell recordings in vitro. Because inhibition is a major determinant of PN activity, we focused on the control of GABAergic transmission by 5-HT. IPSCs were elicited by local electrical stimulation of LA in the presence of glutamate receptor antagonists. We found that 5-HT reduces GABAA inhibitory postsynaptic currents (IPSCs) via presynaptic 5-HT1B receptors. While the presynaptic inhibition of GABA release also attenuated GABAB currents, this effect was less pronounced than for GABAA currents because 5-HT also induced a competing postsynaptic enhancement of GABAB currents. That is, GABAB currents elicited by pressure application of GABA or baclofen were enhanced by 5-HT. In addition, we obtained evidence suggesting that 5-HT differentially regulates distinct subsets of GABAergic synapses. Indeed, GABAA IPSCs were comprised of two components: a relatively 5-HT-insensitive IPSC that had a fast time course and a 5-HT-sensitive component that had a slower time course. Because the relative contribution of these two components varied depending on whether neurons were recorded at proximity versus at a distance from the stimulating electrodes, we speculate that distinct subtypes of local-circuit cells contribute the two contingents of GABAergic synapses. Overall, our results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.NEW & NOTEWORTHY We report that 5-HT, acting via presynaptic 5-HT1B receptors, attenuates GABAA IPSCs by reducing GABA release in the lateral amygdala (LA). In parallel, 5-HT enhances GABAB currents postsynaptically, such that GABAB inhibitory postsynaptic currents (IPSCs) are relatively preserved from the presynaptic inhibition of GABA release. We also found that the time course of 5-HT-sensitive and -insensitive GABAA IPSCs differ. Together, these results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
16
|
Differential impairment of short working and spatial memories in a rat model of progressive Parkinson’s disease onset: A focus on the prodromal stage. Brain Res Bull 2019; 150:307-316. [DOI: 10.1016/j.brainresbull.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
|
17
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
18
|
Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Transl Psychiatry 2019; 9:33. [PMID: 30670681 PMCID: PMC6343029 DOI: 10.1038/s41398-019-0368-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023] Open
Abstract
Genetic variation in serotonin transporter (SERT) that reduces transcriptional efficiency is associated with higher anxiety and fear traits and a greater incidence of post traumatic stress disorder (PTSD). Although previous studies have shown that rats with no expression of SERT (SERT-/-) have increased baseline anxiety behaviors, SERT+/- rats with low SERT expression (and more relevant to the clinical condition with low SERT expression) do not. Yet, no systematic studies of fear acquisition/extinction or their underlying neural mechanisms have been conducted in this preclinical genetic SERT+/- model. Here we sought to determine if SERT+/- or SERT-/-, compared to wildtype, rats would show exacerbated panic responses and/or persistent conditioned fear responses that may be associated with PTSD or phobia vulnerability. Results: Only SERT-/- rats showed increased baseline anxiety-like behaviors with heightened panic respiratory responses. However SERT+/- (also SERT-/-) rats showed enhanced acquisition of fear and delayed extinction of fear that was associated with changes in serotonergic-related genes (e.g., reduced 5-HT1A receptor) and disrupted inhibition within the basolateral amygdala (BLA). Furthermore, the disrupted fear responses in SERT+/- rats were normalized with 5HT1A antagonist infusions into the BLA. Enhanced acquisition and failure to extinguish fear memories displayed by both SERT-/- and SERT+/- rats are cardinal symptoms of disabling anxiety disorders such as phobias and PTSD. The data here support the hypothesis that reduced SERT function is a genetic risk that disrupts select gene expression and network properties in the amygdala that could result in vulnerability to these syndromes.
Collapse
|
19
|
Dai X, Zhou LY, Cao JX, Zhang YQ, Yang FP, Wang AQ, Wei WH, Yang SM. Effect of Group Density on the Physiology and Aggressive Behavior of Male Brandt's Voles ( Lasiopodomys brandtii). Zool Stud 2018; 57:e35. [PMID: 31966275 PMCID: PMC6517712 DOI: 10.6620/zs.2018.57-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/21/2018] [Indexed: 11/18/2022]
Abstract
Xin Dai, Ling-Yu Zhou, Jie-Xia Cao, Yan-Qi Zhang, Feng-Ping Yang, Ai-Qin Wang, Wan-Hong Wei, and Sheng-Mei Yang (2018) Population density is well known to influence animal physiology and behavior. How population density affects the aggressive behavior of the Brandt's vole (Lasiopodomys brandtii) is, however, little known. The aim of this study was to investigate the effect of group density on physiologic responses and aggressive behavior of male Brandt's voles and their potential underlying neuro-mechanism. The results show that increasing group density led to elevated serum corticosterone levels and increased spleen weight; it also induced more male-male aggressive behavior. By contrast, it had a negative effect on body growth and the weight of testis and epididymis. Aging also increased male-male aggressive behavior. Higher density reduced mRNA levels of tryptophan hydroxylase 2 (TPH2), 5-hydroxytryptamine receptor 1A (5HT1A), and 5-hydroxytryptamine receptor 1B (5HT1B) in the amygdala and the dorsal raphe nucleus (DRN). Our results demonstrate that higher population density can intensify stress reactions and male-male aggressive behavior in Brandt's voles at the price of inhibiting body growth and reproduction. Serotonergic systems in the amygdala and the DRN may take part in the control of aggressive behavior among male voles. Our results provide novel insights into the neuro-mechanism underlying the influence of population density on aggressive behavior in Brandt's vole, and imply that aggressive behavior may play an important role in the population fluctuation of the animal.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| | - Ling-Yu Zhou
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| | - Jie-Xia Cao
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| | - Yan-Qi Zhang
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| | - Feng-Ping Yang
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| | - Ai-Qin Wang
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou
University, 48 East Wenhui Road, Yangzhou 225009, P.R. China
| |
Collapse
|
20
|
Yin L, Rasch MJ, He Q, Wu S, Dou F, Shu Y. Selective Modulation of Axonal Sodium Channel Subtypes by 5-HT1A Receptor in Cortical Pyramidal Neuron. Cereb Cortex 2018; 27:509-521. [PMID: 26494800 DOI: 10.1093/cercor/bhv245] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Serotonergic innervation of the prefrontal cortex (PFC) modulates neuronal activity and PFC functions. However, the cellular mechanism for serotonergic modulation of neuronal excitability remains unclear. We performed patch-clamp recording at the axon of layer-5 pyramidal neurons in rodent PFC slices. We found surprisingly that the activation of 5-HT1A receptors selectively inhibits Na+ currents obtained at the axon initial segment (AIS) but not those at the axon trunk. In addition, Na+ channel subtype NaV1.2 but not NaV1.6 at the AIS is selectively modulated by 5-HT1A receptors. Further experiments revealed that the inhibitory effect is attributable to a depolarizing shift of the activation curve and a facilitation of slow inactivation of AIS Na+ currents. Consistently, dual somatic and axonal recording and simulation results demonstrate that the activation of 5-HT1A receptors could decrease the success rate of action potential (AP) backpropagation toward the somatodendritic compartments, enhancing the segregation of axonal and dendritic activities. Together, our results reveal a selective modulation of NaV1.2 distributed at the proximal AIS region and AP backpropagation by 5-HT1A receptors, suggesting a potential mechanism for serotonergic regulation of functional polarization in the dendro-axonal axis, synaptic plasticity and PFC functions.
Collapse
Affiliation(s)
- Luping Yin
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| | - Quansheng He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| | - Si Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| | - Fei Dou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science
| |
Collapse
|
21
|
Young MB, Norrholm SD, Khoury LM, Jovanovic T, Rauch SAM, Reiff CM, Dunlop BW, Rothbaum BO, Howell LL. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA). Psychopharmacology (Berl) 2017; 234:2883-2895. [PMID: 28741031 PMCID: PMC5693755 DOI: 10.1007/s00213-017-4684-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/24/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA) persistently improves symptoms of post-traumatic stress disorder (PTSD) when combined with psychotherapy. Studies in rodents suggest that these effects can be attributed to enhancement of fear memory extinction. Therefore, MDMA may improve the effects of exposure-based therapy for PTSD, particularly in treatment-resistant patients. However, given MDMA's broad pharmacological profile, further investigation is warranted before moving to a complex clinical population. OBJECTIVES We aimed to inform clinical research by providing a translational model of MDMA's effect, and elucidating monoaminergic mechanisms through which MDMA enhances fear extinction. METHODS We explored the importance of monoamine transporters targeted by MDMA to fear memory extinction, as measured by reductions in conditioned freezing and fear-potentiated startle (FPS) in mice. Mice were treated with selective inhibitors of individual monoamine transporters prior to combined MDMA treatment and fear extinction training. RESULTS MDMA enhanced the lasting extinction of FPS. Acute and chronic treatment with a 5-HT transporter (5-HTT) inhibitor blocked MDMA's effect on fear memory extinction. Acute inhibition of dopamine (DA) and norepinephrine (NE) transporters had no effect. 5-HT release alone did not enhance extinction. Blockade of MDMA's effect by 5-HTT inhibition also downregulated 5-HT2A-mediated behavior, and 5-HT2A antagonism disrupted MDMA's effect on extinction. CONCLUSIONS We validate enhancement of fear memory extinction by MDMA in a translational behavioral model, and reveal the importance of 5-HTT and 5-HT2A receptors to this effect. These observations support future clinical research of MDMA as an adjunct to exposure therapy, and provide important pharmacological considerations for clinical use in a population frequently treated with 5-HTT inhibitors.
Collapse
Affiliation(s)
- Matthew B Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Seth D Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Mental Health Service Line, Decatur, GA, USA
| | | | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Mental Health Service Line, Decatur, GA, USA
| | - Sheila A M Rauch
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Mental Health Service Line, Decatur, GA, USA
| | - Collin M Reiff
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA.
| |
Collapse
|
22
|
Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry 2017; 7:e1194. [PMID: 28786979 PMCID: PMC5611728 DOI: 10.1038/tp.2017.161] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.
Collapse
Affiliation(s)
- B M Sharp
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
23
|
Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. J Neurosci 2017; 37:1785-1796. [PMID: 28087766 PMCID: PMC5320609 DOI: 10.1523/jneurosci.2238-16.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 11/21/2022] Open
Abstract
The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10–20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT2A and 5-HT1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders. Therefore, it is essential to determine the physiological mechanisms through which 5-HT neurons in the dorsal raphe nuclei modulate amygdala circuits. Here, we combined optogenetic, electrophysiological, and pharmacological approaches to study the effects of activation of 5-HT axons in the basal nucleus of the amygdala (BA). We found that 5-HT neurons co-release 5-HT and glutamate onto BA neurons in a cell-type-specific and frequency-dependent manner. Therefore, we suggest that theories on the contribution of 5-HT neurons to amygdala function should be revised to incorporate the concept of 5-HT/glutamate cotransmission.
Collapse
|
24
|
Gasser PJ, Hurley MM, Chan J, Pickel VM. Organic cation transporter 3 (OCT3) is localized to intracellular and surface membranes in select glial and neuronal cells within the basolateral amygdaloid complex of both rats and mice. Brain Struct Funct 2016; 222:1913-1928. [PMID: 27659446 DOI: 10.1007/s00429-016-1315-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Organic cation transporter 3 (OCT3) is a high-capacity, low-affinity transporter that mediates corticosterone-sensitive uptake of monoamines including norepinephrine, epinephrine, dopamine, histamine and serotonin. OCT3 is expressed widely throughout the amygdaloid complex and other brain regions where monoamines are key regulators of emotional behaviors affected by stress. However, assessing the contribution of OCT3 to the regulation of monoaminergic neurotransmission and monoamine-dependent regulation of behavior requires fundamental information about the subcellular distribution of OCT3 expression. We used immunofluorescence and immuno-electron microscopy to examine the cellular and subcellular distribution of the transporter in the basolateral amygdaloid complex of the rat and mouse brain. OCT3-immunoreactivity was observed in both glial and neuronal perikarya in both rat and mouse amygdala. Electron microscopic immunolabeling revealed plasma membrane-associated OCT3 immunoreactivity on axonal, dendritic, and astrocytic processes adjacent to a variety of synapses, as well as on neuronal somata. In addition to plasma membrane sites, OCT3 immunolabeling was also observed associated with neuronal and glial endomembranes, including Golgi, mitochondrial and nuclear membranes. Particularly prominent labeling of the outer nuclear membrane was observed in neuronal, astrocytic, microglial and endothelial perikarya. The localization of OCT3 to neuronal and glial plasma membranes adjacent to synaptic sites is consistent with an important role for this transporter in regulating the amplitude, duration, and physical spread of released monoamines, while its localization to mitochondrial and outer nuclear membranes suggests previously undescribed roles for the transporter in the intracellular disposition of monoamines.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA.
| | - Matthew M Hurley
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY, 10065, USA
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY, 10065, USA
| |
Collapse
|
25
|
Correia SS, Goosens KA. Input-specific contributions to valence processing in the amygdala. ACTA ACUST UNITED AC 2016; 23:534-43. [PMID: 27634144 PMCID: PMC5026206 DOI: 10.1101/lm.037887.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/26/2016] [Indexed: 10/25/2022]
Abstract
Reward and punishment are often thought of as opposing processes: rewards and the environmental cues that predict them elicit approach and consummatory behaviors, while punishments drive aversion and avoidance behaviors. This framework suggests that there may be segregated brain circuits for these valenced behaviors. The basolateral amygdala (BLA) is one brain region that contributes to both types of motivated behavior. Individual neurons in the BLA can favor positive over negative valence, or vice versa, but these neurons are intermingled, showing no anatomical segregation. The amygdala receives inputs from many brain areas and current theories posit that encoding of positive versus negative valence by BLA neurons is determined by the wiring of each neuron. Specifically, many projections from other brain areas that respond to positive and negative valence stimuli and predictive cues project strongly to the BLA and likely contribute to valence processing within the BLA. Here we review three of these areas, the basal forebrain, the dorsal raphe nucleus and the ventral tegmental area, and discuss how these may promote encoding of positive and negative valence within the BLA.
Collapse
Affiliation(s)
- Susana S Correia
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ki A Goosens
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
26
|
Johnson PL, Molosh A, Fitz SD, Arendt D, Deehan GA, Federici LM, Bernabe C, Engleman EA, Rodd ZA, Lowry CA, Shekhar A. Pharmacological depletion of serotonin in the basolateral amygdala complex reduces anxiety and disrupts fear conditioning. Pharmacol Biochem Behav 2016; 138:174-9. [PMID: 26476009 DOI: 10.1016/j.pbb.2015.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/12/2023]
Abstract
The basolateral and lateral amygdala nuclei complex (BLC) is implicated in a number of emotional responses including conditioned fear and social anxiety. Based on previous studies demonstrating that enhanced serotonin release in the BLC leads to increased anxiety and fear responses, we hypothesized that pharmacologically depleting serotonin in the BLC using 5,7-dihydroxytryptamine (5,7-DHT) injections would lead to diminished anxiety and disrupted fear conditioning. To test this hypothesis, 5,7-DHT(a serotonin-depleting agent) was bilaterally injected into the BLC. Desipramine (a norepinephrine reuptake inhibitor) was systemically administered to prevent non-selective effects on norepinephrine. After 5days, 5-7-DHT-treated rats showed increases in the duration of social interaction (SI) time, suggestive of reduced anxiety-like behavior. We then used a cue-induced fear conditioning protocol with shock as the unconditioned stimulus and tone as the conditioned stimulus for rats pretreated with bilateral 5,7-DHT, or vehicle, injections into the BLC. Compared to vehicle-treated rats, 5,7-DHT rats had reduced acquisition of fear during conditioning (measured by freezing time during tone), also had reduced fear retrieval/recall on subsequent testing days. Ex vivo analyses revealed that 5,7-DHT reduced local 5-HT concentrations in the BLC by ~40% without altering local norepinephrine or dopamine concentrations. These data provide additional support for 5-HT playing a critical role in modulating anxiety-like behavior and fear-associated memories through its actions within the BLC.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA,.
| | - Andrei Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie D Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dave Arendt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lauren M Federici
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristian Bernabe
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
de Paula BB, Leite-Panissi CRA. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior. Brain Res 2016; 1643:152-8. [PMID: 27150816 DOI: 10.1016/j.brainres.2016.04.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 02/03/2023]
Abstract
The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.
Collapse
Affiliation(s)
- Bruna Balbino de Paula
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Psychobiology Graduate Program, University of São Paulo - Ribeirão Preto Dentistry School - Dept. Morphology, Physiology and Basic Pathology 14040-901, SP, Brazil; Departament of Morphology, Physiology and Basic Pathology of Dentistry School of Ribeirão Preto, University of São Paulo, 14040-904 SP, Brazil.
| |
Collapse
|
28
|
Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M. Serotonin, Amygdala and Fear: Assembling the Puzzle. Front Neural Circuits 2016; 10:24. [PMID: 27092057 PMCID: PMC4820447 DOI: 10.3389/fncir.2016.00024] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5-HT modulation of fear learning via action on amygdala circuits. Such advancement could pave the way for a deeper understanding of 5-HT in emotional behavior in both health and disease.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| |
Collapse
|
29
|
Abstract
Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network.
Collapse
Affiliation(s)
- David E Nichols
- Eschelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Bocchio M, Fucsina G, Oikonomidis L, McHugh SB, Bannerman DM, Sharp T, Capogna M. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala. Neuropsychopharmacology 2015; 40:3015-26. [PMID: 26052039 PMCID: PMC4864439 DOI: 10.1038/npp.2015.157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Giulia Fucsina
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lydia Oikonomidis
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK,Department of Pharmacology, University of Oxford, Oxford, UK,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK,MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK, Tel: +44 1865 271897, Fax: +44 1865 271647, E-mail:
| |
Collapse
|
31
|
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2015; 94:548-67. [PMID: 26586374 DOI: 10.1002/jnr.23690] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/13/2023]
Abstract
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | | | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland.,Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
32
|
Li J, Chen C, Wu K, Zhang M, Zhu B, Chen C, Moyzis RK, Dong Q. Genetic variations in the serotonergic system contribute to amygdala volume in humans. Front Neuroanat 2015; 9:129. [PMID: 26500508 PMCID: PMC4598478 DOI: 10.3389/fnana.2015.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
The amygdala plays a critical role in emotion processing and psychiatric disorders associated with emotion dysfunction. Accumulating evidence suggests that amygdala structure is modulated by serotonin-related genes. However, there is a gap between the small contributions of single loci (less than 1%) and the reported 63–65% heritability of amygdala structure. To understand the “missing heritability,” we systematically explored the contribution of serotonin genes on amygdala structure at the gene set level. The present study of 417 healthy Chinese volunteers examined 129 representative polymorphisms in genes from multiple biological mechanisms in the regulation of serotonin neurotransmission. A system-level approach using multiple regression analyses identified that nine SNPs collectively accounted for approximately 8% of the variance in amygdala volume. Permutation analyses showed that the probability of obtaining these findings by chance was low (p = 0.043, permuted for 1000 times). Findings showed that serotonin genes contribute moderately to individual differences in amygdala volume in a healthy Chinese sample. These results indicate that the system-level approach can help us to understand the genetic basis of a complex trait such as amygdala structure.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China ; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| | - Karen Wu
- Department of Psychology and Social Behavior, University of California, Irvine Irvine, CA, USA
| | - Mingxia Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine Irvine, CA, USA
| | - Robert K Moyzis
- Department of Biological Chemistry, University of California, Irvine Irvine, CA, USA ; Institute of Genomics and Bioinformatics, University of California, Irvine Irvine, CA, USA
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| |
Collapse
|
33
|
Pandey DK, Bhatt S, Jindal A, Gautam B. Effect of combination of ketanserin and escitalopram on behavioral anomalies after olfactory bulbectomy: prediction of quick onset of antidepressant action. Indian J Pharmacol 2015; 46:639-43. [PMID: 25538337 PMCID: PMC4264081 DOI: 10.4103/0253-7613.144935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/02/2014] [Accepted: 10/18/2014] [Indexed: 11/04/2022] Open
Abstract
Objectives: Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed antidepressant drugs. The addition of low dose of 5-hydroxytryptamine type 2A enhances the therapeutic effect of SSRIs. The purpose of the present studies was to test the effects of combined treatment of a low dose of ketanserin (KET) and escitalopram (ESC) on behavioral anomalies occurring after olfactory bulbectomy (OBX). Materials and Methods: Chronic Depression was induced by OBX as shown in behavioral tests such as Open field, social interaction, and hyperemotionality tests. Acute and chronic treatment effect of KET, ESC, and combination was administered to the OBX rats. Results: Chronic (14 days) treatment with KET (1 mg/kg) or ESC (10 mg/kg) alleviated the behavioral anomalies of olfactory bulbectomized rats in modified open field exploration, social interaction, hyperemotionality. When KET treatment was combined with ESC, a short duration regimen (7 days) was sufficient to reverse the bulbectomy-induced anomalies. Conclusion: The combination therapy as a likely strategy to achieve an early-onset of antidepressant action.
Collapse
Affiliation(s)
- Dilip K Pandey
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Ltd, Research Park, Nanded Village, Pune, Maharashtra, India
| | - Shvetank Bhatt
- Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Ankur Jindal
- Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Baldev Gautam
- Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
34
|
GABAergic somatostatin-immunoreactive neurons in the amygdala project to the entorhinal cortex. Neuroscience 2015; 290:227-42. [PMID: 25637800 DOI: 10.1016/j.neuroscience.2015.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
The entorhinal cortex and other hippocampal and parahippocampal cortices are interconnected by a small number of GABAergic nonpyramidal neurons in addition to glutamatergic pyramidal cells. Since the cortical and basolateral amygdalar nuclei have cortex-like cell types and have robust projections to the entorhinal cortex, we hypothesized that a small number of amygdalar GABAergic nonpyramidal neurons might participate in amygdalo-entorhinal projections. To test this hypothesis we combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for the amygdalar nonpyramidal cell markers glutamic acid decarboxylase (GAD), parvalbumin (PV), somatostatin (SOM), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and the m2 muscarinic cholinergic receptor (M2R). Injections of FG into the rat entorhinal cortex labeled numerous neurons that were mainly located in the cortical and basolateral nuclei of the amygdala. Although most of these amygdalar FG+ neurons labeled by entorhinal injections were large pyramidal cells, 1-5% were smaller long-range nonpyramidal neurons (LRNP neurons) that expressed SOM, or both SOM and NPY. No amygdalar FG+ neurons in these cases were PV+ or VIP+. Cell counts revealed that LRNP neurons labeled by injections into the entorhinal cortex constituted about 10-20% of the total SOM+ population, and 20-40% of the total NPY population in portions of the lateral amygdalar nucleus that exhibited a high density of FG+ neurons. Sixty-two percent of amygdalar FG+/SOM+ neurons were GAD+, and 51% were M2R+. Since GABAergic projection neurons typically have low perikaryal levels of GABAergic markers, it is actually possible that most or all of the amygdalar LRNP neurons are GABAergic. Like GABAergic LRNP neurons in hippocampal/parahippocampal regions, amygdalar LRNP neurons that project to the entorhinal cortex are most likely involved in synchronizing oscillatory activity between the two regions. These oscillations could entrain synchronous firing of amygdalar and entorhinal pyramidal neurons, thus facilitating functional interactions between them, including synaptic plasticity.
Collapse
|
35
|
Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 2015; 277:99-120. [PMID: 25036425 PMCID: PMC4642895 DOI: 10.1016/j.bbr.2014.07.016] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022]
Abstract
Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
36
|
Serotonin in fear conditioning processes. Behav Brain Res 2015; 277:68-77. [DOI: 10.1016/j.bbr.2014.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
|
37
|
Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacology 2014; 90:102-12. [PMID: 25458113 DOI: 10.1016/j.neuropharm.2014.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/11/2014] [Accepted: 11/22/2014] [Indexed: 01/14/2023]
Abstract
Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.
Collapse
|
38
|
Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014; 171:4690-718. [PMID: 24835117 DOI: 10.1111/bph.12779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022] Open
Abstract
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | | |
Collapse
|
39
|
Bombardi C. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex. Front Pharmacol 2014; 5:68. [PMID: 24782772 PMCID: PMC3988395 DOI: 10.3389/fphar.2014.00068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and “remaining” nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
40
|
Ogden KK, Khatri A, Traynelis SF, Heldt SA. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice. Neuropsychopharmacology 2014; 39:625-37. [PMID: 24008353 PMCID: PMC3895240 DOI: 10.1038/npp.2013.241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/15/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022]
Abstract
NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Alpa Khatri
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University, Atlanta, GA, USA,Department of Pharmacology, 5025 Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta 30322, GA, USA, Tel: +404-727-0357, Fax: +404-727-0365, E-mail:
| | - Scott A Heldt
- Department of Anatomy and Neurobiology,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, Memphis, TN 38163, USA, Tel: 901-448-5965, Fax: 901-448-7193, E-mail:
| |
Collapse
|
41
|
McCool BA, Christian DT, Fetzer JA, Chappell AM. Lateral/basolateral amygdala serotonin type-2 receptors modulate operant self-administration of a sweetened ethanol solution via inhibition of principal neuron activity. Front Integr Neurosci 2014; 8:5. [PMID: 24523680 PMCID: PMC3906593 DOI: 10.3389/fnint.2014.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/09/2014] [Indexed: 11/13/2022] Open
Abstract
The lateral/basolateral amygdala (BLA) forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates “seeking” (exemplified as lever-press behaviors) from consumption (drinking) directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (α-m5HT) into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA α-m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that α-m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of α-m5HT. During whole-cell patch current-clamp recordings, we subsequently found that α-m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a sweetened ethanol solution.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Daniel T Christian
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Jonathan A Fetzer
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem NC, USA
| |
Collapse
|
42
|
The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT2A/2C receptor activation is decreased in rats with 6-hydroxydopamine lesions. Neuropharmacology 2013; 73:404-14. [DOI: 10.1016/j.neuropharm.2013.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
|
43
|
Burghardt N, Bauer E. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: Implications for underlying fear circuits. Neuroscience 2013; 247:253-72. [DOI: 10.1016/j.neuroscience.2013.05.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 12/24/2022]
|
44
|
Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 2013; 230:427-39. [PMID: 23591691 DOI: 10.1007/s00221-013-3512-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 01/23/2023]
Abstract
The amygdaloid complex and hippocampal region contribute to emotional activities, learning, and memory. Mounting evidence suggests a primary role for serotonin (5-HT) in the physiological basis of memory and its pathogenesis by modulating directly the activity of these two areas and their cross-talk. Indeed, both the amygdala and the hippocampus receive remarkably dense serotoninergic inputs from the dorsal and median raphe nuclei. Anatomical, behavioral and electrophysiological evidence indicates the 5-HT2A receptor as one of the principal postsynaptic targets mediating 5-HT effects. In fact, the 5-HT2A receptor is the most abundant 5-HT receptor expressed in these brain structures and is expressed on both amygdalar and hippocampal pyramidal glutamatergic neurons as well as on γ-aminobutyric acid (GABA)-containing interneurons. 5-HT2A receptors on GABAergic interneurons stimulate GABA release, and thereby have an important role in regulating network activity and neural oscillations in the amygdala and hippocampal region. This review will focus on the distribution and physiological functions of the 5-HT2A receptor in the amygdala and hippocampal region. Taken together the results discussed here suggest that 5-HT2A receptor may be a potential therapeutic target for those disorders related to hippocampal and amygdala dysfunction.
Collapse
|
45
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
46
|
Urakawa S, Takamoto K, Hori E, Sakai N, Ono T, Nishijo H. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats. BMC Neurosci 2013; 14:13. [PMID: 23347699 PMCID: PMC3599335 DOI: 10.1186/1471-2202-14-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/22/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior. RESULTS Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test. CONCLUSION Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the beam walking test and tended to be positively correlated with activity in the center arena in the open field test. The results suggest that rearing in the enriched environment augmented parvalbumin-positive specific neurons in the basolateral amygdala, which induced behavioral plasticity that was reflected by a decrease in anxiety-like behavior in anxiogenic situations.
Collapse
Affiliation(s)
- Susumu Urakawa
- Department of Judo Neurophysiotherapy, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Kouich Takamoto
- Department of Judo Neurophysiotherapy, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Etsuro Hori
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Natsuko Sakai
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Taketoshi Ono
- Department of Judo Neurophysiotherapy, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| |
Collapse
|
47
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
48
|
Lesch KP, Araragi N, Waider J, van den Hove D, Gutknecht L. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos Trans R Soc Lond B Biol Sci 2012; 367:2426-43. [PMID: 22826343 DOI: 10.1098/rstb.2012.0039] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry (MP), Laboratory of Translational Neuroscience (LTN), Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, , Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
49
|
Waider J, Proft F, Langlhofer G, Asan E, Lesch KP, Gutknecht L. GABA concentration and GABAergic neuron populations in limbic areas are differentially altered by brain serotonin deficiency in Tph2 knockout mice. Histochem Cell Biol 2012; 139:267-81. [PMID: 23052836 DOI: 10.1007/s00418-012-1029-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Abstract
While tryptophan hydroxylase-2 (Tph2) null mutant (Tph2(-/-)) mice are completely deficient in brain serotonin (5-HT) synthesis, the formation of serotonergic neurons and pathfinding of their projections are not impaired. However, 5-HT deficiency, during development and in the adult, might affect morphological and functional parameters of other neural systems. To assess the influence of 5-HT deficiency on γ-amino butyric acid (GABA) systems, we carried out measurements of GABA concentrations in limbic brain regions of adult male wildtype (wt), heterozygous (Tph2(+/-)) and Tph2(-/-) mice. In addition, unbiased stereological estimation of GABAergic interneuron numbers and density was performed in subregions of amygdala and hippocampus. Amygdala and prefrontal cortex displayed significantly increased and decreased GABA concentrations, respectively, exclusively in Tph2(+/-) mice while no changes were detected between Tph2(-/-) and wt mice. In contrast, in the hippocampus, increased GABA concentrations were found in Tph2(-/-) mice. While total cell density in the anterior basolateral amygdala did not differ between genotypes, the number and density of the GABAergic interneurons were significantly decreased in Tph2(-/-) mice, with the group of parvalbumin (PV)-immunoreactive (ir) interneurons contributing somewhat less to the decrease than that of non-PV-ir GABAergic interneurons. Major morphological changes were also absent in the dorsal hippocampus, and only a trend toward reduced density of PV-ir cells was observed in the CA3 region of Tph2(-/-) mice. Our findings are the first to document that life-long reduction or complete lack of brain 5-HT transmission causes differential changes of GABA systems in limbic regions which are key players in emotional learning and memory processes. The changes likely reflect a combination of developmental alterations and functional adaptations of emotion circuits to balance the lack of 5-HT, and may underlie altered emotional behavior in 5-HT-deficient mice. Taken together, our findings provide further insight into the mechanisms how life-long 5-HT deficiency impacts the pathogenesis of anxiety- and fear-related disorders.
Collapse
Affiliation(s)
- Jonas Waider
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Daftary SS, Calderon G, Rios M. Essential role of brain-derived neurotrophic factor in the regulation of serotonin transmission in the basolateral amygdala. Neuroscience 2012; 224:125-34. [PMID: 22917617 DOI: 10.1016/j.neuroscience.2012.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 11/30/2022]
Abstract
Human and animal model studies have linked brain-derived neurotrophic factor (BDNF) with the etiology of anxiety disorders. This pleiotropic neurotrophin and its receptor, TrkB, promote neuronal survival, differentiation and synaptic plasticity. Here we interrogated the role of BDNF in serotonergic neurotransmission in the basolateral amygdala (BLA), a limbic brain region associated with the neurobiology of anxiety. We found that both GABAergic and pyramidal projection neurons in the wild-type BLA contained TrkB receptors. Examination of BDNF(2L/2LCk-Cre) mutant mice with brain-selective depletion of BDNF revealed mild decreases in serotonin content in the BLA. Notably, whole cell recordings in BLA pyramidal cells uncovered significant alterations in 5-HT(2)-mediated regulation of GABAergic and glutamatergic transmission in BDNF(2L/2LCk-Cre) mutant mice that result in a hyperexcitable circuit. These changes were associated with decreased expression of 5-HT(2) receptors. Collectively, the results indicate a required role of BDNF in serotonin transmission in the BLA. Furthermore, they suggest a mechanism underlying the reported increase in anxiety-like behavior elicited by perturbed BDNF signaling.
Collapse
Affiliation(s)
- S S Daftary
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|