1
|
Silva P, Rodríguez-Pérez M, Burgos-Ramos E. Zebrafish Model Insights into Mediterranean Diet Liquids: Olive Oil and Wine. Antioxidants (Basel) 2023; 12:1843. [PMID: 37891921 PMCID: PMC10604723 DOI: 10.3390/antiox12101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In this review, we explored the potential of a zebrafish model to investigate the antioxidant effects of key components of the Mediterranean diet, namely, olive oil and wine, in the context of preventing age-related diseases, particularly cardiovascular conditions. This paper explores the spectrum of observational studies to preclinical investigations and ultimately converges toward potential translational insights derived from animal experimentation. This review highlights the potential and underutilization of zebrafish as an experimental model in this domain. We highlighted the genetic proximity of zebrafish to humans, offering a unique opportunity for translational insights into the health benefits of olive oil and wine. Indeed, we wanted to focus on the potential of zebrafish to elucidate the health benefits of olive oil and wine while calling for continued exploration to unlock its full potential to advance our knowledge of age-related disease prevention within the Mediterranean diet framework.
Collapse
Affiliation(s)
- Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| |
Collapse
|
2
|
Arif M, Rauf K, Rehman NU, Tokhi A, Ikram M, Sewell RD. 6-Methoxyflavone and Donepezil Behavioral Plus Neurochemical Correlates in Reversing Chronic Ethanol and Withdrawal Induced Cognitive Impairment. Drug Des Devel Ther 2022; 16:1573-1593. [PMID: 35665194 PMCID: PMC9160976 DOI: 10.2147/dddt.s360677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
- Correspondence: Khalid Rauf, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan, Tel +923459824468, Email
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Robert D Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
3
|
Duplantier SC, Gardner CD. A Critical Review of the Study of Neuroprotective Diets to Reduce Cognitive Decline. Nutrients 2021; 13:nu13072264. [PMID: 34208980 PMCID: PMC8308213 DOI: 10.3390/nu13072264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) and other dementias are now the seventh leading cause of death in the world and are projected to affect 115.4 million people by 2050. Delaying the onset of AD by just five years is estimated to reduce the cost and prevalence of the disease by half. There is no cure for AD nor any drug therapies to halt its progression once the disease begins. Lifestyle choices including diet are being seen as a viable complementary therapy to reduce cognitive decline, the hallmark of AD. Mediterranean, DASH (Dietary Approaches to Stop Hypertension), and MIND (Mediterranean-DASH Intervention for Neurodegenerative Delay) diets have biological mechanisms supporting their potential neuroprotective benefits, but the findings of study outcomes about these benefits have been inconsistent. This paper analyzed five Randomized Clinical Trials (RCTs) (from 2000 to 2021) and 27 observational studies (from 2010 to 2021) focused on the link between cognitive health and the Mediterranean/DASH/MIND diets to identify gaps and challenges that could lead to inconsistent results. These include a lack of accuracy in assessing food intake, multiple dietary pattern scoring systems, a shifting metric among studies focused on the Mediterranean diet, a lack of standards in the tools used to assess cognitive decline, and studies that were underpowered or had follow-up periods too short to detect cognitive change. Insights from these gaps and challenges are summarized in recommendations for future RCTs, including both pragmatic and explanatory RCTs.
Collapse
Affiliation(s)
- Sally C. Duplantier
- The USC Leonard School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA;
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
4
|
Zhang D, Dong X, Liu X, Ye L, Li S, Zhu R, Ye Y, Jiang Y. Proteomic Analysis of Brain Regions Reveals Brain Regional Differences and the Involvement of Multiple Keratins in Chronic Alcohol Neurotoxicity. Alcohol Alcohol 2020; 55:147-156. [PMID: 32047899 DOI: 10.1093/alcalc/agaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS Alcohol abuse has attracted public attention and chronic alcohol exposure can result in irreversible structural changes in the brain. The molecular mechanisms underlying alcohol neurotoxicity are complex, mandating comprehensive mining of spatial protein expression profile. METHODS In this study, mice models of chronic alcohol intoxication were established after 95% alcohol vapor administration for 30 consecutive days. On Day 30, striatum (the dorsal and ventral striatum) and hippocampus, the two major brain regions responsible for learning and memorizing while being sensitive to alcohol toxicity, were collected. After that, isobaric tags for relative and absolute quantitation -based quantitative proteomic analysis were carried out for further exploration of the novel mechanisms underlying alcohol neurotoxicity. RESULTS Proteomic results showed that in the striatum, 29 proteins were significantly up-regulated and 17 proteins were significantly down-regulated. In the hippocampus, 72 proteins were significantly up-regulated, while 2 proteins were significantly down-regulated. Analysis of the overlay proteins revealed that a total of 102 proteins were consistently altered (P < 0.05) in both hippocampus and striatum regions, including multiple keratins such as Krt6a, Krt17 and Krt5. Ingenuity pathway analysis revealed that previously reported diseases/biofunctions such as dermatological diseases and developmental disorders were enriched in those proteins. Interestingly, the glucocorticoid receptor (GR) signaling was among the top enriched pathways in both brain regions, while multiple keratins from the GR signaling such as Krt1 and Krt17 exhibited significantly opposite expression patterns in the two brain nuclei. Moreover, there are several other involved pathways significantly differed between the hippocampus and striatum. CONCLUSIONS Our data revealed brain regional differences upon alcohol consumption and indicated the critical involvement of keratins from GR signaling in alcohol neurotoxicity. The differences in proteomic results between the striatum and hippocampus suggested a necessity of taking into consideration brain regional differences and intertwined signaling pathways rather than merely focusing on single nuclei or molecule during the study of drug-induced neurotoxicity in the future.
Collapse
Affiliation(s)
- Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rongzhe Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghong Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
6
|
Wang F, Li J, Li L, Gao Y, Wang F, Zhang Y, Fan Y, Wu C. Protective effect of apple polyphenols on chronic ethanol exposure-induced neural injury in rats. Chem Biol Interact 2020; 326:109113. [PMID: 32360496 DOI: 10.1016/j.cbi.2020.109113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Apple polyphenols (AP) have attracted much attention due to their various bioactivities. In this study, the protective effect of AP against chronic ethanol exposure-induced neural injury as well as the possible mechanisms were investigated. Body weight, daily average food intake and daily average fluid intake were measured and daily average ethanol consumption was calculated. The influences of AP on motor behavior and memory were detected by locomotor activity test, rotarod test, beam walking test, and Y maze test and novel object recognition test, respectively. The changes of blood ethanol concentration and the oxidative stress were also measured. AP improved chronic ethanol exposure-induced the inhibition of body weight and the decrease of daily average food intake, but did not influence the daily average fluid intake and the daily average ethanol intake, indicating that the improve effect of AP did not result from the decrease of ethanol intake. Motor activity and motor coordination were not influenced after chronic ethanol exposure though the blood ethanol concentration was higher than that in control group. AP improved significantly chronic ethanol-induced the memory impairment and the hippocampal CA1 neurons damage. Further studies found that AP decreased the contents of NO and MDA and increased the levels of T-AOC and GSH in the hippocampus of rats. These results suggest that AP exerts a protective effect against chronic ethanol-induced memory impairment through improving the oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Jinghong Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Ying Gao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanxia Fan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunfu Wu
- Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Rahman MA, Aribisala BS, Ullah I, Omer H. Association between scripture memorization and brain atrophy using magnetic resonance imaging. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Pereira PA, Gonçalves E, Silva A, Millner T, Madeira MD. Effects of chronic alcohol consumption and withdrawal on the cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei of the rat: An unbiased stereological study. Neurotoxicology 2019; 76:58-66. [PMID: 31634498 DOI: 10.1016/j.neuro.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
The brain cholinergic system comprises two main recognized subdivisions, the basal forebrain and the brainstem cholinergic systems. The effects of chronic alcohol consumption on the basal forebrain cholinergic nuclei have been investigated extensively, but there is only one study that has examined those effects on the brainstem cholinergic nuclei. The last one comprises the pedunculopontine tegmental (PPT) and the laterodorsal tegmental (LDT) nuclei, which are known to give origin to the main cholinergic projection to the ventral tegmental area, a key brain region of the neural circuit, the mesocorticolimbic system, that mediates several behavioral and physiological processes, including reward. In the present study, we have examined, using stereological methods, the effects of chronic alcohol consumption (6 months) and subsequent withdrawal (2 months) on the total number and size of PPT and LDT choline acetyltransferase (ChAT)-immunoreactive neurons. The total number of PPT and LDT ChAT-immunoreactive neurons was unchanged in ethanol-treated and withdrawn rats. However, ChAT-immunoreactive neurons were significantly hypertrophied in ethanol-treated rats, an alteration that did not revert 2 months after ethanol withdrawal. These results show that prolonged exposure to ethanol leads to long-lasting, and potentially irreversible, cytoarchitectonic and neurochemical alterations in the brainstem cholinergic nuclei. These alterations suggest that the alcohol-induced changes in the brainstem cholinergic nuclei might play a role in the mechanisms underlying the development of addictive behavior to alcohol.
Collapse
Affiliation(s)
- Pedro A Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Eugénio Gonçalves
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Ana Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Tiago Millner
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - M Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
9
|
Abstract
Wine, and specifically red wine, is a beverage with a great chemical complexity comprising a particular combination of phenolic compounds which are directly associated with its health-promoting properties. Wine polyphenols could induce changes in the composition of intestinal microbiota that would affect the production of physiologically active phenolic metabolites modifying the content and phenolic profile at the systemic level. In addition, in the human population, it seems that different “metabotypes”, or patterns of metabolizing wine polyphenols, exist, which would be reflected in the different biological fluids (i.e., plasma, urine and feces) and tissues of the human body. Moreover, wine polyphenols might change the composition of oral microbiota by an antimicrobial action and/or by inhibition of the adhesion of pathogens to oral cells, thus contributing to the maintenance of oral health. In turn, polyphenols and/or its metabolites could have a direct action on brain function, by positively affecting signaling routes involved in stress-induced neuronal response, as well as by preventing neuroticism-like disorders (i.e., anxiety and depression) through anti-inflammatory and epigenetic mechanisms. All of this would condition the positive effects on health derived from moderate wine consumption. This paper reviews all these topics, which are directly related with the effects of wine polyphenols at both digestive and brain level. Further progresses expected in the coming years in these fields are also discussed.
Collapse
|
10
|
Calapai G, Bonina F, Bonina A, Rizza L, Mannucci C, Arcoraci V, Laganà G, Alibrandi A, Pollicino C, Inferrera S, Alecci U. A Randomized, Double-Blinded, Clinical Trial on Effects of a Vitis vinifera Extract on Cognitive Function in Healthy Older Adults. Front Pharmacol 2017; 8:776. [PMID: 29163162 PMCID: PMC5671585 DOI: 10.3389/fphar.2017.00776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 01/06/2023] Open
Abstract
Introduction: Gradual population aging is creating a new set of needs in the general population. Memory capacity decreases with age, and memory deficits are considered an early symptom of Alzheimer’s Disease (AD), one of the most prevalent cognitive disorders in older people. Numerous studies have shown that grape polyphenolic compounds (GPs) are able to attenuate cognitive impairment and reduce brain lesions in experimental AD animal models. These GP effects are associated with improvement in brain antioxidant status and prevention of free radical-induced neuronal damage. We designed a randomized, double-blind, placebo-controlled clinical trial to investigate the potential beneficial effects of a Vitis vinifera-based dietary supplement on cognitive function and neuropsychological status in healthy older adults. Methods: One-hundred eleven subjects were recruited and randomly divided in two groups: one group received the V. vinifera-based dietary supplement Cognigrape® for 12 weeks (250 mg/day) and the second group received placebo over the same period of time. Before and after the end of the supplementation period, cognitive function and neuropsychological status were evaluated using the Mini-Mental State Examination (MMSE), Beck Depression Inventory (BDI), Hamilton Anxiety Rating Scale (HARS), and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) evaluations. Results: MMSE scores were significantly improved after supplementation with Cognigrape® in comparison with baseline levels (p < 0.0001) and placebo (r = 0.59, 0.95% CI 0.11, 1.22; p < 0.0001). Cognigrape® supplementation produced a significant reduction in BDI (-15.8%) and HARS (-24.9%) scores with respect to baseline levels (p < 0.0001) and placebo (p < 0.0001 for BDI and p < 0.05 for HARS). RBANS total score was significantly improved by Cognigrape® with respect to baseline levels and placebo (r = 0.55, 0.95% CI 0.48, 6.07; p < 0.0001). The comparison with the placebo revealed improvements in several parameters among participants receiving Cognigrape®: attention (p < 0.001); language (p < 0.05); immediate memory (p < 0.0001); and delayed memory (p < 0.0001). Visuospatial/constructional abilities were not modified. During the study, no adverse effects were detected. Conclusion: The results show that 12 weeks of Cognigrape® supplementation is safe, can improve physiological cognitive profiles, and can concurrently ameliorate negative neuropsychological status in healthy older adults.
Collapse
Affiliation(s)
- Gioacchino Calapai
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Francesco Bonina
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Luisa Rizza
- Bionap srl, R&D Contrada Fureria, Belpasso, Italy
| | - Carmen Mannucci
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Germana Laganà
- Italian College of General Practitioners and Primary Care, Florence, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Concetta Pollicino
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Santi Inferrera
- Italian College of General Practitioners and Primary Care, Florence, Italy
| | - Umberto Alecci
- Italian College of General Practitioners and Primary Care, Florence, Italy
| |
Collapse
|
11
|
Cendrowski A, Ścibisz I, Kieliszek M, Kolniak-Ostek J, Mitek M. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa). Molecules 2017; 22:E1832. [PMID: 29077047 PMCID: PMC6150333 DOI: 10.3390/molecules22111832] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022] Open
Abstract
Polyphenolic compounds, as a secondary metabolite of plants, possess great nutritional and pharmacological potential. Herein, we applied the green analytical method to study the nutrient profile of Rosa rugosa petals and liqueurs manufactured from them. Using the fast and validated ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method, we confirm the presence of the following compounds: phenolic acids, flavonols, flavan-3-ols and hydrolisable tannins (gallotannins and ellagitannins). R. rugosa petals contains up to 2175.43 mg polyphenols per 100 g fresh weight, therein 1517.01 mg ellagitannins per 100 g fresh weight. Liqueurs, traditionally manufactured from said petals using a conventional extraction method (maceration), also contain polyphenols in significant amounts (from 72% to 96% corresponding to percentage of theoretical polyphenol content in the used petals), therein ellagitannins amount to 69.7% on average. We confirmed that traditional maceration, most common for the isolation of polyphenols, is still suitable for the food industry due to its using aqueous ethanol, a common bio-solvent, easily available in high purity and completely biodegradable. Therefore R. rugosa used as a food may be considered as an ellagitannin-rich plant of economic importance. Manufactured rose liqueurs were stable and kept all their properties during the whole period of aging.
Collapse
Affiliation(s)
- Andrzej Cendrowski
- Division of Fruit and Vegetable Technology, Department of Food Technology, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| | - Iwona Ścibisz
- Division of Fruit and Vegetable Technology, Department of Food Technology, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| | - Marek Kieliszek
- Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| | - Joanna Kolniak-Ostek
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37/41 Chełmońskiego Str., 51-630 Wroclaw, Poland.
| | - Marta Mitek
- Division of Fruit and Vegetable Technology, Department of Food Technology, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| |
Collapse
|
12
|
Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation. Neurotoxicology 2017; 60:107-115. [PMID: 28408342 DOI: 10.1016/j.neuro.2017.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol.
Collapse
|
13
|
Esteban-Fernández A, Rendeiro C, Spencer JPE, Del Coso DG, de Llano MDG, Bartolomé B, Moreno-Arribas MV. Neuroprotective Effects of Selected Microbial-Derived Phenolic Metabolites and Aroma Compounds from Wine in Human SH-SY5Y Neuroblastoma Cells and Their Putative Mechanisms of Action. Front Nutr 2017; 4:3. [PMID: 28352628 PMCID: PMC5348642 DOI: 10.3389/fnut.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
Moderate wine consumption has shown the potential to delay the onset of neurodegenerative diseases. This study investigates the molecular mechanisms underlying the protective effects of wine-derived phenolic and aroma compounds in a neuroinflammation model based on SIN-1 stress-induced injury in SH-SY5Y neuroblastoma cells. Cell pretreatment with microbial metabolites found in blood after wine consumption, 3,4-dihydroxyphenylacetic (3,4-DHPA), 3-hydroxyphenylacetic acids and salicylic β-d-O-glucuronide, at physiologically concentrations (0.1–10 μM) resulted in increased cell viability versus SIN-1 control group (p < 0.05). Results also showed significant decreases in mitogen-activated protein kinase (MAPK) p38 and ERK1/2 activation as well as in downstream pro-apoptotic caspase-3 activity by some of the studied compounds. Moreover, pretreatment with p38, MEK, and ERK1/2-specific inhibitors, which have a phenolic-like structure, also resulted in an increase on cell survival and a reduction on caspase-3 activity levels. Overall, these results contribute with new evidences related to the neuroprotective actions of wine, pointing out that wine-derived human metabolites and aroma compounds may be effective at protecting neuroblastoma cells from nitrosative stress injury by inhibiting neuronal MAPK p38 and ERK1/2, as well as downstream caspase 3 activity.
Collapse
Affiliation(s)
- A Esteban-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain; Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - C Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign , Champaign, IL , USA
| | - J P E Spencer
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading , Reading , UK
| | - D Gigorro Del Coso
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM , Madrid , Spain
| | - M D González de Llano
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM , Madrid , Spain
| | - B Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM , Madrid , Spain
| | - M V Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM , Madrid , Spain
| |
Collapse
|
14
|
Anthocyanins protect from complex I inhibition and APPswe mutation through modulation of the mitochondrial fission/fusion pathways. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2110-2118. [DOI: 10.1016/j.bbadis.2016.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 11/23/2022]
|
15
|
Esteban-Fernández A, Gigorro del Coso D, González de Llano D, Spencer J, Bartolomé B, Moreno-Arribas M. Understanding the protective effects of wine components and their metabolites in the brain function. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160704008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Matching Diabetes and Alcoholism: Oxidative Stress, Inflammation, and Neurogenesis Are Commonly Involved. Mediators Inflamm 2015; 2015:624287. [PMID: 26063976 PMCID: PMC4439509 DOI: 10.1155/2015/624287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/18/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Diabetes and alcohol misuse are two of the major challenges in health systems worldwide. These two diseases finally affect several organs and systems including the central nervous system. Hippocampus is one of the most relevant structures due to neurogenesis and memory-related processing among other functions. The present review focuses on the common profile of diabetes and ethanol exposure in terms of oxidative stress and proinflammatory and prosurvival recruiting transcription factors affecting hippocampal neurogenesis. Some aspects around antioxidant strategies are also included. As a global conclusion, the present review points out some common hits on both diseases giving support to the relations between alcohol intake and diabetes.
Collapse
|
17
|
Protection of the Developing Brain with Anthocyanins Against Ethanol-Induced Oxidative Stress and Neurodegeneration. Mol Neurobiol 2014; 51:1278-91. [DOI: 10.1007/s12035-014-8805-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
18
|
Corona G, Vauzour D, Hercelin J, Williams CM, Spencer JPE. Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation. Antioxid Redox Signal 2013; 19:1676-89. [PMID: 23458470 DOI: 10.1089/ars.2012.5142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIMS While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. RESULTS In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. INNOVATION Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. CONCLUSION Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex.
Collapse
Affiliation(s)
- Giulia Corona
- 1 Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading , Reading, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Ali Shah S, Ullah I, Lee HY, Kim MO. Anthocyanins protect against ethanol-induced neuronal apoptosis via GABAB1 receptors intracellular signaling in prenatal rat hippocampal neurons. Mol Neurobiol 2013; 48:257-69. [PMID: 23645118 DOI: 10.1007/s12035-013-8458-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
Here, we investigated the possible involvement of gamma-aminobutyric acid B1 receptor (GABAB1R) in mediating the protective effects of black soybean anthocyanins against ethanol-induced apoptosis in prenatal hippocampal neurons because GABARs are known to play an important role in the development of central nervous system. Treatments were performed on primary cultures of prenatal rat hippocampal neurons transfected with or without GABAB1R small interfering RNA (siRNA). The results showed that, when ethanol treatment was followed by anthocyanins treatment, cellular levels of proapoptotic proteins such as Bax, activated caspase-3, and cleaved poly (ADP-ribose) polymerase 1 (PARP-1) were decreased, and the cellular level of the antiapoptotic protein Bcl-2 was increased compared to treatment with ethanol alone. Furthermore, the effects of ethanol on cellular levels of GABAB1R and its downstream signaling molecules such as protein kinase A, calcium/calmodulin-dependent protein kinase II (CaMKII), and phosphorylated cAMP response element binding protein were diminished or reversed by anthocyanins treatment. The ability of anthocyanins to reverse the effects of ethanol on cellular levels of Bax, Bcl-2, active caspase-3, cleaved PARP-1, GABAB1R, and CaMKII were abrogated in cells transfected with GABAB1R siRNA. In a GABAB1R-dependent manner, anthocyanins also inhibited the ability of ethanol to elevate intracellular free Ca(2+) level and increase the proportion of cells with low mitochondrial membrane potential in the population. Cell apoptosis assay and morphological studies also confirmed the neuroprotective effect of anthocyanins against ethanol via GABAB1R. Our data suggest that GABAB1R plays an important role in the neuroprotective effects of anthocyanins against ethanol.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Department of Biology, Division of Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Wine polyphenols: potential agents in neuroprotection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:805762. [PMID: 22829964 PMCID: PMC3399511 DOI: 10.1155/2012/805762] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 01/11/2023]
Abstract
There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.
Collapse
|
21
|
Rubio J, Yucra S, Gasco M, Gonzales GF. Dose-response effect of black maca (Lepidium meyenii) in mice with memory impairment induced by ethanol. Toxicol Mech Methods 2011; 21:628-34. [PMID: 21780878 DOI: 10.3109/15376516.2011.583294] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies have shown that black variety of maca has beneficial effects on learning and memory in experimental animal models. The present study aimed to determine whether the hydroalcoholic extract of black maca (BM) showed a dose-response effect in mice treated with ethanol 20% (EtOH) as a model of memory impairment. Mice were divided in the following groups: control, EtOH, ascorbic acid (AA) and 0.125, 0.25, 0.50 and 1.00 g/kg of BM plus EtOH. All treatments were orally administered for 28 days. Open field test was performed to determine locomotor activity and water Morris maze was done to determine spatial memory. Also, total polyphenol content in the hydroalcoholic extract of BM was determined (0.65 g pyrogallol/100 g). Mice treated with EtOH took more time to find the hidden platform than control during escape acquisition trials; meanwhile, AA and BM reversed the effect of EtOH. In addition, AA and BM ameliorated the deleterious effect of EtOH during the probe trial. Correlation analyses showed that the effect of BM a dose-dependent behavior. Finally, BM improved experimental memory impairment induced by ethanol in a dose-response manner due, in part, to its content of polyphenolic compounds.
Collapse
Affiliation(s)
- Julio Rubio
- Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy and Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia , Lima , Peru.
| | | | | | | |
Collapse
|
22
|
|
23
|
Assunção M, Santos-Marques MJ, Carvalho F, Lukoyanov NV, Andrade JP. Chronic green tea consumption prevents age-related changes in rat hippocampal formation. Neurobiol Aging 2011; 32:707-717. [PMID: 19411127 DOI: 10.1016/j.neurobiolaging.2009.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 02/20/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
The hippocampal formation undergoes considerable structural and functional modifications during aging and oxidative stress emerges as a key player in the process. In the present study, we investigated whether prolonged consumption of green tea (GT), which contains large amounts of polyphenols, could interfere with age-related changes in this brain region using biochemical, morphological and behavioral approaches. Ten male Wistar rats aged 19 months were fed with GT since 12 months of age and results compared to those obtained from controls aged 19 months (C-19M). At 12 months of age, another group of rats was evaluated to provide baseline data. Oxidative stress markers (protein carbonyls and malondialdehyde) were quantified in hippocampal homogenates and stereological methods were applied to estimate the deposition of lipofuscin in hippocampal CA3 pyramidal neurons. Morris water maze was used to assess spatial learning and memory. Aging increased oxidative markers and lipofuscin accumulation and was associated with impaired memory acquisition. However, GT treatment protected proteins and lipids against oxidation and prevented the increase of lipofuscin deposition compared to age-matched controls. Furthermore, the spatial learning abilities of GT-treated rats were significantly improved when compared to those from C-19M group. Taken together, these findings confirm the neuroprotective ability of GT in the hippocampal formation probably due to the reduction of oxidative stress-related damage observed during aging.
Collapse
Affiliation(s)
- Marco Assunção
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|
24
|
Martín S, González-Burgos E, Carretero ME, Gómez-Serranillos MP. Neuroprotective properties of Spanish red wine and its isolated polyphenols on astrocytes. Food Chem 2011; 128:40-8. [PMID: 25214327 DOI: 10.1016/j.foodchem.2011.02.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 12/19/2022]
Abstract
The neuroprotective effect of Merlot red wine and its isolated polyphenols was evaluated in an oxidative stress model induced by Fenton reaction and hydrogen peroxide in the human astrocytoma U373 MG cell line. Compared with cells treated only with oxidative stress inductors, the pre-incubation with Merlot red wine for 24h caused a significant increase in cell viability for all concentrations assayed. The most abundant polyphenols found in Merlot red wine were the flavonoids catechin (37.8mg/l), epicatechin (52.3mg/l), quercetin (5.89mg/l) and procyanidins (15.2mg/l), the hydroxybenzoic acid gallic acid (16.7mg/l), and the phenolic alcohol tyrosol (31.4mg/l). The potential protective role of these polyphenols when isolated was then assessed in treated Fenton reaction U373 MG cells. Polyphenols decreased reactive oxygen species generation and increased the activity and the protein expression of the antioxidant enzymes catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase. Of the polyphenols, quercetin and procyanidins showed the highest neuroprotective effect.
Collapse
Affiliation(s)
- Sara Martín
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - M Emilia Carretero
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
25
|
Venturini CD, Merlo S, Souto AA, Fernandes MDC, Gomez R, Rhoden CR. Resveratrol and red wine function as antioxidants in the nervous system without cellular proliferative effects during experimental diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:434-41. [PMID: 21307644 PMCID: PMC3154048 DOI: 10.4161/oxim.3.6.14741] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic hyperglycemia increases oxidative stress status and has been associated with neurological complications in diabetic individuals. This study compared the antioxidant properties of red wine or resveratrol in different brain areas of diabetic and non-diabetic rats, and investigated the effect of them on hippocampal cell proliferation in hippocampal dentate gyrus of diabetic rats. Streptozotocin-induced diabetic and control rats were treated with red wine (4 mL/kg), resveratrol (20 mg/kg), or saline, by oral gavage, for 21 days. Lipid peroxidation (TBARS), catalase and superoxide dismutase were measured to evaluate the oxidative stress and the BrdU-positive cells were assessed to measure changes in cellular proliferation. In diabetic animals, resveratrol showed antioxidant property in the hippocampus and in the striatum, while red wine had an antioxidant effect only in the hippocampus. Neither red wine nor resveratrol reversed the lower hippocampal cell proliferation in diabetic rats. Daily doses of red wine or resveratrol have an antioxidant effect in rats depending on the brain area and the glycemic status.
Collapse
Affiliation(s)
- Carina Duarte Venturini
- Universidade Federal de Ciências da Saúde de Porto Alegre, Division of Pharmacology, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Cippitelli A, Zook M, Bell L, Damadzic R, Eskay RL, Schwandt M, Heilig M. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats. Neurobiol Learn Mem 2010; 94:538-46. [PMID: 20849966 DOI: 10.1016/j.nlm.2010.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/31/2010] [Accepted: 09/08/2010] [Indexed: 11/18/2022]
Abstract
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Laboratory of Clinical and Translational Studies (LCTS), National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Faria A, Pestana D, Teixeira D, Azevedo J, De Freitas V, Mateus N, Calhau C. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cell Mol Biol Lett 2010; 15:234-41. [PMID: 20140760 PMCID: PMC6275689 DOI: 10.2478/s11658-010-0006-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022] Open
Abstract
There is a growing interest in dietary therapeutic strategies to combat oxidative stress-induced damage to the Central Nervous System (CNS), which is associated with a number of pathophysiological processes, including Alzheimer's and Parkinson's diseases and cerebrovascular diseases. Identifying the mechanisms associated with phenolic neuroprotection has been delayed by the lack of information concerning the ability of these compounds to enter the CNS. The aim of this study was to evaluate the transmembrane transport of flavonoids across RBE-4 cells (an immortalized cell line of rat cerebral capillary endothelial cells) and the effect of ethanol on this transport. The detection and quantification of all of the phenolic compounds in the studied samples (basolateral media) was performed using a HPLC-DAD (Diode Array Detector). All of the tested flavonoids (catechin, quercetin and cyanidin-3-glucoside) passed across the RBE-4 cells in a time-dependent manner. This transport was not influenced by the presence of 0.1% ethanol. In conclusion, the tested flavonoids were capable of crossing this blood-brain barrier model.
Collapse
Affiliation(s)
- Ana Faria
- Department of Biochemistry, University of Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cippitelli A, Damadzic R, Frankola K, Goldstein A, Thorsell A, Singley E, Eskay RL, Heilig M. Alcohol-induced neurodegeneration, suppression of transforming growth factor-beta, and cognitive impairment in rats: prevention by group II metabotropic glutamate receptor activation. Biol Psychiatry 2010; 67:823-30. [PMID: 20132926 DOI: 10.1016/j.biopsych.2009.12.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/05/2009] [Accepted: 12/11/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glutamatergic neurotransmission has been implicated in mechanisms of alcohol-induced neurodegeneration and cognitive impairment, but the underlying mechanism remains unknown. Here, we examined whether the group II metabotropic glutamate receptor agonist LY379268 prevents neuronal death and learning deficits in a rat model of binge-like exposure to alcohol. METHODS Following 4-day binge alcohol exposure concurrent with LY379268 or vehicle treatment, Fluoro-Jade B and transforming growth factor-beta (TGF-beta) staining were carried out, and reversal learning in the Morris water maze was assessed. RESULTS Fluoro-Jade B staining indicating neurodegeneration was most extensive in the ventral hippocampus and the entorhinal cortex (EC). LY379268 was potently neuroprotective in the EC but not in the dentate gyrus of the hippocampus. In parallel, binge alcohol exposure suppressed TGF-beta expression in both the EC and dentate gyrus, whereas LY379268 increased TGF-beta in the EC only. Finally, neuroprotective effects of LY379268 were accompanied by prevention of deficits in spatial reversal learning. CONCLUSIONS Our data support a neuroprotective role for group II metabotropic glutamate receptor agonists and TGF-beta in alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1108, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen G, Luo J. Anthocyanins: are they beneficial in treating ethanol neurotoxicity? Neurotox Res 2010; 17:91-101. [PMID: 19590929 PMCID: PMC4992359 DOI: 10.1007/s12640-009-9083-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/29/2022]
Abstract
Heavy alcohol exposure produces profound damage to the developing central nervous system (CNS) as well as the adult brain. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation. Excessive alcohol consumption is associated with Wernicke-Korsakoff syndrome (WKS) and neurodegeneration in the adult brain. Although the cellular/molecular mechanism underlying ethanol's neurotoxicity has not been fully understood, it is generally believed that oxidative stress plays an important role. Identification of neuroprotective agents that can ameliorate ethanol neurotoxicity is an important step for developing preventive/therapeutic strategies. Targeting ethanol-induced oxidative stress using natural antioxidants is an attractive approach. Anthocyanins, a large subgroup of flavonoids present in many vegetables and fruits, are safe and potent antioxidants. They exhibit diverse potential health benefits including cardioprotection, anti-atherosclerotic activity, anti-cancer, anti-diabetic, and anti-inflammation properties. Anthocyanins can cross the blood-brain barrier and distribute in the CNS. Recent studies indicate that anthocyanins represent novel neuroprotective agents and may be beneficial in ameliorating ethanol neurotoxicity. In this review, we discuss the evidence and potential of anthocyanins in alleviating ethanol-induced damage to the CNS. Furthermore, we discuss possible underlying mechanisms as well as future research approaches necessary to establish the therapeutic role of anthocyanins.
Collapse
Affiliation(s)
- Gang Chen
- Department of Internal Medicine, College of Medicine, University of Kentucky, 124C Combs Research Building, 800 Rose Street, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Internal Medicine, College of Medicine, University of Kentucky, 124C Combs Research Building, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
30
|
Assunção M, Santos-Marques MJ, Monteiro R, Azevedo I, Andrade JP, Carvalho F, Martins MJ. Red wine protects against ethanol-induced oxidative stress in rat liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6066-6073. [PMID: 19548675 DOI: 10.1021/jf900576h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ethanol consumption may be deleterious to the liver. However, alcoholic beverages contain, besides ethanol (EtOH), complex chemical mixtures that can modify EtOH's adverse effects. Red wine (RW) is rich in polyphenolic antioxidants, often reported as hepatoprotective agents. This study aimed to investigate the effects of 6 months of RW ingestion on hepatic oxidative stress and inflammation. Six-month-old Wistar rats were treated with RW or EtOH; controls were pair-fed. EtOH increased 8-hydroxy-2'-deoxyguanosine and decreased reduced and oxidized glutathione. These animals also displayed stimulated superoxide dismutase, catalase, and glutathione reductase activities. RW treatment decreased malondialdehyde and reduced glutathione levels. Glutathione-S-transferase and selenium-dependent glutathione peroxidase activities were stimulated and glutathione reductase activity was inhibited by RW intake. No modifications were detected in nuclear factor-kappa B or alkaline phosphatase activities. EtOH consumption induced fibrosis in portal spaces and hepatocyte lipid accumulation that were absent with RW treatment. This paper highlights the importance of RW nonalcoholic components and the relevance of biological matrix in the study of EtOH oxidative effects.
Collapse
Affiliation(s)
- Marco Assunção
- Department of Anatomy (U121/94-FCT), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Willis LM, Shukitt-Hale B, Joseph JA. Modulation of cognition and behavior in aged animals: role for antioxidant- and essential fatty acid-rich plant foods. Am J Clin Nutr 2009; 89:1602S-1606S. [PMID: 19339395 DOI: 10.3945/ajcn.2009.26736j] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aging results in the development of cognitive and motor deficits in humans and animals that are evident by midlife. These deficits are thought to stem from neuronal damage and dysfunction as a result of a variety of stressors, including increased oxidative stress and modifications in brain lipid composition. Recent clinical and animal studies have identified nutritional intervention as a viable method to curtail the cognitive aging process. Human studies have been primarily observational and have indicated that inclusion of antioxidant-rich foods in the diet can slow the progression of cognitive decline. Basic science studies investigating nutritional modulation of age-related cognitive decline have focused on foods rich in antioxidants or essential fatty acids. The purpose of this review is to discuss recent advancements in animal research showing that age-related cognitive and behavioral decline can be ameliorated with nutritional supplementation with polyphenol- or polyunsaturated fatty acid-rich plant foods.
Collapse
Affiliation(s)
- Lauren M Willis
- US Department of Agriculture, Agricultural Research Service, Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
32
|
Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology 2009; 30:59-71. [DOI: 10.1016/j.neuro.2008.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
33
|
Ceccanti S, Cozzi DA, Ceccanti M. Regarding environmental factors in the etiology of esophageal atresia and congenital diaphragmatic hernia. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2008; 82:652-653. [PMID: 18655128 DOI: 10.1002/bdra.20484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
34
|
Assunção M, Santos-Marques MJ, de Freitas V, Paula-Barbosa MM, Carvalho F. Modulation of rat cerebellum oxidative status by prolonged red wine consumption. Addict Biol 2008; 13:337-44. [PMID: 18422833 DOI: 10.1111/j.1369-1600.2008.00103.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A number of studies support the view that wine polyphenols can reinforce the endogenous antioxidant system by reducing ethanol (EtOH)-induced neuronal oxidative damage. Herein, we have investigated the effects of prolonged red wine (RW) consumption on several biomarkers of redox status in the cerebellum, a brain region highly vulnerable to the noxious effects of EtOH. Adult male Wistar rats were given RW with an EtOH concentration adjusted to 20% for 6 months, and the results were compared with those obtained in EtOH-treated (20%) and pair-fed control (PFC) animals. Malondialdehyde (MDA) and glutathione levels, and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) and selenium-dependent glutathione peroxidase (Se-GPX) were estimated in cerebellum homogenates. Chronic RW ingestion resulted in diminished MDA and reduced glutathione levels in cerebellar tissue. Moreover, RW-treated rats had a significant decrease in SOD, GR and GST activities but presented an increase in the activity of Se-GPX compared with animals from EtOH and PFC groups. In contrast, CAT activity was not altered by RW and EtOH intakes. Taken together, these findings show that prolonged consumption of RW markedly modifies cerebellum redox status probably due to its high content of polyphenols.
Collapse
Affiliation(s)
- Marco Assunção
- Department of Anatomy, Faculty of Medicine, Chemistry Investigation Centre, University of Porto, Portugal.
| | | | | | | | | |
Collapse
|
35
|
Mercolini L, Addolorata Saracino M, Bugamelli F, Ferranti A, Malaguti M, Hrelia S, Raggi MA. HPLC-F analysis of melatonin and resveratrol isomers in wine using an SPE procedure. J Sep Sci 2008; 31:1007-14. [DOI: 10.1002/jssc.200700458] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Carneiro A, Assuncao M, Freitas VD, Paula-Barbosa MM, Andrade JP. Red Wine, but not Port Wine, Protects Rat Hippocampal Dentate Gyrus Against Ethanol-Induced Neuronal Damage--Relevance of the Sugar Content. Alcohol Alcohol 2008; 43:408-15. [DOI: 10.1093/alcalc/agn024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|