1
|
Bandura J, Chan C, Sun HS, Wheeler AR, Feng ZP. Distinct Proteomic Brain States Underlying Long-Term Memory Formation in Aversive Operant Conditioning. J Proteome Res 2025; 24:27-45. [PMID: 39658033 PMCID: PMC11705228 DOI: 10.1021/acs.jproteome.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 12/12/2024]
Abstract
Long-term memory (LTM) formation relies on de novo protein synthesis; however, the full complement of proteins crucial to LTM formation remains unknown in any system. Using an aversive operant conditioning model of aerial respiratory behavior in the pond snail mollusk, Lymnaea stagnalis (L. stagnalis), we conducted a transcriptome-guided proteomic analysis on the central nervous system (CNS) of LTM, no LTM, and control animals. We identified 366 differentially expressed proteins linked to LTM formation, with 88 upregulated and 36 downregulated in LTM compared to both no LTM and controls. Functional annotation highlighted the importance of balancing protein synthesis and degradation for LTM, as indicated by the upregulation of proteins involved in proteasome activity and translation initiation, including EIF2D, mRNA levels of which were confirmed to be upregulated by conditioning and implicated nuclear factor Y as a potential regulator of LTM-related transcription in this model. This study represents the first transcriptome-guided proteomic analysis of LTM formation ability in this model and lays the groundwork for discovering orthologous proteins critical to LTM in mammals.
Collapse
Affiliation(s)
- Julia Bandura
- Department
of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Calvin Chan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hong-Shuo Sun
- Department
of Surgery, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Aaron R. Wheeler
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Donnelly
Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Zhong-Ping Feng
- Department
of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
Romano A, Freudenthal R, Feld M. Molecular insights from the crab Neohelice memory model. Front Mol Neurosci 2023; 16:1214061. [PMID: 37415833 PMCID: PMC10321408 DOI: 10.3389/fnmol.2023.1214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Memory acquisition, formation and maintenance depend on synaptic post-translational machinery and regulation of gene expression triggered by several transduction pathways. In turns, these processes lead to stabilization of synaptic modifications in neurons in the activated circuits. In order to study the molecular mechanisms involved in acquisition and memory, we have taken advantage of the context-signal associative learning and, more recently, the place preference task, of the crab Neohelice granulata. In this model organism, we studied several molecular processes, including activation of extracellular signal-regulated kinase (ERK) and the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) transcription factor, involvement of synaptic proteins such as NMDA receptors and neuroepigenetic regulation of gene expression. All these studies allowed description of key plasticity mechanisms involved in memory, including consolidation, reconsolidation and extinction. This article is aimed at review the most salient findings obtained over decades of research in this memory model.
Collapse
Affiliation(s)
- Arturo Romano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biotecnología y Biología Traslacional (IB3), Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Feld
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Smith DM. Could a Common Mechanism of Protein Degradation Impairment Underlie Many Neurodegenerative Diseases? J Exp Neurosci 2018; 12:1179069518794675. [PMID: 30147359 PMCID: PMC6102758 DOI: 10.1177/1179069518794675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
At the cellular level, many neurodegenerative diseases (NDs), often considered proteinopathies, are characterized by the accumulation of misfolded and damaged proteins into large insoluble aggregates. Prominent species that accumulate early and play fundamental roles in disease pathogenesis are amyloid β (Aβ) and tau in Alzheimer disease, α-synuclein (α-syn) in Parkinson disease, and polyQ-expanded huntingtin (Htt) in Huntington disease. Although significant efforts have focused on how the cell deals with these protein aggregates, why is it that these misfolded proteins are not degraded normally in the first place? A vast body of literature supports the notion that the cell's protein degradation system for individual proteins-the ubiquitin proteasome system (UPS)-does not function sufficiently in many NDs. The proteasome itself has received significant focus for years due to its obvious failure to degrade misfolded proteins in ND, but no general mechanism has been uncovered. We have recently found that specific pathologically relevant oligomers can potently and directly inhibit the proteasome. What is most interesting is that the misfolded protein's primary amino acid sequence was irrelevant to its ability to inhibit. Instead, the culprit is the 3-dimensional shape of the misfolded oligomers. It turns out that many misfolded proteins in ND can take on this proteasome-impairing shape suggesting that there could be a common mechanism for UPS impairment in many NDs. The proteasome is already an important target for treating cancer, could it also be targeted to broadly treat ND?
Collapse
Affiliation(s)
- David M Smith
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
4
|
Götze S, Saborowski R, Martínez-Cruz O, Muhlia-Almazán A, Sánchez-Paz A. Proteasome properties of hemocytes differ between the whiteleg shrimp Penaeus vannamei and the brown shrimp Crangon crangon (Crustacea, Decapoda). Cell Stress Chaperones 2017; 22:879-891. [PMID: 28646424 PMCID: PMC5655376 DOI: 10.1007/s12192-017-0819-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022] Open
Abstract
Crustaceans are intensively farmed in aquaculture facilities where they are vulnerable to parasites, bacteria, or viruses, often severely compromising the rearing success. The ubiquitin-proteasome system (UPS) is crucial for the maintenance of cellular integrity. Analogous to higher vertebrates, the UPS of crustaceans may also play an important role in stress resistance and pathogen defense. We studied the general properties of the proteasome system in the hemocytes of the whiteleg shrimp, Penaeus vannamei, and the European brown shrimp Crangon crangon. The 20S proteasome was the predominant proteasome population in the hemocytes of both species. The specific activities of the trypsin-like (Try-like), chymotrypsin-like (Chy-like), and caspase-like (Cas-like) enzymes of the shrimp proteasome differed between species. P. vannamei exhibited a higher ratio of Try-like to Chy-like activities and Cas-like to Chy-like activities than C. crangon. Notably, the Chy-like activity of P. vannamei showed substrate or product inhibition at concentrations of more than 25 mmol L-1. The K M values ranged from 0.072 mmol L-1 for the Try-like activity of P. vannamei to 0.309 mmol L-1 for the Cas-like activity of C. crangon. Inhibition of the proteasome of P. vannamei by proteasome inhibitors was stronger than in C. crangon. The pH profiles were similar in both species. The Try-like, Chy-like, and Cas-like sites showed the highest activities between pH 7.5 and 8.5. The proteasomes of both species were sensitive against repeated freezing and thawing losing ~80-90% of activity. This study forms the basis for future investigations on the shrimp response against infectious diseases, and the role of the UPS therein.
Collapse
Affiliation(s)
- Sandra Götze
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, PO Box 120161, 27515, Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, PO Box 120161, 27515, Bremerhaven, Germany.
| | - Oliviert Martínez-Cruz
- Bioenergetics and Molecular Genetics Lab, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico
| | - Adriana Muhlia-Almazán
- Bioenergetics and Molecular Genetics Lab, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico
| | - Arturo Sánchez-Paz
- Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle Hermosa, 101. Col. Los Angeles, 83106, Hermosillo, Sonora, Mexico.
| |
Collapse
|
5
|
Lip PZY, Demasi M, Bonatto D. The role of the ubiquitin proteasome system in the memory process. Neurochem Int 2016; 102:57-65. [PMID: 27916542 DOI: 10.1016/j.neuint.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 01/20/2023]
Abstract
Quite intuitive is the notion that memory formation and consolidation is orchestrated by protein synthesis because of the synaptic plasticity necessary for those processes. Nevertheless, recent advances have begun accumulating evidences of a high requirement for protein degradation on the molecular mechanisms of the memory process in the mammalian brain. Because degradation determines protein half-life, degradation has been increasingly recognized as an important intracellular regulatory mechanism. The proteasome is the main player in the degradation of intracellular proteins. Proteasomal substrates are mainly degraded after a post-translational modification by a poly-ubiquitin chain. Latter process, namely poly-ubiquitination, is highly regulated at the step of the ubiquitin molecule transferring to the protein substrate mediated by a set of proteins whose genes represent almost 2% of the human genome. Understanding the role of polyubiquitin-mediated protein degradation has challenging researchers in many fields of investigation as a new source of targets for therapeutic intervention, e.g. E3 ligases that transfer ubiquitin moieties to the substrate. The goal of present work was to uncover mechanisms underlying memory processes regarding the role of the ubiquitin-proteasome system (UPS). For that purpose, preceded of a short review on UPS and memory processes a top-down systems biology approach was applied to establish central proteins involved in memory formation and consolidation highlighting their cross-talking with the UPS. According to that approach, the pattern of expression of several elements of the UPS were found overexpressed in regions of the brain involved in processing cortical inputs.
Collapse
Affiliation(s)
- Philomena Z Y Lip
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil; Medical Sciences Division, University of Oxford, Oxford, UK
| | - Marilene Demasi
- Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Diego Bonatto
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
mAChR-dependent decrease in proteasome activity in the gustatory cortex is necessary for novel taste learning. Neurobiol Learn Mem 2016; 135:115-124. [PMID: 27481223 DOI: 10.1016/j.nlm.2016.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/24/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
Regulation of protein degradation via the ubiquitin proteasome system is crucial for normal learning and synaptic plasticity processes. While some studies reveal that increased proteasome degradation is necessary for different types of learning, others suggest the proteasome to be a negative regulator of plasticity. We aim to understand the molecular and cellular processes taking place in the gustatory cortex (GC), which underlie appetitive and aversive forms of taste learning. Previously, we have shown that N-methyl d-aspartic acid receptor (NMDAR)-dependent upregulation of proteasome activity 4h after novel taste learning is necessary for the association of novel taste with malaise and formation of conditioned taste aversion (CTA). Here, we first identify a correlative increase in proteasome activity in the GC immediately after novel taste learning and study the upstream and downstream effectors of this modulated proteasome activity. Interestingly, proteasome-mediated degradation was reduced in the GC, 20min after novel taste consumption in a muscarinic acetylcholine receptor (mAChR)-dependent and NMDAR-independent manner. This reduction in protein degradation led to an increased amount of p70 S6 kinase (p70S6k), which was abolished in the presence of mAChR antagonist scopolamine. Infusion of lactacystin, a proteasome inhibitor, to the GC precluded the amnestic effect of scopolamine. This study shows for the first time that following novel taste learning there is a cortical, mAChR-dependent reduced proteasome activity that enables the memory of taste familiarity. Moreover, inhibition of degradation in the GC attenuates novel taste learning and of p70 S6 kinase correlative increased expression. These results shed light on the complex regulation of protein synthesis and degradation machineries in the cortex following novel taste experience.
Collapse
|
7
|
Nuclear factor kappa B-dependent Zif268 expression in hippocampus is required for recognition memory in mice. Neurobiol Learn Mem 2015; 119:10-7. [DOI: 10.1016/j.nlm.2014.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 12/28/2022]
|
8
|
A herpes-like virus in king crabs: Characterization and transmission under laboratory conditions. J Invertebr Pathol 2015; 127:21-31. [PMID: 25712900 DOI: 10.1016/j.jip.2015.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 11/23/2022]
Abstract
A herpes-like virus was found infecting the antennal gland and bladder epithelium in the blue king crab Paralithodes platypus from the eastern area of the Sea of Okhotsk. Electron microscopic analysis of antennal gland samples from blue king crabs with histologically confirmed signs of disease revealed virus particles, which were mostly hexagonal in shape and located primarily in the nucleus; these particles were rarely observed in the cytoplasm of infected cells. Most virus particles ranged in size from 115 to 125nm. Hemocytes of the red king crab Paralithodes camtschaticus in cell culture could be experimentally infected with virus from thawed antennal gland samples of the blue king crabs with histologically confirmed signs of viral infection. Clear signs of infection were observed in hemocyte cultures at 3-4days post-inoculation as small foci of highly vacuolated formations. These formations included several nuclei and were surrounded by a halo of small cytoplasmic bubbles containing actin and tubulin. As demonstrated by electron microscopic studies, no virus-like particles were found in the cells 1day post-inoculation, but particles become abundant at 7days post-inoculation. We developed a consensus primer PCR method for amplification of a region of the herpesviral DNA-directed DNA polymerase. Primers were designed to target sequences encoding highly conserved amino acid motifs covering a region of approximately 800bp. Thus, macroscopic, histological and ultra-structural examinations of blue king crabs infected with a virus and the molecular identification of the pathogen revealed the presence of herpesviruses. The frequency of the herpes-like viral infection in natural populations of blue king crabs in the Sea of Okhotsk ranged from 0% to 3% in different years.
Collapse
|
9
|
Sol Fustiñana M, de la Fuente V, Federman N, Freudenthal R, Romano A. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory. ACTA ACUST UNITED AC 2014; 21:478-87. [PMID: 25135196 PMCID: PMC4138359 DOI: 10.1101/lm.035998.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- María Sol Fustiñana
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | | | - Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| |
Collapse
|
10
|
de la Fuente V, Federman N, Fustiñana MS, Zalcman G, Romano A. Calcineurin phosphatase as a negative regulator of fear memory in hippocampus: control on nuclear factor-κB signaling in consolidation and reconsolidation. Hippocampus 2014; 24:1549-61. [PMID: 25043904 DOI: 10.1002/hipo.22334] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022]
Abstract
Protein phosphatases are important regulators of neural plasticity and memory. Some studies support that the Ca(2+) /calmodulin-dependent phosphatase calcineurin (CaN) is, on the one hand, a negative regulator of memory formation and, on the other hand, a positive regulator of memory extinction and reversal learning. However, the signaling mechanisms by which CaN exerts its action in such processes are not well understood. Previous findings support that CaN negatively regulate the nuclear factor kappaB (NF-κB) signaling pathway during extinction. Here, we have studied the role of CaN in contextual fear memory consolidation and reconsolidation in the hippocampus. We investigated the CaN control on the NF-κB signaling pathway, a key mechanism that regulates gene expression in memory processes. We found that post-training intrahippocampal administration of the CaN inhibitor FK506 enhanced memory retention one day but not two weeks after training. Accordingly, the inhibition of CaN by FK506 increased NF-κB activity in dorsal hippocampus. The administration of the NF-κB signaling pathway inhibitor sulfasalazine (SSZ) impeded the enhancing effect of FK506. In line with our findings in consolidation, FK506 administration before memory reactivation enhanced memory reconsolidation when tested one day after re-exposure to the training context. Strikingly, memory was also enhanced two weeks after training, suggesting that reinforcement during reconsolidation is more persistent than during consolidation. The coadministration of SSZ and FK506 blocked the enhancement effect in reconsolidation, suggesting that this facilitation is also dependent on the NF-κB signaling pathway. In summary, our results support a novel mechanism by which memory formation and reprocessing can be controlled by CaN regulation on NF-κB activity.
Collapse
Affiliation(s)
- Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | |
Collapse
|
11
|
Felsenberg J, Dyck Y, Kloß A, Dahlmann B, Kloetzel PM, Eisenhardt D. Two inhibitors of the ubiquitin proteasome system enhance long-term memory formation upon olfactory conditioning in the honeybee (Apis mellifera). ACTA ACUST UNITED AC 2014; 217:3441-6. [PMID: 25063852 DOI: 10.1242/jeb.108142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In honeybees (Apis mellifera), the proteasome inhibitor Z-Leu-Leu-Leu-CHO (MG132) enhances long-term memory (LTM) formation. Studies in vertebrates using different inhibitors of the proteasome demonstrate the opposite, namely an inhibition of memory formation. The reason for this contradiction remains unclear. MG132 is an inhibitor of the proteasome, but also blocks other proteases. Accordingly, one possible explanation might be that other proteases affected by MG132 are responsible for the enhancement of LTM formation. We test this hypothesis by comparing the effect of MG132 and the more specific proteasome inhibitor clasto-lactacystin beta-lactone (β-lactone). We show that these two inhibitors block the activity of the proteasome in honeybee brains to a similar extent, do not affect the animals' survival but do enhance LTM retention upon olfactory conditioning. Thus, the enhancement of LTM formation is not due to MG132-specific side effects, but to inhibition of a protease targeted by MG132 and β-lactone, i.e. the proteasome.
Collapse
Affiliation(s)
- Johannes Felsenberg
- Freie Universität Berlin, FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| | - Yan Dyck
- Freie Universität Berlin, FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| | - Alexander Kloß
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkhardt Dahlmann
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter-Michael Kloetzel
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dorothea Eisenhardt
- Freie Universität Berlin, FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| |
Collapse
|
12
|
Flavell CR, Lambert EA, Winters BD, Bredy TW. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front Behav Neurosci 2013; 7:214. [PMID: 24421762 PMCID: PMC3872723 DOI: 10.3389/fnbeh.2013.00214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022] Open
Abstract
The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behavior. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session) can result in its destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of a memory following its reactivation and/or extinction, and investigates the evidence that extinction may involve both new learning as well as a partial destabilization-induced erasure of the original memory trace.
Collapse
Affiliation(s)
- Charlotte R Flavell
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Elliot A Lambert
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Boyer D Winters
- Department of Psychology, University of Guelph Guelph, ON, Canada
| | - Timothy W Bredy
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
13
|
Jarome TJ, Helmstetter FJ. The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem 2013; 105:107-16. [PMID: 23623827 DOI: 10.1016/j.nlm.2013.03.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 02/01/2023]
Abstract
Numerous studies have supported the idea that de novo protein synthesis is critical for synaptic plasticity and normal long-term memory formation. This requirement for protein synthesis has been shown for several different types of fear memories, exists in multiple brain regions and circuits, and is necessary for different stages of memory creation and storage. However, evidence has recently begun to accumulate suggesting that protein degradation through the ubiquitin-proteasome system is an equally important regulator of memory formation. Here we review those recent findings on protein degradation and memory formation and stability and propose a model explaining how protein degradation may be contributing to various aspects of memory and synaptic plasticity. We conclude that protein degradation may be the major factor regulating many of the molecular processes that we know are important for fear memory formation and stability in the mammalian brain.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Psychology, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | |
Collapse
|
14
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
15
|
Ren ZY, Liu MM, Xue YX, Ding ZB, Xue LF, Zhai SD, Lu L. A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology 2013; 38:778-90. [PMID: 23303053 PMCID: PMC3672001 DOI: 10.1038/npp.2012.243] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intense associative memories that develop between cocaine-paired contexts and rewarding stimuli contribute to cocaine seeking and relapse. Previous studies have shown impairment in cocaine reward memories by manipulating a labile state induced by memory retrieval, but the mechanisms that underlie the destabilization of cocaine reward memory are unknown. In this study, using a Pavlovian cocaine-induced conditioned place preference (CPP) procedure in rats, we tested the contribution of ubiquitin-proteasome system-dependent protein degradation in destabilization of cocaine reward memory. First, we found that polyubiquitinated protein expression levels and polyubiquitinated N-ethylmaleimide-sensitive fusion (NSF) markedly increased 15 min after retrieval while NSF protein levels decreased 1 h after retrieval in the synaptosomal membrane fraction in the nucleus accumbens (NAc) core. We then found that infusion of the proteasome inhibitor lactacystin into the NAc core prevented the impairment of memory reconsolidation induced by the protein synthesis inhibitor anisomycin and reversed the effects of anisomycin on NSF and glutamate receptor 2 (GluR2) protein levels in the synaptosomal membrane fraction in the NAc core. We also found that lactacystin infusion into the NAc core but not into the shell immediately after extinction training sessions inhibited CPP extinction and reversed the extinction training-induced decrease in NSF and GluR2 in the synaptosomal membrane fraction in the NAc core. Finally, infusions of lactacystin by itself into the NAc core immediately after each training session or before the CPP retrieval test had no effect on the consolidation and retrieval of cocaine reward memory. These findings suggest that ubiquitin-proteasome system-dependent protein degradation is critical for retrieval-induced memory destabilization.
Collapse
Affiliation(s)
- Zhen-Yu Ren
- Pharmacy Department, Peking University Third Hospital, Beijing, China,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Meng-Meng Liu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Zeng-Bo Ding
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Li-Fen Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Suo-Di Zhai
- Pharmacy Department, Peking University Third Hospital, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China,National Institute on Drug Dependence, Peking University, 38 Xue Yuan Road, Beijing, 100191, China. Tel: +86 10 82802459, Fax: +86 10 62032624, E-mail:
| |
Collapse
|
16
|
A Multidisciplinary Approach to Learning and Memory in the Crab Neohelice (Chasmagnathus) granulata. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Felsenberg J, Dombrowski V, Eisenhardt D. A role of protein degradation in memory consolidation after initial learning and extinction learning in the honeybee (Apis mellifera). Learn Mem 2012; 19:470-7. [PMID: 22988289 DOI: 10.1101/lm.026245.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein degradation is known to affect memory formation after extinction learning. We demonstrate here that an inhibitor of protein degradation, MG132, interferes with memory formation after extinction learning in a classical appetitive conditioning paradigm. In addition, we find an enhancement of memory formation when the same inhibitor is applied after initial learning. This result supports the idea that MG132 targets an ongoing consolidation process. Furthermore, we demonstrate that the sensitivity of memory formation after initial learning and extinction learning to MG132 depends in the same way on the number of CS-US trials and the intertrial interval applied during initial learning. This supports the idea that the learning parameters during acquisition are critical for memory formation after extinction and that protein degradation in both learning processes might be functionally linked.
Collapse
Affiliation(s)
- Johannes Felsenberg
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
18
|
He L, Wang Q, Jin X, Wang Y, Chen L, Liu L, Wang Y. Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLoS One 2012; 7:e33735. [PMID: 22442720 PMCID: PMC3307765 DOI: 10.1371/journal.pone.0033735] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
The testis is a highly specialized tissue that plays dual roles in ensuring fertility by producing spermatozoa and hormones. Spermatogenesis is a complex process, resulting in the production of mature sperm from primordial germ cells. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. The gene expression pattern of testis in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been performed on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for testis of E. sinensis. In two runs, we produced 25,698,778 sequencing reads corresponding with 2.31 Gb total nucleotides. These reads were assembled into 342,753 contigs or 141,861 scaffold sequences, which identified 96,311 unigenes. Based on similarity searches with known proteins, 39,995 unigenes were annotated based on having a Blast hit in the non-redundant database or ESTscan results with a cut-off E-value above 10−5. This is the first report of a mitten crab transcriptome using high-throughput sequencing technology, and all these testes transcripts can help us understand the molecular mechanisms involved in spermatogenesis and testis maturation.
Collapse
Affiliation(s)
| | - Qun Wang
- School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| | | | | | | | | | | |
Collapse
|
19
|
Synaptic protein degradation in memory reorganization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:221-40. [PMID: 22351058 DOI: 10.1007/978-3-7091-0932-8_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a ubiquitous, major pathway of protein degradation that is involved in most cellular processes by regulating the abundance of certain proteins. Accumulating evidence indicates a role for the UPS in specific functions of neurons. In this chapter, we first introduce the role of the UPS in neuronal function and the mechanism of UPS regulation following synaptic activity. Then, we focus on the recently revealed, distinct role of the UPS in the destabilization of a reactivated memory. Finally, we discuss the physiological role of this destabilization process. The reactivated memory may undergo modification from the initial memory depending on the context in which the memory is reactivated, which we will term memory reorganization. We will introduce the role of the protein degradation-dependent destabilization process for memory reorganization and suggest a hypothetical model combining the recent findings.
Collapse
|
20
|
Debra, a protein mediating lysosomal degradation, is required for long-term memory in Drosophila. PLoS One 2011; 6:e25902. [PMID: 21991383 PMCID: PMC3185052 DOI: 10.1371/journal.pone.0025902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023] Open
Abstract
A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4) lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i) debra levels must be precisely regulated to support normal long-term memory, ii) the role of debra in this process is physiological rather than developmental, and iii) debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.
Collapse
|
21
|
Osan R, Tort ABL, Amaral OB. A mismatch-based model for memory reconsolidation and extinction in attractor networks. PLoS One 2011; 6:e23113. [PMID: 21826231 PMCID: PMC3149635 DOI: 10.1371/journal.pone.0023113] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/06/2011] [Indexed: 11/23/2022] Open
Abstract
The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation.
Collapse
Affiliation(s)
- Remus Osan
- Center for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Center for Biodynamics, Boston University, Boston, Massachusetts, United States of America
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Rio Grande do Norte, Brazil
| | - Olavo B. Amaral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
22
|
Development of cell line from the testicular tissues of crab Scylla serrata. Cytotechnology 2011; 63:473-80. [PMID: 21800082 DOI: 10.1007/s10616-011-9365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 05/25/2011] [Indexed: 10/17/2022] Open
Abstract
This is the first report on development of a finite cell line from testicular tissues of crab, Scylla serrata. Both the explant and segregated tissues of testes yielded cells that could proliferate and grow. These cells ranged in size from 10 to 38 μm with distinct nuclei of varying shapes. The testicular cells survived and proliferated best in L-15-crab saline medium supplemented with epidermal growth factor (20 ng/mL) and glucose (1 mg/mL). The cell proliferation rate was assessed by Methyl tetrazolium assay in terms of change in optical density which clearly indicated a prominent increase in cell density. The testicular cells were subcultured at an interval of 4-6 days. These subcultured cells remained healthy and proliferated for 5 months with a minimum of ten subsequent passages. The finite cell line was characterized in terms of morphology, growth rate, lactate dehydrogenase release (for detecting health status) and 18S rRNA sequencing. This cell line could be a very useful tool for testing infections and replications of crustacean viruses. The present work provides a technique that could be extended for developing other crustacean cell lines.
Collapse
|
23
|
Expression, phosphorylation, and glycosylation of CNS proteins in aversive operant conditioning associated memory in Lymnaea stagnalis. Neuroscience 2011; 186:94-109. [DOI: 10.1016/j.neuroscience.2011.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/18/2022]
|
24
|
Long-term aversive taste memory requires insular and amygdala protein degradation. Neurobiol Learn Mem 2011; 95:311-5. [DOI: 10.1016/j.nlm.2010.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/15/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
|
25
|
Kuczera T, Stilling RM, Hsia HE, Bahari-Javan S, Irniger S, Nasmyth K, Sananbenesi F, Fischer A. The anaphase promoting complex is required for memory function in mice. Learn Mem 2010; 18:49-57. [PMID: 21191042 DOI: 10.1101/lm.1998411] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Learning and memory processes critically involve the orchestrated regulation of de novo protein synthesis. On the other hand it has become clear that regulated protein degradation also plays a major role in neuronal plasticity and learning behavior. One of the key pathways mediating protein degradation is proteosomal protein destruction. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets proteins for proteosomal degradation by the 26S proteasome. While the APC/C is essential for cell cycle progression it is also expressed in postmitotic neurons where it has been implicated with axonal outgrowth and neuronal survival. In this study we addressed the role of APC/C in learning and memory function by generating mice that lack the essential subunit APC2 from excitatory neurons of the adult forebrain. Those animals are viable but exhibit a severe impairment in the ability to extinct fear memories, a process critical for the treatment of anxiety diseases such as phobia or post-traumatic stress disorder. Since deregulated protein degradation and APC/C activity has been implicated with neurodegeneration we also analyzed the effect of Apc2 deletion in a mouse model for Alzheimer's disease. In our experimental setting loss of APC2 form principle forebrain neurons did not affect the course of pathology in an Alzheimer's disease mouse model. In conclusion, our data provides genetic evidence that APC/C activity in the adult forebrain is required for cognitive function.
Collapse
Affiliation(s)
- Tanja Kuczera
- Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Göttingen D-37077, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Angiotensin modulates long-term memory expression but not long-term memory storage in the crab Chasmagnathus. Neurobiol Learn Mem 2010; 94:509-20. [DOI: 10.1016/j.nlm.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
|
27
|
Abstract
Neurons are highly specialized cells whose connectivity at synapses subserves rapid information transfer in the brain. Proper information processing, learning, and memory storage in the brain requires continuous remodeling of synaptic networks. Such remodeling includes synapse formation, elimination, synaptic protein turnover, and changes in synaptic transmission. An emergent mechanism for regulating synapse function is posttranslational modification through the ubiquitin pathway at the postsynaptic membrane. Here, we discuss recent findings implicating ubiquitination and protein degradation in postsynaptic function and plasticity. We describe postsynaptic ubiquitination pathways and their role in brain development, neuronal physiology, and brain disorders.
Collapse
Affiliation(s)
- Angela M Mabb
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
28
|
Tomsic D, de Astrada MB, Sztarker J, Maldonado H. Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem 2009; 92:176-82. [PMID: 19186214 DOI: 10.1016/j.nlm.2009.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/02/2008] [Accepted: 01/10/2009] [Indexed: 11/26/2022]
Abstract
Investigations using invertebrate species have led to a considerable progress in our understanding of the mechanisms underlying learning and memory. In this review we describe the main behavioral and neuronal findings obtained by studying the habituation of the escape response to a visual danger stimulus in the crab Chasmagnathus granulatus. Massed training with brief intertrial intervals lead to a rapid reduction of the escape response that recovers after a short term. Conversely, few trials of spaced training renders a slower escape reduction that endures for many days. As predicted by Wagner's associative theory of habituation, long-term habituation in the crab proved to be determined by an association between the contextual environment of the training and the unconditioned stimulus. By performing intracellular recordings in the brain of the intact animal at the same time it was learning, we identified a group of neurons that remarkably reflects the short- and long-term behavioral changes. Thus, the visual memory abilities of crabs, their relatively simple and accessible nervous system, and the recording stability that can be achieved with their neurons provide an opportunity for uncovering neurophysiological and molecular events that occur in identifiable neurons during learning.
Collapse
Affiliation(s)
- Daniel Tomsic
- Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellon 2 Ciudad Universitaria, Ing. Güiraldes 2160, Buenos Aires 1428, Argentina.
| | | | | | | |
Collapse
|
29
|
Artinian J, McGauran AMT, De Jaeger X, Mouledous L, Frances B, Roullet P. Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation. Eur J Neurosci 2008; 27:3009-19. [PMID: 18588539 DOI: 10.1111/j.1460-9568.2008.06262.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The formation of long-term memory requires protein synthesis, particularly during initial memory consolidation. This process also seems to be dependant upon protein degradation, particularly degradation by the ubiquitin-proteasome system. The aim of this study was to investigate the temporal requirement of protein synthesis and degradation during the initial consolidation of allocentric spatial learning. As memory returns to a labile state during reactivation, we also focus on the role of protein synthesis and degradation during memory reconsolidation of this spatial learning. Male CD1 mice were submitted to massed training in the spatial version of the Morris water maze. At various time intervals after initial acquisition or after a reactivation trial taking place 24 h after acquisition, mice received an injection of either the protein synthesis inhibitor anisomycin or the protein degradation inhibitor lactacystin. This injection was performed into the hippocampal CA3 region, which is specifically implicated in the processing of spatial information. Results show that, in the CA3 hippocampal region, consolidation of an allocentric spatial learning task requires two waves of protein synthesis taking place immediately and 4 h after acquisition, whereas reconsolidation requires only the first wave. However, for protein degradation, both consolidation and reconsolidation require only one wave, taking place immediately after acquisition or reactivation, respectively. These findings suggest that protein degradation is a key step for memory reconsolidation, as for consolidation. Moreover, as protein synthesis-dependent reconsolidation occurred faster than consolidation, reconsolidation did not consist of a simple repetition of the initial consolidation.
Collapse
Affiliation(s)
- Julien Artinian
- Centre de Recherches sur la Cognition Animale, CNRS 5169, Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | |
Collapse
|
30
|
Differential expression of ubiquitin-conjugating enzyme E2r in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus. Mol Biol Rep 2008; 36:1149-57. [PMID: 18581257 DOI: 10.1007/s11033-008-9291-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 06/11/2008] [Indexed: 01/25/2023]
Abstract
In order to identify genes involved in oogenesis and spermatogenesis in penaeid shrimp Marsupenaeus japonicus, a modified annealing control primer (ACP) system was adapted to identify genes differentially expressed in ovary and testis at different developmental stages. By using 20 pairs of ACP primers, 8 differentially expressed genes were obtained. One of these genes is ubiquitin-conjugating enzyme E2r (UBE2r). Bioinformatics analyses show that this gene encodes a protein of 241 amino acids with a predicted molecular mass of 27.4 kDa. Real time PCR analyses demonstrated that the expression level changed significantly in the developing testis and ovary. In the stage 2 of testis, it reached its highest expression level, the lowest expression level present in the stage 1 of ovary. The significantly different expression levels in developing testis and ovary suggest that UBE2r has an important role in oogenesis and spermatogenesis. This article is the first report of UBE2r in crustaceans and also is the first report showing that UBE2r is differentially expressed at different stages of the developing ovary and testis in an animal.
Collapse
|
31
|
Sztarker J, Tomsic D. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:587-96. [PMID: 18389255 DOI: 10.1007/s00359-008-0333-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/23/2008] [Accepted: 03/24/2008] [Indexed: 11/28/2022]
Abstract
When confronted with predators, animals are forced to take crucial decisions such as the timing and manner of escape. In the case of the crab Chasmagnathus, cumulative evidence suggests that the escape response to a visual danger stimulus (VDS) can be accounted for by the response of a group of lobula giant (LG) neurons. To further investigate this hypothesis, we examined the relationship between behavioral and neuronal activities within a variety of experimental conditions that affected the level of escape. The intensity of the escape response to VDS was influenced by seasonal variations, changes in stimulus features, and whether the crab perceived stimuli monocularly or binocularly. These experimental conditions consistently affected the response of LG neurons in a way that closely matched the effects observed at the behavioral level. In other words, the intensity of the stimulus-elicited spike activity of LG neurons faithfully reflected the intensity of the escape response. These results support the idea that the LG neurons from the lobula of crabs are deeply involved in the decision for escaping from VDS.
Collapse
Affiliation(s)
- Julieta Sztarker
- Laboratorio de Neurobiología de la Memoria, Depto Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
32
|
The ubiquitin–proteasome pathway in health and disease of the nervous system. Trends Neurosci 2007; 30:587-95. [DOI: 10.1016/j.tins.2007.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/19/2007] [Accepted: 08/20/2007] [Indexed: 12/18/2022]
|
33
|
Medan V, Oliva D, Tomsic D. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J Neurophysiol 2007; 98:2414-28. [PMID: 17715192 DOI: 10.1152/jn.00803.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the grapsid crab Chasmagnathus, a visual danger stimulus elicits a strong escape response that diminishes rapidly on stimulus repetition. This behavioral modification can persist for several days as a result of the formation of an associative memory. We have previously shown that a generic group of large motion-sensitive neurons from the lobula of the crab respond to visual stimuli and accurately reflect the escape performance. Additional evidence indicates that these neurons play a key role in visual memory and in the decision to initiate an escape. Although early studies recognized that the group of lobula giant (LG) neurons consisted of different classes of motion-sensitive cells, a distinction between these classes has been lacking. Here, we recorded in vivo the responses of individual LG neurons to a wide range of visual stimuli presented in different segments of the animal's visual field. Physiological characterizations were followed by intracellular dye injections, which permitted comparison of the functional and morphological features of each cell. All LG neurons consisted of large tangential arborizations in the lobula with axons projecting toward the midbrain. Functionally, these cells proved to be more sensitive to single objects than to flow field motion. Despite these commonalities, clear differences in morphology and physiology allowed us to identify four distinct classes of LG neurons. These results will permit analysis of the role of each neuronal type for visually guided behaviors and will allow us to address specific questions on the neuronal plasticity of LGs that underlie the well-recognized memory model of the crab.
Collapse
Affiliation(s)
- Violeta Medan
- Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|