1
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Comprehension of gut microbiota and microRNAs may contribute to the development of innovative treatment tactics against metabolic disorders and psychiatric disorders. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:111-125. [PMID: 39850247 PMCID: PMC11751546 DOI: 10.62347/wazh2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Metabolic syndrome is a group of pathological disorders increasing the risk of serious diseases including cardiovascular disease, stroke, type 2 diabetes. Global widespread of the metabolic syndrome has put a heavy social burden. Interestingly, a crucial link between the metabolic syndrome and a psychiatric disorder may frequently coexist, in which certain shared mechanisms might play a role for the pathogenesis. In fact, some microRNAs (miRNAs) have been detected in the overlap pathology, suggesting a common molecular mechanism for the development of both disorders. Subsequent studies have revealed that these miRNAs and several metabolites of gut microbiota such as short chain fatty acids (SCFAs) might be involved in the development of both disorders, in which the association between gut and brain might play key roles with engram memory for the modulation of immune cells. Additionally, the correlation between brain and immunity might also influence the development of several diseases/disorders including metabolic syndrome. Brain could possess several inflammatory responses as an information of pathological images termed engrams. In other words, preservation of the engram memory might be achieved by a meta-plasticity mechanism that shapes the alteration of neuron linkages for the development of immune-related diseases. Therefore, it might be rational that metabolic syndrome and psychiatric disorders may belong to a group of immune-related diseases. Disrupting in gut microbiota may threaten the body homeostasis, leading to initiate a cascade of health problems. This concept may contribute to the development of superior therapeutic application with the usage of some functional components in food against metabolic and psychiatric disorders. This paper reviews advances in understanding the regulatory mechanisms of miRNAs with the impact to gut, liver and brain, deliberating the probable therapeutic techniques against these disorders.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
2
|
Nakashima M, Suga N, Yoshikawa S, Ikeda Y, Matsuda S. Potential Molecular Mechanisms of Alcohol Use Disorder with Non-Coding RNAs and Gut Microbiota for the Development of Superior Therapeutic Application. Genes (Basel) 2024; 15:431. [PMID: 38674366 PMCID: PMC11049149 DOI: 10.3390/genes15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
3
|
Suga N, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Matsuda S. Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update. Genes (Basel) 2023; 14:1736. [PMID: 37761875 PMCID: PMC10530369 DOI: 10.3390/genes14091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated with cardiac arrhythmias. Many non-coding RNAs and/or genomes have been reported as genetic background for cardiac arrhythmias. In general, arrhythmias may be affected by several functional and structural changes in the myocardium of the heart. Therefore, ncRNAs might be indispensable regulators of gene expression in cardiomyocytes, which could play a dynamic role in regulating the stability of cardiac conduction and/or in the remodeling process. Although it remains almost unclear how ncRNAs regulate the expression of molecules for controlling cardiac conduction and/or the remodeling process, the gut microbiota and immune system within the intricate networks might be involved in the regulatory mechanisms. This study would discuss them and provide a research basis for ncRNA modulation, which might support the development of emerging innovative therapies against cardiac arrhythmias.
Collapse
Affiliation(s)
| | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan; (N.S.); (Y.I.); (S.Y.); (K.T.); (H.S.)
| |
Collapse
|
4
|
Patil S, Chalkiadaki K, Mergiya TF, Krimbacher K, Amorim IS, Akerkar S, Gkogkas CG, Bramham CR. eIF4E phosphorylation recruits β-catenin to mRNA cap and promotes Wnt pathway translation in dentate gyrus LTP maintenance. iScience 2023; 26:106649. [PMID: 37250335 PMCID: PMC10214474 DOI: 10.1016/j.isci.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Eif4eS209A Knockin mice are profoundly impaired in dentate gyrus LTP maintenance in vivo, whereas basal perforant path-evoked transmission and LTP induction are intact. mRNA cap-pulldown assays show that phosphorylation is required for synaptic activity-induced removal of translational repressors from eIF4E, allowing initiation complex formation. Using ribosome profiling, we identified selective, phospho-eIF4E-dependent translation of the Wnt signaling pathway in LTP. Surprisingly, the canonical Wnt effector, β-catenin, was massively recruited to the eIF4E cap complex following LTP induction in wild-type, but not Eif4eS209A, mice. These results demonstrate a critical role for activity-evoked eIF4E phosphorylation in dentate gyrus LTP maintenance, remodeling of the mRNA cap-binding complex, and specific translation of the Wnt pathway.
Collapse
Affiliation(s)
- Sudarshan Patil
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Tadiwos F. Mergiya
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Konstanze Krimbacher
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Inês S. Amorim
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Shreeram Akerkar
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Clive R. Bramham
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Hampel H, Caruso G, Nisticò R, Piccioni G, Mercuri NB, Giorgi FS, Ferrarelli F, Lemercier P, Caraci F, Lista S, Vergallo A. Biological Mechanism-based Neurology and Psychiatry: A BACE1/2 and Downstream Pathway Model. Curr Neuropharmacol 2023; 21:31-53. [PMID: 34852743 PMCID: PMC10193755 DOI: 10.2174/1570159x19666211201095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor's clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine. Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the β-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer's disease, schizoaffective disorder, and autism spectrum disorders. To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here. We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome “Tor Vergata”, Rome, Italy
| | - Gaia Piccioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Simone Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
6
|
Eriksen MS, Bramham CR. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity. Acta Physiol (Oxf) 2022; 236:e13886. [PMID: 36073248 PMCID: PMC9787330 DOI: 10.1111/apha.13886] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
The immediate early gene, Arc, is a pivotal regulator of synaptic plasticity, memory, and cognitive flexibility. But what is Arc protein? How does it work? Inside the neuron, Arc is a protein interaction hub and dynamic regulator of intra-cellular signaling in synaptic plasticity. In remarkable contrast, Arc can also self-assemble into retrovirus-like capsids that are released in extracellular vesicles and capable of intercellular transfer of RNA. Elucidation of the molecular basis of Arc hub and capsid functions, and the relationship between them, is vital for progress. Here, we discuss recent findings on Arc structure-function and regulation of oligomerization that are giving insight into the molecular physiology of Arc. The unique features of mammalian Arc are emphasized, while drawing comparisons with Drosophila Arc and retroviral Gag. The Arc N-terminal domain, found only in mammals, is proposed to play a key role in regulating Arc hub signaling, oligomerization, and formation of capsids. Bringing together several lines of evidence, we hypothesize that Arc function in synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-are dictated by different oligomeric forms of Arc. Specifically, monomer/dimer function in LTP, tetramer function in basic LTD, and 32-unit oligomer function in enhanced LTD. The role of mammalian Arc capsids is unclear but likely depends on the cross-section of captured neuronal activity-induced RNAs. As the functional states of Arc are revealed, it may be possible to selectively manipulate specific forms of Arc-dependent plasticity and intercellular communication involved in brain function and dysfunction.
Collapse
Affiliation(s)
| | - Clive R. Bramham
- Department of BiomedicineUniversity of BergenBergenNorway,Mohn Research Center for the BrainUniversity of BergenBergenNorway
| |
Collapse
|
7
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. A New Concept of Associations between Gut Microbiota, Immunity and Central Nervous System for the Innovative Treatment of Neurodegenerative Disorders. Metabolites 2022; 12:1052. [PMID: 36355135 PMCID: PMC9692629 DOI: 10.3390/metabo12111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.
Collapse
|
8
|
Schizophrenia: Complement Cleaning or Killing. Genes (Basel) 2021; 12:genes12020259. [PMID: 33670154 PMCID: PMC7916832 DOI: 10.3390/genes12020259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with a typical onset occurring during adolescence or young adulthood. The heterogeneity of the disorder complicates our understanding of the pathophysiology. Reduced cortical synaptic densities are commonly observed in schizophrenia and suggest a role for excessive synaptic elimination. A major pathway hypothesised to eliminate synapses during postnatal development is the complement system. This review provides an overview of genetic and functional evidence found for the individual players of the classical complement pathway. In addition, the consequences of the absence of complement proteins, in the form of complement protein deficiencies in humans, are taken into consideration. The collective data provide strong evidence for excessive pruning by the classical complement pathway, contributing to cognitive impairment in schizophrenia. In future studies, it will be important to assess the magnitude of the contribution of complement overactivity to the occurrence and prevalence of phenotypic features in schizophrenia. In addition, more insight is required for the exact mechanisms by which the complement system causes excessive pruning, such as the suggested involvement of microglial engulfment and degradation of synapses. Ultimately, this knowledge is a prerequisite for the development of therapeutic interventions for selective groups of schizophrenia patients.
Collapse
|
9
|
Roitman M, Edgington-Mitchell LE, Mangum J, Ziogas J, Adamides AA, Myles P, Choo-Bunnett H, Bunnett NW, Gunnersen JM. Sez6 levels are elevated in cerebrospinal fluid of patients with inflammatory pain-associated conditions. Pain Rep 2019; 4:e719. [PMID: 31041421 PMCID: PMC6455686 DOI: 10.1097/pr9.0000000000000719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Seizure-related protein 6 (Sez6) contributes to chronic pain development as sez6 knockout mice show attenuated pain behaviours after peripheral nerve injury, compared with control mice. The type I transmembrane isoform of Sez6 is cleaved by the β-amyloid precursor protein cleavage enzyme 1 (BACE1), resulting in Sez6 extracellular domain shedding from the neuron surface. OBJECTIVES To determine whether this BACE1-shed form of Sez6 can be detected in the cerebrospinal fluid (CSF) and whether Sez6 levels in the CSF are altered in neuropathic pain or chronic inflammatory pain (IP). METHODS We analysed the CSF samples collected during surgery from patients with chronic neuropathic pain (n = 8) or IP (n = 33), comparing them to the CSF samples from patients with suspected subarachnoid haemorrhage that was subsequently excluded (nonsurgical group, n = 5). Western blots were used to determine the relative Sez6 levels in the CSF from the different patient and nonsurgical comparison groups. RESULTS The results show that BACE1-shed Sez6 can be readily detected in the CSF by Western blot and that the levels of Sez6 are significantly higher in the IP group than in the nonsurgical comparison group. CONCLUSION The association between elevated Sez6 levels in the CSF and IP is further evidence for persistent alterations in central nervous system activity in chronic IP conditions.
Collapse
Affiliation(s)
- Maria Roitman
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura E. Edgington-Mitchell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
| | - Jon Mangum
- Department of Pharmacology and Therapeutics, The University of Melbourne Parkville, Victoria, Australia
| | - James Ziogas
- Department of Pharmacology and Therapeutics, The University of Melbourne Parkville, Victoria, Australia
| | - Alexios A. Adamides
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul Myles
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital, Melbourne, Victoria, Australia
| | - Hearan Choo-Bunnett
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nigel W. Bunnett
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jenny M. Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibition Impairs Synaptic Plasticity via Seizure Protein 6. Biol Psychiatry 2018; 83:428-437. [PMID: 28129943 DOI: 10.1016/j.biopsych.2016.12.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/01/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a promising drug target for the treatment of Alzheimer's disease. Prolonged BACE1 inhibition interferes with structural and functional synaptic plasticity in mice, most likely by altering the metabolism of BACE1 substrates. Seizure protein 6 (SEZ6) is predominantly cleaved by BACE1, and Sez6 knockout mice share some phenotypes with BACE1 inhibitor-treated mice. We investigated whether SEZ6 is involved in BACE1 inhibition-induced structural and functional synaptic alterations. METHODS The function of NB-360, a novel blood-brain barrier penetrant and orally available BACE1 inhibitor, was verified by immunoblotting. In vivo microscopy was applied to monitor the impact of long-term pharmacological BACE1 inhibition on dendritic spines in the cerebral cortex of constitutive and conditional Sez6 knockout mice. Finally, synaptic functions were characterized using electrophysiological field recordings in hippocampal slices. RESULTS BACE1 enzymatic activity was strongly suppressed by NB-360. Prolonged NB-360 treatment caused a reversible spine density reduction in wild-type mice, but it did not affect Sez6-/- mice. Knocking out Sez6 in a small subset of mature neurons also prevented the structural postsynaptic changes induced by BACE1 inhibition. Hippocampal long-term potentiation was decreased in both chronic BACE1 inhibitor-treated wild-type mice and vehicle-treated Sez6-/- mice. However, chronic NB-360 treatment did not alter long-term potentiation in CA1 neurons of Sez6-/- mice. CONCLUSIONS Our results suggest that SEZ6 plays an important role in maintaining normal dendritic spine dynamics. Furthermore, SEZ6 is involved in BACE1 inhibition-induced structural and functional synaptic alterations.
Collapse
|
11
|
Fontes MM, Guvenek A, Kawaguchi R, Zheng D, Huang A, Ho VM, Chen PB, Liu X, O'Dell TJ, Coppola G, Tian B, Martin KC. Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation. Sci Rep 2017; 7:17377. [PMID: 29234016 PMCID: PMC5727029 DOI: 10.1038/s41598-017-17407-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Long-lasting forms of synaptic plasticity that underlie learning and memory require new transcription and translation for their persistence. The remarkable polarity and compartmentalization of neurons raises questions about the spatial and temporal regulation of gene expression within neurons. Alternative cleavage and polyadenylation (APA) generates mRNA isoforms with different 3' untranslated regions (3'UTRs) and/or coding sequences. Changes in the 3'UTR composition of mRNAs can alter gene expression by regulating transcript localization, stability and/or translation, while changes in the coding sequences lead to mRNAs encoding distinct proteins. Using specialized 3' end deep sequencing methods, we undertook a comprehensive analysis of APA following induction of long-term potentiation (LTP) of mouse hippocampal CA3-CA1 synapses. We identified extensive LTP-induced APA changes, including a general trend of 3'UTR shortening and activation of intronic APA isoforms. Comparison with transcriptome profiling indicated that most APA regulatory events were uncoupled from changes in transcript abundance. We further show that specific APA regulatory events can impact expression of two molecules with known functions during LTP, including 3'UTR APA of Notch1 and intronic APA of Creb1. Together, our results reveal that activity-dependent APA provides an important layer of gene regulation during learning and memory.
Collapse
Affiliation(s)
- Mariana M Fontes
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alden Huang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Victoria M Ho
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick B Chen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Kelsey C Martin
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Das B, Yan R. Role of BACE1 in Alzheimer's synaptic function. Transl Neurodegener 2017; 6:23. [PMID: 28855981 PMCID: PMC5575945 DOI: 10.1186/s40035-017-0093-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-dependent disease of dementia, and there is currently no cure available. This hallmark pathologies of AD are the presence of amyloid plaques and neurofibrillary tangles. Although the exact etiology of AD remains a mystery, studies over the past 30 have shown that abnormal generation or accumulation of β-amyloid peptides (Aβ) is likely to be a predominant early event in AD pathological development. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1). Chemical inhibition of BACE1 has been shown to reduce Aβ in animal studies and in human trials. While BACE1 inhibitors are currently being tested in clinical trials to treat AD patients, it is highly important to understand whether BACE1 inhibition will significantly impact cognitive functions in AD patients. This review summarizes the recent studies on BACE1 synaptic functions. This knowledge will help to guide the proper use of BACE1 inhibitors in AD therapy.
Collapse
Affiliation(s)
- Brati Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
13
|
Maag JLV, Kaczorowski DC, Panja D, Peters TJ, Bramham CR, Wibrand K, Dinger ME. Widespread promoter methylation of synaptic plasticity genes in long-term potentiation in the adult brain in vivo. BMC Genomics 2017; 18:250. [PMID: 28335720 PMCID: PMC5364592 DOI: 10.1186/s12864-017-3621-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored. Results To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats. Using a methylated DNA immunoprecipitation (MeDIP)-array, together with previously published matched RNA-seq and public histone modification data, we discover widespread changes in methylation status of LTP-genes. We further show that the expression of many LTP-genes is correlated with their methylation status. We show that these correlated genes are enriched for RNA-processing, active histone marks, and specific transcription factors. These data reveal that the synaptic activity-evoked methylation changes correlates with pre-existing activation of the chromatin landscape. Finally, we show that methylation of Brain-derived neurotrophic factor (Bdnf) CpG-islands correlates with isoform switching from transcripts containing exon IV to exon I. Conclusions Together, these data provide the first evidence of widespread regulation of methylation status in LTP-associated genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3621-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesper L V Maag
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, 370 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Dominik C Kaczorowski
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia
| | - Debabrata Panja
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Timothy J Peters
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Marcel E Dinger
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, 370 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
14
|
Athanasiu L, Giddaluru S, Fernandes C, Christoforou A, Reinvang I, Lundervold AJ, Nilsson LG, Kauppi K, Adolfsson R, Eriksson E, Sundet K, Djurovic S, Espeseth T, Nyberg L, Steen VM, Andreassen OA, Le Hellard S. A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav Immun 2017; 61:209-216. [PMID: 27890662 DOI: 10.1016/j.bbi.2016.11.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023] Open
Abstract
The complement cascade plays a role in synaptic pruning and synaptic plasticity, which seem to be involved in cognitive functions and psychiatric disorders. Genetic variants in the closely related CSMD1 and CSMD2 genes, which are implicated in complement regulation, are associated with schizophrenia. Since patients with schizophrenia often show cognitive impairments, we tested whether variants in CSMD1 and CSMD2 are also associated with cognitive functions per se. We took a discovery-replication approach, using well-characterized Scandinavian cohorts. A total of 1637 SNPs in CSMD1 and 206 SNPs in CSMD2 were tested for association with cognitive functions in the NCNG sample (Norwegian Cognitive NeuroGenetics; n=670). Replication testing of SNPs with p-value<0.001 (7 in CSMD1 and 3 in CSMD2) was carried out in the TOP sample (Thematically Organized Psychosis; n=1025) and the BETULA sample (Betula Longitudinal Study on aging, memory and dementia; n=1742). Finally, we conducted a meta-analysis of these SNPs using all three samples. The previously identified schizophrenia marker in CSMD1 (SNP rs10503253) was also included. The strongest association was observed between the CSMD1 SNP rs2740931 and performance in immediate episodic memory (p-value=5×10-6, minor allele A, MAF 0.48-0.49, negative direction of effect). This association reached the study-wide significance level (p⩽1.2×10-5). SNP rs10503253 was not significantly associated with cognitive functions in our samples. In conclusion, we studied n=3437 individuals and found evidence that a variant in CSMD1 is associated with cognitive function. Additional studies of larger samples with cognitive phenotypes will be needed to further clarify the role of CSMD1 in cognitive phenotypes in health and disease.
Collapse
Affiliation(s)
- Lavinia Athanasiu
- NORMENT - K.G. Jebsen Center for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway; NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sudheer Giddaluru
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Carla Fernandes
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andrea Christoforou
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, Jonas Lies vei 91, Bergen, Norway; K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen 5009, Norway
| | - Lars-Göran Nilsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Aging Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kauppi
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umea University, 90187 Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umea University, SE 901 85 Umeå, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, Göteborg University, SE 405 30 Göteborg, Sweden
| | - Kjetil Sundet
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Thomas Espeseth
- NORMENT - K.G. Jebsen Center for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umea University, 90187 Umeå, Sweden; Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| | - Vidar M Steen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Stephanie Le Hellard
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
15
|
Ole A A. Increasing support for association between immune system and severe mental illness - need to find the underlying mechanisms. Acta Psychiatr Scand 2017; 135:95-96. [PMID: 28044316 DOI: 10.1111/acps.12692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Andreassen Ole A
- NORMENT KG Jebsen Centre for Psychosis Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Liu JT, Zhang S, Gu B, Li HN, Wang SY, Zhang SY. Methotrexate combined with methylprednisolone for the recovery of motor function and differential gene expression in rats with spinal cord injury. Neural Regen Res 2017; 12:1507-1518. [PMID: 29089998 PMCID: PMC5649473 DOI: 10.4103/1673-5374.215263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methylprednisolone is a commonly used drug for the treatment of spinal cord injury, but high doses of methylprednisolone can increase the incidence of infectious diseases. Methotrexate has anti-inflammatory activity and immunosuppressive effects, and can reduce inflammation after spinal cord injury. To analyze gene expression changes and the molecular mechanism of methotrexate combined with methylprednisolone in the treatment of spinal cord injury, a rat model of spinal cord contusion was prepared using the PinPoint™ precision cortical impactor technique. Rats were injected with methylprednisolone 30 mg/kg 30 minutes after injury, and then subcutaneously injected with 0.3 mg/kg methotrexate 1 day after injury, once a day, for 2 weeks. TreadScan gait analysis found that at 4 and 8 weeks after injury, methotrexate combined with methylprednisolone significantly improved hind limb swing time, stride time, minimum longitudinal deviation, instant speed, footprint area and regularity index. Solexa high-throughput sequencing was used to analyze differential gene expression. Compared with methylprednisolone alone, differential expression of 316 genes was detected in injured spinal cord treated with methotrexate and methylprednisolone. The 275 up-regulated genes were mainly related to nerve recovery, anti-oxidative, anti-inflammatory and anti-apoptotic functions, while 41 down-regulated genes were mainly related to proinflammatory and pro-apoptotic functions. These results indicate that methotrexate combined with methylprednisolone exhibited better effects on inhibiting the activity of inflammatory cytokines and enhancing antioxidant and anti-apoptotic effects and thereby produced stronger neuroprotective effects than methotrexate alone. The 316 differentially expressed genes play an important role in the above processes.
Collapse
Affiliation(s)
- Jian-Tao Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Si Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Bing Gu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Hua-Nan Li
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shuo-Yu Wang
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shui-Yin Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| |
Collapse
|
17
|
Abstract
Epidemiological studies and mouse models suggest that maternal immune activation, induced clinically through prenatal exposure to one of several infectious diseases, is a risk factor in the development of schizophrenia. This is supported by the strong genetic association established by genome wide association studies (GWAS) between the human leukocyte antigen (HLA) locus and schizophrenia. HLA proteins (also known in mice as the major histocompatibility complex; MHC) are mediators of the T-lymphocyte responses, and genetic variability is well-established as a risk factor for autoimmune diseases and susceptibility to infectious diseases. Taken together, the findings strongly suggest that schizophrenia risk in a subgroup of patients is caused by an infectious disease, and/or an autoimmune phenomenon. However, this view may be overly simplistic. First, MHC proteins have a non-immune effect on synaptogenesis by modulating synaptic pruning by microglia and other mechanisms, suggesting that genetic variability could be compromising this physiological process. Second, some GWAS signals in the HLA locus map near non-HLA genes, such as the histone gene cluster. On the other hand, recent GWAS data show association signals near B-lymphocyte enhancers, which lend support for an infectious disease etiology. Thus, although the genetic findings implicating the HLA locus are very robust, how genetic variability in this region leads to schizophrenia remains to be elucidated.
Collapse
Affiliation(s)
- Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| |
Collapse
|
18
|
Maag JLV, Panja D, Sporild I, Patil S, Kaczorowski DC, Bramham CR, Dinger ME, Wibrand K. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity. Front Neurosci 2015; 9:351. [PMID: 26483626 PMCID: PMC4589673 DOI: 10.3389/fnins.2015.00351] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023] Open
Abstract
Long-term potentiation (LTP) of synaptic transmission is recognized as a cellular mechanism for learning and memory storage. Although de novo gene transcription is known to be required in the formation of stable LTP, the molecular mechanisms underlying synaptic plasticity remain elusive. Noncoding RNAs have emerged as major regulatory molecules that are abundantly and specifically expressed in the mammalian brain. By combining RNA-seq analysis with LTP induction in the dentate gyrus of live rats, we provide the first global transcriptomic analysis of synaptic plasticity in the adult brain. Expression profiles of mRNAs and long noncoding RNAs (lncRNAs) were obtained at 30 min, 2 and 5 h after high-frequency stimulation of the perforant pathway. The temporal analysis revealed dynamic expression profiles of lncRNAs with many positively, and highly, correlated to protein-coding genes with known roles in synaptic plasticity, suggesting their possible involvement in LTP. In light of observations suggesting a role for retrotransposons in brain function, we examined the expression of various classes of repeat elements. Our analysis identifies dynamic regulation of LINE1 and SINE retrotransposons, and extensive regulation of tRNA. These experiments reveal a hitherto unknown complexity of gene expression in long-term synaptic plasticity involving the dynamic regulation of lncRNAs and repeat elements. These findings provide a broader foundation for elucidating the transcriptional and epigenetic regulation of synaptic plasticity in both the healthy brain and in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jesper L V Maag
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Debabrata Panja
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ida Sporild
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Dominik C Kaczorowski
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Marcel E Dinger
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
19
|
Nido GS, Ryan MM, Benuskova L, Williams JM. Dynamical properties of gene regulatory networks involved in long-term potentiation. Front Mol Neurosci 2015; 8:42. [PMID: 26300724 PMCID: PMC4528166 DOI: 10.3389/fnmol.2015.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The long-lasting enhancement of synaptic effectiveness known as long-term potentiation (LTP) is considered to be the cellular basis of long-term memory. LTP elicits changes at the cellular and molecular level, including temporally specific alterations in gene networks. LTP can be seen as a biological process in which a transient signal sets a new homeostatic state that is “remembered” by cellular regulatory systems. Previously, we have shown that early growth response (Egr) transcription factors are of fundamental importance to gene networks recruited early after LTP induction. From a systems perspective, we hypothesized that these networks will show less stable architecture, while networks recruited later will exhibit increased stability, being more directly related to LTP consolidation. Using random Boolean network (RBN) simulations we found that the network derived at 24 h was markedly more stable than those derived at 20 min or 5 h post-LTP. This temporal effect on the vulnerability of the networks is mirrored by what is known about the vulnerability of LTP and memory itself. Differential gene co-expression analysis further highlighted the importance of the Egr family and found a rapid enrichment in connectivity at 20 min, followed by a systematic decrease, providing a potential explanation for the down-regulation of gene expression at 24 h documented in our preceding studies. We also found that the architecture exhibited by a control and the 24 h LTP co-expression networks fit well to a scale-free distribution, known to be robust against perturbations. By contrast the 20 min and 5 h networks showed more truncated distributions. These results suggest that a new homeostatic state is achieved 24 h post-LTP. Together, these data present an integrated view of the genomic response following LTP induction by which the stability of the networks regulated at different times parallel the properties observed at the synapse.
Collapse
Affiliation(s)
- Gonzalo S Nido
- Department of Computer Science, University of Otago Dunedin, New Zealand ; Brain Health Research Centre, University of Otago Dunedin, New Zealand
| | - Margaret M Ryan
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Lubica Benuskova
- Department of Computer Science, University of Otago Dunedin, New Zealand ; Brain Health Research Centre, University of Otago Dunedin, New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
20
|
Ryan B, Joilin G, Williams JM. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci 2015; 8:4. [PMID: 25755632 PMCID: PMC4337328 DOI: 10.3389/fnmol.2015.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Long-term potentiation (LTP) is a form of synaptic plasticity that is an excellent model for the molecular mechanisms that underlie memory. LTP, like memory, is persistent, and both are widely believed to be maintained by a coordinated genomic response. Recently, a novel class of non-coding RNA, microRNA, has been implicated in the regulation of LTP. MicroRNA negatively regulate protein synthesis by binding to specific messenger RNA response elements. The aim of this review is to summarize experimental evidence for the proposal that microRNA play a major role in the regulation of LTP. We discuss a growing body of research which indicates that specific microRNA regulate synaptic proteins relevant to LTP maintenance, as well as studies that have reported differential expression of microRNA in response to LTP induction. We conclude that microRNA are ideally suited to contribute to the regulation of LTP-related gene expression; microRNA are pleiotropic, synaptically located, tightly regulated, and function in response to synaptic activity. The potential impact of microRNA on LTP maintenance as regulators of gene expression is enormous.
Collapse
Affiliation(s)
- Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Greig Joilin
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| |
Collapse
|
21
|
The neuronal activity-driven transcriptome. Mol Neurobiol 2014; 51:1071-88. [PMID: 24935719 DOI: 10.1007/s12035-014-8772-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Activity-driven transcription is a key event associated with long-lasting forms of neuronal plasticity. Despite the efforts to investigate the regulatory mechanisms that control this complex process and the important advances in the knowledge of the function of many activity-induced genes in neurons, as well as the specific contribution of activity-regulated transcription factors, our understanding of how activity-driven transcription operates at the systems biology level is still very limited. This review focuses on the research of neuronal activity-driven transcription from an "omics" perspective. We will discuss the different high-throughput approaches undertaken to characterize the gene programs downstream of specific activity-regulated transcription factors, including CREB, SRF, MeCP2, Fos, Npas4, and others, and the interplay between epigenetic and transcriptional mechanisms underlying neuronal plasticity changes. Although basic questions remain unanswered and important challenges still lie ahead, the refinement of genome-wide techniques for investigating the neuronal transcriptome and epigenome promises great advances.
Collapse
|
22
|
Gebicke-Haerter PJ. Engram formation in psychiatric disorders. Front Neurosci 2014; 8:118. [PMID: 24904262 PMCID: PMC4036307 DOI: 10.3389/fnins.2014.00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/02/2014] [Indexed: 01/17/2023] Open
Abstract
Environmental factors substantially influence beginning and progression of mental illness, reinforcing or reducing the consequences of genetic vulnerability. Often initiated by early traumatic events, “engrams” or memories are formed that may give rise to a slow and subtle progression of psychiatric disorders. The large delay between beginning and time of onset (diagnosis) may be explained by efficient compensatory mechanisms observed in brain metabolism that use optional pathways in highly redundant molecular interactions. To this end, research has to deal with mechanisms of learning and long-term memory formation, which involves (a) epigenetic changes, (b) altered neuronal activities, and (c) changes in neuron-glia communication. On the epigenetic level, apparently DNA-methylations are more stable than histone modifications, although both closely interact. Neuronal activities basically deliver digital information, which clearly can serve as basis for memory formation (LTP). However, research in this respect has long time neglected the importance of glia. They are more actively involved in the control of neuronal activities than thought before. They can both reinforce and inhibit neuronal activities by transducing neuronal information from frequency-encoded to amplitude and frequency-modulated calcium wave patterns spreading in the glial syncytium by use of gap junctions. In this way, they serve integrative functions. In conclusion, we are dealing with two concepts of encoding information that mutually control each other and synergize: a digital (neuronal) and a wave-like (glial) computing, forming neuron-glia functional units with inbuilt feedback loops to maintain balance of excitation and inhibition. To better understand mental illness, we have to gain more insight into the dynamics of adverse environmental impact on those cellular and molecular systems. This report summarizes existing knowledge and draws some outline about further research in molecular psychiatry.
Collapse
Affiliation(s)
- Peter J Gebicke-Haerter
- Medical Faculty Mannheim, Central Institute of Mental Health, Institute of Psychopharmacology, Heidelberg University Mannheim, Germany ; Progrs. de Farmacología y Inmunología, Facultad de Medicina, Universidad de Chile Santiago, Chile
| |
Collapse
|
23
|
High-frequency stimulation of the subthalamic nucleus counteracts cortical expression of major histocompatibility complex genes in a rat model of Parkinson's disease. PLoS One 2014; 9:e91663. [PMID: 24621597 PMCID: PMC3951430 DOI: 10.1371/journal.pone.0091663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson’s disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidromic activation of corticofugal fibers. However, STN-HFS-induced changes of the sensorimotor cortex are hitherto unexplored. To address this question at a genomic level, we performed mRNA expression analyses using Affymetrix microarray gene chips and real-time RT-PCR in sensorimotor cortex of parkinsonian and control rats following STN-HFS. Experimental parkinsonism was induced in Brown Norway rats by bilateral nigral injections of 6-hydroxydopamine and was assessed histologically, behaviorally, and electrophysiologically. We applied prolonged (23h) unilateral STN-HFS in awake and freely moving animals, with the non-stimulated hemisphere serving as an internal control for gene expression analyses. Gene enrichment analysis revealed strongest regulation in major histocompatibility complex (MHC) related genes. STN-HFS led to a cortical downregulation of several MHC class II (RT1-Da, Db1, Ba, and Cd74) and MHC class I (RT1CE) encoding genes. The same set of genes showed increased expression levels in a comparison addressing the effect of 6-hydroxydopamine lesioning. Hence, our data suggest the possible association of altered microglial activity and synaptic transmission by STN-HFS within the sensorimotor cortex of 6-hydroxydopamine treated rats.
Collapse
|
24
|
Steen VM, Nepal C, Ersland KM, Holdhus R, Nævdal M, Ratvik SM, Skrede S, Håvik B. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS One 2013; 8:e79501. [PMID: 24244513 PMCID: PMC3828352 DOI: 10.1371/journal.pone.0079501] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Recent meta-analyses of schizophrenia genome-wide association studies (GWASs) have identified the CUB and SUSHI multiple domains 1 (CSMD1) gene as a statistically strong risk factor. CSMD1 is a complement control-related protein suggested to inhibit the classical complement pathway, being expressed in developing neurons. However, expression of CSMD1 is largely uncharacterized and relevance for behavioral phenotypes is not previously demonstrated. Here, we assess neuropsychological behaviors of a Csmd1 knockout (KO) mouse in a selection of standard behavioral tests. Deregulation of neuropsychological responses were observed in both the open field and the elevated plus maze tests, in which KO mice spent 55% and 33% less time than WT littermate mice in open areas, respectively. Altered behaviors were also observed in tail suspension and to higher acoustic stimuli, for which Csmd1 KO mice showed helplessness and moderate increase in startle amplitude, respectively. Furthermore, Csmd1 KO mice also displayed increased weight-gain and glucose tolerance, similar to a major phenotype of the metabolic syndrome that also has been associated to the human CSMD1 locus. Consistent with a role in the control of behaviors, Csmd1 was found highly expressed in the central nervous system (CNS), and with some expression in visceral fat and ovary, under tissue-specific control by a novel promoter-associated lncRNA. In summary, disruption of Csmd1 induces behaviors reminiscent of blunted emotional responses, anxiety and depression. These observations suggest an influence of the CSMD1 schizophrenia susceptibility gene on psychopathology and endophenotypes of the negative symptom spectra.
Collapse
Affiliation(s)
- Vidar M. Steen
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Chirag Nepal
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kari M. Ersland
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rita Holdhus
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Nævdal
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Siri M. Ratvik
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bjarte Håvik
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
25
|
Chawla MK, Penner MR, Olson KM, Sutherland VL, Mittelman-Smith MA, Barnes CA. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats. Neurobiol Aging 2012; 34:1184-98. [PMID: 23158763 DOI: 10.1016/j.neurobiolaging.2012.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/03/2012] [Accepted: 10/19/2012] [Indexed: 12/21/2022]
Abstract
The subcellular processes of gene induction and expression in the hippocampus are likely to underlie some of the known age-related impairments in spatial learning and memory. It is well established that immediate-early genes are rapidly and transiently induced in response to neuronal activity and this expression is required for stabilization of durable memories. To examine whether age-related memory impairment might be caused, in part, by differences in the level of cellular activation or subcellular processing, c-fos expression in CA1 pyramidal and dentate gyrus granule cells in the dorsal hippocampus of young and old rats was determined using fluorescence in situ hybridization and reverse transcription polymerase chain reaction. No significant age differences were found in the numbers of pyramidal or granule cells that show c-fos expression; however, c-fos mRNA transcripts were altered in these 2 cell types in aged animals. These findings suggest that though the networks of cells that participate in behavior or seizure-induced activity are largely maintained in aged rats, their RNA transcript levels are altered. This might, in part, contribute to cognitive deficits frequently observed with advancing age.
Collapse
Affiliation(s)
- Monica K Chawla
- ARL Division of Neural Systems, Memory and Aging and Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ 85724-5115, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ryan MM, Ryan B, Kyrke-Smith M, Logan B, Tate WP, Abraham WC, Williams JM. Temporal profiling of gene networks associated with the late phase of long-term potentiation in vivo. PLoS One 2012; 7:e40538. [PMID: 22802965 PMCID: PMC3393663 DOI: 10.1371/journal.pone.0040538] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/08/2012] [Indexed: 01/02/2023] Open
Abstract
Long-term potentiation (LTP) is widely accepted as a cellular mechanism underlying memory processes. It is well established that LTP persistence is strongly dependent on activation of constitutive and inducible transcription factors, but there is limited information regarding the downstream gene networks and controlling elements that coalesce to stabilise LTP. To identify these gene networks, we used Affymetrix RAT230.2 microarrays to detect genes regulated 5 h and 24 h (n = 5) after LTP induction at perforant path synapses in the dentate gyrus of awake adult rats. The functional relationships of the differentially expressed genes were examined using DAVID and Ingenuity Pathway Analysis, and compared with our previous data derived 20 min post-LTP induction in vivo. This analysis showed that LTP-related genes are predominantly upregulated at 5 h but that there is pronounced downregulation of gene expression at 24 h after LTP induction. Analysis of the structure of the networks and canonical pathways predicted a regulation of calcium dynamics via G-protein coupled receptors, dendritogenesis and neurogenesis at the 5 h time-point. By 24 h neurotrophin-NFKB driven pathways of neuronal growth were identified. The temporal shift in gene expression appears to be mediated by regulation of protein synthesis, ubiquitination and time-dependent regulation of specific microRNA and histone deacetylase expression. Together this programme of genomic responses, marked by both homeostatic and growth pathways, is likely to be critical for the consolidation of LTP in vivo.
Collapse
Affiliation(s)
- Margaret M. Ryan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
- Department of Biochemistry, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Madeleine Kyrke-Smith
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Barbara Logan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Warren P. Tate
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Wickliffe C. Abraham
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Joanna M. Williams
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
27
|
Ryan MM, Mason-Parker SE, Tate WP, Abraham WC, Williams JM. Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 2012; 21:541-53. [PMID: 20108223 DOI: 10.1002/hipo.20770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The canonical view of the maintenance of long-term potentiation (LTP), a widely accepted experimental model for memory processes, is that new gene transcription contributes to its consolidation; however, the gene networks involved are unknown. To address this issue, we have used high-density Rat 230.2 Affymetrix arrays to establish a set of genes induced 20-min post-LTP, and using Ingenuity Pathway network analysis tools we have investigated how these early responding genes are interrelated. This analysis identified LTP-induced regulatory networks in which the transcription factors (TFs) nuclear factor-KB and serum response factor, which, to date, have not been widely recognized as coordinating the early gene response, play a key role alongside the more well-known TFs cyclic AMP response element-binding protein, and early growth response 1. Analysis of gene-regulatory promoter sites and chromosomal locations of the genes within the dataset reinforced the importance of these molecules in the early gene response and predicted that the coordinated action might arise from gene clustering on particular chromosomes. We have also identified a transcription-based response that affects mitogen-activated protein kinase signaling pathways and protein synthesis during the stabilization of the LTP response. Furthermore, evidence from biological function, networks, and regulatory analyses showed convergence on genes related to development, proliferation, and neurogenesis, suggesting that these functions are regulated early following LTP induction. This raises the interesting possibility that LTP-related gene expression plays a role in both synaptic reorganization and neurogenesis.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 2011; 105:1489-99. [PMID: 22099159 DOI: 10.1016/j.jinorgbio.2011.08.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/13/2011] [Accepted: 08/14/2011] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are serious multisystem developmental disorders and an urgent global public health concern. Dysfunctional immunity and impaired brain function are core deficits in ASD. Aluminum (Al), the most commonly used vaccine adjuvant, is a demonstrated neurotoxin and a strong immune stimulator. Hence, adjuvant Al has the potential to induce neuroimmune disorders. When assessing adjuvant toxicity in children, two key points ought to be considered: (i) children should not be viewed as "small adults" as their unique physiology makes them much more vulnerable to toxic insults; and (ii) if exposure to Al from only few vaccines can lead to cognitive impairment and autoimmunity in adults, is it unreasonable to question whether the current pediatric schedules, often containing 18 Al adjuvanted vaccines, are safe for children? By applying Hill's criteria for establishing causality between exposure and outcome we investigated whether exposure to Al from vaccines could be contributing to the rise in ASD prevalence in the Western world. Our results show that: (i) children from countries with the highest ASD prevalence appear to have the highest exposure to Al from vaccines; (ii) the increase in exposure to Al adjuvants significantly correlates with the increase in ASD prevalence in the United States observed over the last two decades (Pearson r=0.92, p<0.0001); and (iii) a significant correlation exists between the amounts of Al administered to preschool children and the current prevalence of ASD in seven Western countries, particularly at 3-4 months of age (Pearson r=0.89-0.94, p=0.0018-0.0248). The application of the Hill's criteria to these data indicates that the correlation between Al in vaccines and ASD may be causal. Because children represent a fraction of the population most at risk for complications following exposure to Al, a more rigorous evaluation of Al adjuvant safety seems warranted.
Collapse
Affiliation(s)
- Lucija Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, 828 W. 10th Ave, Vancouver, BC, Canada V5Z 1L8.
| | | |
Collapse
|
30
|
Håvik B, Le Hellard S, Rietschel M, Lybæk H, Djurovic S, Mattheisen M, Mühleisen TW, Degenhardt F, Priebe L, Maier W, Breuer R, Schulze TG, Agartz I, Melle I, Hansen T, Bramham CR, Nöthen MM, Stevens B, Werge T, Andreassen OA, Cichon S, Steen VM. The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia. Biol Psychiatry 2011; 70:35-42. [PMID: 21439553 DOI: 10.1016/j.biopsych.2011.01.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/30/2010] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Patients with schizophrenia often suffer from cognitive dysfunction, including impaired learning and memory. We recently demonstrated that long-term potentiation in rat hippocampus, a mechanistic model of learning and memory, is linked to gene expression changes in immunity-related processes involved in complement activity and antigen presentation. We therefore aimed to examine whether key regulators of these processes are genetic susceptibility factors in schizophrenia. METHODS Analysis of genetic association was based on data mining of genotypes from a German genome-wide association study and a multiplex GoldenGate tag single nucleotide polymorphism (SNP)-based assay of Norwegian and Danish case-control samples (Scandinavian Collaboration on Psychiatric Etiology), including 1133 patients with schizophrenia and 2444 healthy control subjects. RESULTS Allelic associations were found across all three samples for eight common SNPs in the complement control-related gene CSMD2 (CUB and Sushi Multiple Domains 2) on chromosome 1p35.1-34.3, of which rs911213 reached a statistical significance comparable to that of a genome wide threshold (p value = 4.0 × 10(-8); odd ratio = .73, 95% confidence interval = .65-.82). The second most significant gene was CSMD1 on chromosome 8p23.2, a homologue to CSMD2. In addition, we observed replicated associations in the complement surface receptor CD46 as well as the major histocompatibility complex genes HLA-DMB and HLA-DOA. CONCLUSIONS These data demonstrate a significant role of complement control-related genes in the etiology of schizophrenia and support disease mechanisms that involve the activity of immunity-related pathways in the brain.
Collapse
Affiliation(s)
- Bjarte Håvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Mol Psychiatry 2011; 16:533-47. [PMID: 20177408 DOI: 10.1038/mp.2010.15] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition.
Collapse
|
32
|
Modulation of neurotransmitter receptors and synaptic differentiation by proteins containing complement-related domains. Neurosci Res 2010; 69:87-92. [PMID: 21093502 DOI: 10.1016/j.neures.2010.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/25/2010] [Accepted: 11/09/2010] [Indexed: 11/20/2022]
Abstract
Neurotransmitter receptors play central roles in basic neurotransmission and synaptic plasticity. Recent studies have revealed that some transmembrane and extracellular proteins bind to neurotransmitter receptors, forming protein complexes that are required for proper synaptic localization or gating of core receptor molecules. Consequently, the components of these complexes contribute to long-term potentiation, a process that is critical for learning and memory. Here, we review factors that regulate neurotransmitter receptors, with a focus on proteins containing CUB (complement C1r/C1s, Uegf, Bmp1) or CCP (complement control protein) domains, which are frequently found in complement system proteins. Proteins that contain these domains are structurally distinct from TARPs (transmembrane AMPA receptor regulatory proteins), and may constitute new protein families that modulate either the localization or function of neurotransmitter receptors. In addition, other CCP domain-containing proteins participate in dendritic patterning and/or synaptic differentiation, although current evidence has not identified any direct activities on neurotransmitter receptors. Some of these proteins are involved in pathologic conditions such as epileptic seizure and mental retardation. Together, these lines of information have shown that CUB and CCP domain-containing proteins contribute to a wide variety of neuronal events that ultimately establish neural circuits.
Collapse
|
33
|
Valor LM, Barco A. Hippocampal gene profiling: toward a systems biology of the hippocampus. Hippocampus 2010; 22:929-41. [PMID: 21080408 DOI: 10.1002/hipo.20888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Transcriptomics and proteomics approaches give a unique perspective for understanding brain and hippocampal functions but also pose unique challenges because of the singular complexity of the nervous system. The proliferation of genome-wide expression studies during the last decade has provided important insight into the molecular underpinnings of brain anatomy, neural plasticity, and neurological diseases. Microarray technology has dominated transcriptomics research, but this situation is rapidly changing with the recent technological advances in high-throughput sequencing. The full potential of transcriptomics in the neurosciences will be achieved as a result of its integration with other "-omics" disciplines as well as the development of novel analytical bioinformatics and systems biology tools for meta-analysis. Here, we review some of the most relevant advances in the gene profiling of the hippocampus, its relationship with proteomics approaches, and the promising perspectives for the future.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Campus de Sant Joan, Apt. 18, Sant Joan d'Alacant, 03550, Alicante, Spain
| | | |
Collapse
|
34
|
Amin E, Wright N, Poirier GL, Thomas KL, Erichsen JT, Aggleton JP. Selective lamina dysregulation in granular retrosplenial cortex (area 29) after anterior thalamic lesions: an in situ hybridization and trans-neuronal tracing study in rats. Neuroscience 2010; 169:1255-67. [PMID: 20570608 DOI: 10.1016/j.neuroscience.2010.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 11/26/2022]
Abstract
There is growing evidence that lesions of the anterior thalamic nuclei cause long-lasting intrinsic changes to retrosplenial cortex, with the potential to alter its functional properties. The present study had two goals. The first was to identify the pattern of changes in eight markers, as measured by in-situ hydridisation, in the granular retrosplenial cortex (area Rgb) following anterior thalamic lesions. The second was to use retrograde trans-neuronal tracing methods to identify the potential repercussions of intrinsic changes within granular retrosplenial cortex. In Experiment 1, adult rats received unilateral lesions of the anterior thalamic nuclei and were perfused 4 weeks later. Of the eight markers, four (c-fos, zif268, 5ht2rc, kcnab2) showed a very similar pattern of change, with decreased levels in superficial retrosplenial cortex (lamina II) in the ipsilateral hemisphere but little or no change in deeper layers (lamina V). A fifth marker (cox6b) showed a shift in activity levels in the opposite direction to the previous four markers. Three other markers (cox6a1, CD74, ncs-1) did not appear to change activity levels after surgery. The predominant pattern of change, a decrease in superficial cortical activity, points to potential alterations in plasticity and metabolism. In Experiment 2, wheat germ agglutin (WGA) was injected into the anterior thalamic nuclei in rats given different survival times, sometimes in combination with the retrograde, fluorescent tracer, Fast Blue. Dense aggregations of retrogradely labeled cells were always found in lamina VI of granular retrosplenial cortex, but additional labeled cells in lamina II were only found: (1) in WGA cases, that is never after Fast Blue injections, and (2) after longer WGA survival times (3 days). These layer II Rgb cells are likely to have been trans-neuronally labeled, revealing a pathway from lamina II of Rgb to those deeper retrosplenial cells that project directly to the anterior thalamic nuclei.
Collapse
Affiliation(s)
- E Amin
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
35
|
Ploski JE, Park KW, Ping J, Monsey MS, Schafe GE. Identification of plasticity-associated genes regulated by Pavlovian fear conditioning in the lateral amygdala. J Neurochem 2009; 112:636-50. [PMID: 19912470 DOI: 10.1111/j.1471-4159.2009.06491.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most recent studies aimed at defining the cellular and molecular mechanisms of Pavlovian fear conditioning have focused on protein kinase signaling pathways and the transcription factor cAMP-response element binding protein (CREB) that promote fear memory consolidation in the lateral nucleus of the amygdala (LA). Despite this progress, there still remains a paucity of information regarding the genes downstream of CREB that are required for long-term fear memory formation in the LA. We have adopted a strategy of using microarray technology to initially identify genes induced within the dentate gyrus following in vivo long-term potentiation (LTP) followed by analysis of whether these same genes are also regulated by fear conditioning within the LA. In the present study, we first identified 34 plasticity-associated genes that are induced within 30 min following LTP induction utilizing a combination of DNA microarray, qRT-PCR, and in situ hybridization. To determine whether these genes are also induced in the LA following Pavlovian fear conditioning, we next exposed rats to an auditory fear conditioning protocol or to control conditions that do not support fear learning followed by qRT-PCR on mRNA from microdissected LA samples. Finally, we asked whether identified genes induced by fear learning in the LA are downstream of the extracellular-regulated kinase/mitogen-activated protein kinase signaling cascade. Collectively, our findings reveal a comprehensive list of genes that represent the first wave of transcription following both LTP induction and fear conditioning that largely belong to a class of genes referred to as 'neuronal activity dependent genes' that are likely calcium, extracellular-regulated kinase/mitogen-activated protein kinase, and CREB-dependent.
Collapse
Affiliation(s)
- Jonathan E Ploski
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity. Behaviorally, Arc has a key role in consolidation of explicit and implicit forms of memory, with recent work implicating Arc in adaptation to stress as well as maladaptive plasticity connected to drug addiction. Arc holds considerable promise as a “master regulator” of protein synthesis-dependent forms of synaptic plasticity, but the mechanisms that modulate and switch Arc function are only beginning to be elucidated.
Collapse
|
37
|
Gunnersen JM, Kuek A, Phipps JA, Hammond VE, Puthussery T, Fletcher EL, Tan SS. Seizure-related gene 6 (Sez-6) in amacrine cells of the rodent retina and the consequence of gene deletion. PLoS One 2009; 4:e6546. [PMID: 19662096 PMCID: PMC2718829 DOI: 10.1371/journal.pone.0006546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022] Open
Abstract
Background Seizure-related gene 6 (Sez-6) is expressed in neurons of the mouse brain, retina and spinal cord. In the cortex, Sez-6 plays a role in specifying dendritic branching patterns and excitatory synapse numbers during development. Methodology/Principal Findings The distribution pattern of Sez-6 in the retina was studied using a polyclonal antibody that detects the multiple isoforms of Sez-6. Prominent immunostaining was detected in GABAergic, but not in AII glycinergic, amacrine cell subpopulations of the rat and mouse retina. Amacrine cell somata displayed a distinct staining pattern with the Sez-6 antibody: a discrete, often roughly triangular-shaped bright spot positioned between the nucleus and the apical dendrite superimposed over weaker general cytoplasmic staining. Displaced amacrines in the ganglion cell layer were also positive for Sez-6 and weaker staining was occasionally observed in neurons with the morphology of alpha ganglion cells. Two distinct Sez-6 positive strata were present in the inner plexiform layer in addition to generalized punctate staining. Certain inner nuclear layer cells, including bipolar cells, stained more weakly and diffusely than amacrine cells, although some bipolar cells exhibited a perinuclear “bright spot” similar to amacrine cells. In order to assess the role of Sez-6 in the retina, we analyzed the morphology of the Sez-6 knockout mouse retina with immunohistochemical markers and compared ganglion cell dendritic arbor patterning in Sez-6 null retinae with controls. The functional importance of Sez-6 was assessed by dark-adapted paired-flash electroretinography (ERG). Conclusions In summary, we have reported the detailed expression pattern of a novel retinal marker with broad cell specificity, useful for retinal characterization in rodent experimental models. Retinal morphology, ganglion cell dendritic branching and ERG waveforms appeared normal in the Sez-6 knockout mouse suggesting that, in spite of widespread expression of Sez-6, retinal function in the absence of Sez-6 is not affected.
Collapse
Affiliation(s)
- Jenny M Gunnersen
- Brain Development, Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Discrete molecular states in the brain accompany changing responses to a vocal signal. Proc Natl Acad Sci U S A 2009; 106:11364-9. [PMID: 19541599 DOI: 10.1073/pnas.0812998106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
New experiences can trigger changes in gene expression in the brain. To understand this phenomenon better, we studied zebra finches hearing playbacks of birdsong. Earlier research had shown that initial playbacks of a novel song transiently increase the ZENK (ZIF-268, EGR1, NGFIA, KROX-24) mRNA in the auditory forebrain, but the response selectively habituates after repetition of the stimulus. Here, using DNA microarray analysis, we show that novel song exposure induces rapid changes in thousands of RNAs, with even more RNAs decreasing than increasing. Habituation training leads to the emergence of a different gene expression profile a day later, accompanied by loss of essentially all of the rapid "novel" molecular responses. The novel molecular profile is characterized by increases in genes involved in transcription and RNA processing and decreases in ion channels and putative noncoding RNAs. The "habituated" profile is dominated by changes in genes for mitochondrial proteins. A parallel proteomic analysis [2-dimensional difference gel electrophoresis (2D-DIGE) and sequencing by mass spectrometry] also detected changes in mitochondrial proteins, and direct enzyme assay demonstrated changes in both complexes I and IV in the habituated state. Thus a natural experience, in this case hearing the sound of birdsong, can lead to major shifts in energetics and macromolecular metabolism in higher centers in the brain.
Collapse
|
39
|
Habibi L, Ebtekar M, Jameie SB. Immune and nervous systems share molecular and functional similarities: memory storage mechanism. Scand J Immunol 2009; 69:291-301. [PMID: 19284492 DOI: 10.1111/j.1365-3083.2008.02215.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most complex and important features of both the nervous and immune systems is their data storage and retrieval capability. Both systems encounter a common and complex challenge on how to overcome the cumbersome task of data management. Because each neuron makes many synapses with other neurons, they are capable of receiving data from thousands of synaptic connections. The immune system B and T cells have to deal with a similar level of complexity because of their unlimited task of recognizing foreign antigens. As for the complexity of memory storage, it has been proposed that both systems may share a common set of molecular mechanisms. Here, we review the molecular bases of memory storage in neurons and immune cells based on recent studies and findings. The expression of certain molecules and mechanisms shared between the two systems, including cytokine networks, and cell surface receptors, are reviewed. Intracellular signaling similarities and certain mechanisms such as diversity, memory storage, and their related molecular properties are briefly discussed. Moreover, two similar genetic mechanisms used by both systems is discussed, putting forward the idea that DNA recombination may be an underlying mechanism involved in CNS memory storage.
Collapse
Affiliation(s)
- L Habibi
- Medical Human Genetics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
40
|
Abstract
Synaptic plasticity is the dynamic regulation of the strength of synaptic communication between nerve cells. It is central to neuronal development as well as experience-dependent remodeling of the adult nervous system as occurs during memory formation. Aberrant forms of synaptic plasticity also accompany a variety of neurological and psychiatric diseases, and unraveling the biological basis of synaptic plasticity has been a major goal in neurobiology research. The biochemical and structural mechanisms underlying different forms of synaptic plasticity are complex, involving multiple signaling cascades, reconfigurations of structural proteins and the trafficking of synaptic proteins. As such, proteomics should be a valuable tool in dissecting the molecular events underlying normal and disease-related forms of plasticity. In fact, progress in this area has been disappointingly slow. We discuss the particular challenges associated with proteomic interrogation of synaptic plasticity processes and outline ways in which we believe proteomics may advance the field over the next few years. We pay particular attention to technical advances being made in small sample proteomics and the advent of proteomic imaging in studying brain plasticity.
Collapse
Affiliation(s)
- Stuart R Cobb
- Division of Neuroscience & Biomedical Systems, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
41
|
Gunnersen JM, Kim MH, Fuller SJ, De Silva M, Britto JM, Hammond VE, Davies PJ, Petrou S, Faber EL, Sah P, Tan SS. Sez-6 Proteins Affect Dendritic Arborization Patterns and Excitability of Cortical Pyramidal Neurons. Neuron 2007; 56:621-39. [DOI: 10.1016/j.neuron.2007.09.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 01/25/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|