1
|
Aldeiri B, Si T, Huang Z, Torner N, Ma Y, Davenport M, Hadzic N. Matrix Metalloproteinase-7 and Osteopontin Serum Levels as Biomarkers for Biliary Atresia. J Pediatr Gastroenterol Nutr 2023; 77:97-102. [PMID: 37326848 DOI: 10.1097/mpg.0000000000003792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Matrix metallopeptidase-7 (MMP-7) and osteopontin (OPN) are important components in the pathophysiology of fibrosis in biliary atresia (BA). There has been much recent interest in MMP-7 serum level in the diagnosis of BA. We aimed to assess the diagnostic accuracy and prognostic value of both MMP-7 and OPN in a Western BA study. METHODS Diagnostic value was assessed by comparison of serum MMP-7 and OPN levels in infants with BA and age-matched cholestatic controls. Prognostic value was assessed through subsequent clearance of jaundice (COJ) and need for liver transplantation (LT). RESULTS Serum was assessed from 32 BA and 27 controls. Median MMP-7 was higher in BA (96.4 vs 35 ng/mL; P < 0.0001) with an optimal cut-off value of 69 ng/mL. Sensitivity and specificity was 68% and 93%, respectively [negative predictive value (NPV) = 71%]. Similarly, median OPN was higher in BA (1952 vs 1457 ng/mL; P = 0.0001) and an optimal cut-off of 1611 ng/mL. Sensitivity and specificity was 84% and 78%, respectively (NPV = 81%). MMP-7 level correlated positively with Ishak liver fibrosis score (r = 0.27, P = 0.04). Neither MMP-7 (70 vs 100 ng/mL; P = 0.2) nor OPN (1969 vs 1939 ng/mL; P = 0.3) were predictive of COJ, or need for LT (99 vs 79 ng/mL; P = 0.7, and 1981 vs 1899 ng/mL; P = 0.2), respectively. CONCLUSIONS MMP-7 and OPN may have contributory value in the diagnosis of BA, but remain far of the "gold standard" role. Much more prospective data are required and collaborative multi-center initiatives should be the next logical steps.
Collapse
Affiliation(s)
- Bashar Aldeiri
- From the Department of Paediatric Surgery, King's College Hospital, Denmark Hill, London, UK
| | - Tengfei Si
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Zhenlin Huang
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Núria Torner
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Yun Ma
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Mark Davenport
- From the Department of Paediatric Surgery, King's College Hospital, Denmark Hill, London, UK
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Nedim Hadzic
- Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|
2
|
Malik A, Ashraf MAB, Khan MW, Zahid A, Shafique H, Waquar S, Gan SH, Ashraf M. Implication of Physiological and Biochemical Variables of Prognostic Importance in Lead Exposed Subjects. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:329-336. [PMID: 31620805 DOI: 10.1007/s00244-019-00673-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The use of leaded gasoline adversely affects cardiovascular, nervous, and immune systems. Study projects to rule out different variables of prognostic importance in lead-exposed subjects. A total of 317 traffic wardens with 5 years of outdoor experience and Hb levels < 10 µg/dl, and 100 traffic wardens with indoor duties were substituted in two groups. Levels of vitamins, cytokines, lead, iron, minerals, oxidative stress, and lipid peroxidation were estimated with help of their standard ELISA and spectrophotometric methods respectively. The present study show increased levels of lead in subjects (29.8 ± 3.8 vs. 1.5 ± 0.2 µg/dl) that may be involved in increasing oxidative stress, i.e., levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and isoprostanes were increased in subjects (4.6 ± 0.5, 4.3 ± 0.6 and 37.2 ± 5.1). Moreover, levels of antioxidants, i.e., superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), were decreased. It also exhibits reduced levels of different enzymes in anemic traffic wardens. Current study concludes that wardens exposed to environmental lead are more susceptible to develop cardiovascular and neurological disorders. It shows that toxicity of lead maybe responsible for redox imbalance and production of proinflammatory cytokines. Thus, early detection of these biomarkers may help to reduce lead toxicity and it also may help to control the dilemma of uncontrolled environmental pollution by implicating strict actions against substandard gasoline.
Collapse
Affiliation(s)
- Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | | | | | - Ayesha Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Hassan Shafique
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Siew Hua Gan
- School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
3
|
Schaefer N, Rotermund C, Blumrich EM, Lourenco MV, Joshi P, Hegemann RU, Jamwal S, Ali N, García Romero EM, Sharma S, Ghosh S, Sinha JK, Loke H, Jain V, Lepeta K, Salamian A, Sharma M, Golpich M, Nawrotek K, Paidi RK, Shahidzadeh SM, Piermartiri T, Amini E, Pastor V, Wilson Y, Adeniyi PA, Datusalia AK, Vafadari B, Saini V, Suárez-Pozos E, Kushwah N, Fontanet P, Turner AJ. The malleable brain: plasticity of neural circuits and behavior - a review from students to students. J Neurochem 2017. [PMID: 28632905 DOI: 10.1111/jnc.14107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on page 788. Cover Image for this issue: doi: 10.1111/jnc.13815.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Wuerzburg, Würzburg, Germany
| | - Carola Rotermund
- German Center of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pooja Joshi
- Inserm UMR 1141, Robert Debre Hospital, Paris, France
| | - Regina U Hegemann
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Sumit Jamwal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nilufar Ali
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shampa Ghosh
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Jitendra K Sinha
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Hannah Loke
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Vishal Jain
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mojtaba Golpich
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Katarzyna Nawrotek
- Department of Process Thermodynamics, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Ramesh K Paidi
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sheila M Shahidzadeh
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Veronica Pastor
- Instituto de Biología Celular y Neurociencia Prof. Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yvette Wilson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip A Adeniyi
- Cell Biology and Neurotoxicity Unit, Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado - Ekiti, Ekiti State, Nigeria
| | | | - Benham Vafadari
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vedangana Saini
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Edna Suárez-Pozos
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Toxicología, México
| | - Neetu Kushwah
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Paula Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience (IBCN), CONICET-UBA, School of Medicine, Buenos Aires, Argentina
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Brzdak P, Nowak D, Wiera G, Mozrzymas JW. Multifaceted Roles of Metzincins in CNS Physiology and Pathology: From Synaptic Plasticity and Cognition to Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:178. [PMID: 28713245 PMCID: PMC5491558 DOI: 10.3389/fncel.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid β (Aβ) peptide and several pathways for Aβ clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aβ peptide. Controlling the proteolytic activity of metzincins in Aβ-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Daria Nowak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Grzegorz Wiera
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| |
Collapse
|
5
|
Shilts J, Broadie K. Secreted tissue inhibitor of matrix metalloproteinase restricts trans-synaptic signaling to coordinate synaptogenesis. J Cell Sci 2017; 130:2344-2358. [PMID: 28576972 DOI: 10.1242/jcs.200808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
Synaptogenesis is coordinated by trans-synaptic signals that traverse the specialized synaptomatrix between presynaptic and postsynaptic cells. Matrix metalloproteinase (Mmp) activity sculpts this environment, balanced by secreted tissue inhibitors of Mmp (Timp). Here, we use the simplified Drosophila melanogaster matrix metalloproteome to test the consequences of eliminating all Timp regulatory control of Mmp activity at the neuromuscular junction (NMJ). Using in situ zymography, we find Timp limits Mmp activity at the NMJ terminal and shapes extracellular proteolytic dynamics surrounding individual synaptic boutons. In newly generated timp null mutants, NMJs exhibit architectural overelaboration with supernumerary synaptic boutons. With cell-targeted RNAi and rescue studies, we find that postsynaptic Timp limits presynaptic architecture. Functionally, timp null mutants exhibit compromised synaptic vesicle cycling, with activity that is lower in amplitude and fidelity. NMJ defects manifest in impaired locomotor function. Mechanistically, we find that Timp limits BMP trans-synaptic signaling and the downstream synapse-to-nucleus signal transduction. Pharmacologically restoring Mmp inhibition in timp null mutants corrects bone morphogenetic protein (BMP) signaling and synaptic properties. Genetically restoring BMP signaling in timp null mutants corrects NMJ structure and motor function. Thus, Timp inhibition of Mmp proteolytic activity restricts BMP trans-synaptic signaling to coordinate synaptogenesis.
Collapse
Affiliation(s)
- Jarrod Shilts
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
6
|
The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol 2016; 155:36-56. [PMID: 27530222 DOI: 10.1016/j.pneurobio.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/10/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of ubiquitous extracellular endopeptidases, which play important roles in a variety of physiological and pathological conditions, from the embryonic stages throughout adult life. Their extraordinary physiological "success" is due to concomitant broad substrate specificities and strict regulation of their expression, activation and inhibition levels. In recent years, MMPs have gained increasing attention as significant effectors in various aspects of central nervous system (CNS) physiology. Most importantly, they have been recognized as main players in a variety of brain disorders having different etiologies and evolution. A common aspect of these pathologies is the development of acute or chronic neuroinflammation. MMPs play an integral part in determining the result of neuroinflammation, in some cases turning its beneficial outcome into a harmful one. This review summarizes the most relevant studies concerning the physiology of MMPs, highlighting their involvement in both the developing and mature CNS, in long-lasting and acute brain diseases and, finally, in nervous system repair. Recently, a concerted effort has been made in identifying therapeutic strategies for major brain diseases by targeting MMP activities. However, from this revision of the literature appears clear that MMPs have multifaceted functional characteristics, which modulate physiological processes in multiple ways and with multiple consequences. Therefore, when choosing MMPs as possible targets, great care must be taken to evaluate the delicate balance between their activation and inhibition and to determine at which stage of the disease and at what level they become active in order maximize chances of success.
Collapse
|
7
|
Dear ML, Dani N, Parkinson W, Zhou S, Broadie K. Two classes of matrix metalloproteinases reciprocally regulate synaptogenesis. Development 2015; 143:75-87. [PMID: 26603384 DOI: 10.1242/dev.124461] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 11/18/2015] [Indexed: 01/10/2023]
Abstract
Synaptogenesis requires orchestrated intercellular communication between synaptic partners, with trans-synaptic signals necessarily traversing the extracellular synaptomatrix separating presynaptic and postsynaptic cells. Extracellular matrix metalloproteinases (Mmps) regulated by secreted tissue inhibitors of metalloproteinases (Timps), cleave secreted and membrane-associated targets to sculpt the extracellular environment and modulate intercellular signaling. Here, we test the roles of Mmp at the neuromuscular junction (NMJ) model synapse in the reductionist Drosophila system, which contains just two Mmps (secreted Mmp1 and GPI-anchored Mmp2) and one secreted Timp. We found that all three matrix metalloproteome components co-dependently localize in the synaptomatrix and show that both Mmp1 and Mmp2 independently restrict synapse morphogenesis and functional differentiation. Surprisingly, either dual knockdown or simultaneous inhibition of the two Mmp classes together restores normal synapse development, identifying a reciprocal suppression mechanism. The two Mmp classes co-regulate a Wnt trans-synaptic signaling pathway modulating structural and functional synaptogenesis, including the GPI-anchored heparan sulfate proteoglycan (HSPG) Wnt co-receptor Dally-like protein (Dlp), cognate receptor Frizzled-2 (Frz2) and Wingless (Wg) ligand. Loss of either Mmp1 or Mmp2 reciprocally misregulates Dlp at the synapse, with normal signaling restored by co-removal of both Mmp classes. Correcting Wnt co-receptor Dlp levels in both Mmp mutants prevents structural and functional synaptogenic defects. Taken together, these results identify an Mmp mechanism that fine-tunes HSPG co-receptor function to modulate Wnt signaling to coordinate synapse structural and functional development.
Collapse
Affiliation(s)
- Mary Lynn Dear
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Neil Dani
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Scott Zhou
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| |
Collapse
|
8
|
Abstract
To characterize the role of neurotrophin receptors on macrophages, we investigated the ability of nerve growth factor (NGF) and its precursor, proNGF, to regulate human macrophage phenotype. The p75 neurotrophin receptor (p75(NTR)) and TrkA were concentrated within overlapping domains on membrane ruffles. NGF stimulation of macrophages increased membrane ruffling, calcium spiking, phagocytosis and growth factor secretion. In contrast, proNGF induced podosome formation, increased migration, suppressed calcium spikes and increased neurotoxin secretion. These results demonstrate opposing roles of NGF and proNGF in macrophage regulation providing new avenues for pharmacological intervention during neuroinflammation.
Collapse
|
9
|
Mukherjee A, Swarnakar S. Implication of matrix metalloproteinases in regulating neuronal disorder. Mol Biol Rep 2014; 42:1-11. [DOI: 10.1007/s11033-014-3752-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Lee H, Lee EJ, Song YS, Kim E. Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/γ-secretase. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130158. [PMID: 24298159 PMCID: PMC3843889 DOI: 10.1098/rstb.2013.0158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-term depression (LTD) reduces the functional strength of excitatory synapses through mechanisms that include the removal of AMPA glutamate receptors from the postsynaptic membrane. LTD induction is also known to result in structural changes at excitatory synapses, including the shrinkage of dendritic spines. Synaptic adhesion molecules are thought to contribute to the development, function and plasticity of neuronal synapses largely through their trans-synaptic adhesions. However, little is known about how synaptic adhesion molecules are altered during LTD. We report here that NGL-3 (netrin-G ligand-3), a postsynaptic adhesion molecule that trans-synaptically interacts with the LAR family of receptor tyrosine phosphatases and intracellularly with the postsynaptic scaffolding protein PSD-95, undergoes a proteolytic cleavage process. NGL-3 cleavage is induced by NMDA treatment in cultured neurons and low-frequency stimulation in brain slices and requires the activities of NMDA glutamate receptors, matrix metalloproteinases (MMPs) and presenilin/γ-secretase. These results suggest that NGL-3 is a novel substrate of MMPs and γ-secretase and that NGL-3 cleavage may regulate synaptic adhesion during LTD.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), , Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
11
|
Szepesi Z, Bijata M, Ruszczycki B, Kaczmarek L, Wlodarczyk J. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS One 2013; 8:e63314. [PMID: 23696812 PMCID: PMC3656002 DOI: 10.1371/journal.pone.0063314] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/02/2013] [Indexed: 11/28/2022] Open
Abstract
Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs), a family of extracellularly acting and Zn2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs) are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP) in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Department of Molecular and Cellular Neurobiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Bijata
- Department of Molecular and Cellular Neurobiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Blazej Ruszczycki
- Neurobiology Center, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jakub Wlodarczyk
- Department of Molecular and Cellular Neurobiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
12
|
Natarajan R, Harding JW, Wright JW. A role for matrix metalloproteinases in nicotine-induced conditioned place preference and relapse in adolescent female rats. J Exp Neurosci 2013; 7:1-14. [PMID: 25157203 PMCID: PMC4089657 DOI: 10.4137/jen.s11381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Reconfiguration of extracellular matrix proteins appears to be necessary for the synaptic plasticity that underlies memory consolidation. The primary candidates involved in controlling this process are a family of endopeptidases called matrix metalloproteinases (MMPs); however, the potential role of MMPs in nicotine addiction-related memories has not been adequately tested. Present results indicate transient changes in hippocampal MMP-2, -3, and -9 expression following context dependent learning of nicotine-induced conditioned place preference (CPP). Members of a CPP procedural control group also indicated similar MMP changes, suggesting that memory activation occurred in these animals as well. However, hippocampal MMP-9 expression was differentially elevated in members of the nicotine-induced CPP group on days 4 and 5 of training. Inhibition of MMPs using a broad spectrum MMP inhibitor (FN439) during nicotine-induced CPP training blocked the acquisition of CPP. Elevations in hippocampal and prefrontal cortex MMP-3 expression-but not MMP-2 and -9-accompanied reactivation of a previously learned drug related memory. Decreases in the actin regulatory cytoskeletal protein cortactin were measured in the HIP and PFC during the initial two days of acquisition of CPP; however, no changes were seen following re-exposure to the drug related environment. These results suggest that MMP-9 may be involved in facilitating the intracellular and extracellular events required for the synaptic plasticity underlying the acquisition of nicotine-induced CPP. Furthermore, MMP-3 appears to be important during re-exposure to the drug associated environment. However, rats introduced into the CPP apparatus and given injections of vehicle rather than nicotine during training also revealed a pattern of MMP expression similar to nicotine-induced CPP animals.
Collapse
Affiliation(s)
- Reka Natarajan
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Joseph W Harding
- Departments of Psychology, and Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA, USA
| | - John W Wright
- Departments of Psychology, and Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA, USA
| |
Collapse
|
13
|
Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 2012; 13:743-57. [PMID: 23047773 PMCID: PMC4900464 DOI: 10.1038/nrn3320] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biological Sciences, The Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
14
|
Conant K, Lim ST, Randall B, Maguire-Zeiss KA. Matrix metalloproteinase dependent cleavage of cell adhesion molecules in the pathogenesis of CNS dysfunction with HIV and methamphetamine. Curr HIV Res 2012; 10:384-91. [PMID: 22591362 PMCID: PMC6035363 DOI: 10.2174/157016212802138733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/15/2023]
Abstract
Physiologically appropriate levels of matrix metalloproteinases (MMPs) are likely important to varied aspects of CNS function. In particular, these enzymes may contribute to neuronal activity dependent synaptic plasticity and to cell mobility in processes including stem cell migration and immune surveillance. Levels of MMPs may, however, be substantially increased in the setting of HIV infection with methamphetamine abuse. Elevated MMP levels might in turn influence integrity of the blood brain barrier, as has been demonstrated in published work. Herein we suggest that elevated levels of MMPs can also contribute to microglial activation as well as neuronal and synaptic injury through a mechanism that involves cleavage of specific cell and synaptic adhesion molecules.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Research Building EP-16, 3970 Reservoir Rd, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
15
|
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 2012; 217:6-18. [PMID: 22626649 DOI: 10.1016/j.neuroscience.2012.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
Abstract
The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
Collapse
Affiliation(s)
- M D Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR 72205, USA
| | | |
Collapse
|
16
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 2010; 166:508-21. [PMID: 20045450 PMCID: PMC3535483 DOI: 10.1016/j.neuroscience.2009.12.061] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that can be released or activated in a neuronal activity dependent manner. Although pathologically elevated levels of MMPs may be synaptotoxic, physiologically appropriate levels of MMPs may instead enhance synaptic transmission. MMP inhibitors can block long term potentiation (LTP), and at least one family member can affect an increase in the volume of dendritic spines. While the mechanism by which MMPs affect these changes is not completely understood, one possibility is that the cleavage of specific synaptic cell adhesion molecules plays a role. In the present study, we have examined the ability of neuronal activity to stimulate rapid MMP dependent shedding of the intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule that is thought to inhibit the maturation and enlargement of dendritic spines. Since such cleavage would likely occur within minutes if it were relevant to a process such as LTP, we focused on post stimulus time points of 30 min or less. We show that NMDA can stimulate rapid shedding of ICAM-5 from cortical neurons in dissociated cell cultures and that such shedding is diminished by pretreatment of cultures with inhibitors that target MMP-3 and -9, proteases thought to influence synaptic plasticity. Additional studies suggest that MMP mediated cleavage of ICAM-5 occurs at amino acid 780, so that the major portion of the ectodomain is released. Since reductions in ICAM-5 have been linked to changes in dendritic spine morphology that are associated with LTP, we also examined the possibility that MMP dependent ICAM-5 shedding occurs following high frequency tetanic stimulation of murine hippocampal slices. Results show that the shedding of ICAM-5 occurs in association with LTP, and that both LTP and the associated ICAM-5 shedding are reduced when slices are pretreated with an MMP inhibitor. Together, these findings suggest that neuronal activity is linked to the shedding of a molecule that may inhibit dendritic spine enlargement and that MMPs can affect this change. While further studies will be necessary to determine the extent to which cleavage of ICAM-5 in particular contributes to MMP dependent LTP, our data support an emerging body of literature suggesting that MMPs are critical mediators of synaptic plasticity.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neurology, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Yue Wang
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD
| | - Arek Szklarczyk
- Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Amanda Dudak
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD
| | - Seung T. Lim
- Department of Neuroscience, Georgetown University, Washington, DC
| |
Collapse
|
18
|
Szklarczyk A, Conant K. Matrix metalloproteinases, synaptic injury, and multiple sclerosis. Front Psychiatry 2010; 1:130. [PMID: 21423441 PMCID: PMC3059646 DOI: 10.3389/fpsyt.2010.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/13/2010] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system in which immune mediated damage to myelin is characteristic. For an overview of this condition and its pathophysiology, please refer to one of many excellent published reviews (Sorensen and Ransohoff, 1998; Weiner, 2009). To follow, is a discussion focused on the possibility that synaptic injury occurs in at least a subset of patients, and that matrix metalloproteinases (MMPs) play a role in such.
Collapse
|
19
|
|