1
|
Yoshioka T, Yamada D, Hagiwara A, Kajino K, Iio K, Saitoh T, Nagase H, Saitoh A. Delta opioid receptor agonists activate PI3K-mTORC1 signaling in parvalbumin-positive interneurons in mouse infralimbic prefrontal cortex to exert acute antidepressant-lie effects. Mol Psychiatry 2025; 30:2038-2048. [PMID: 39643691 PMCID: PMC12015109 DOI: 10.1038/s41380-024-02814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/09/2024]
Abstract
The delta opioid receptor (DOP) is a promising target for novel antidepressants due to its potential for rapid action with minimal adverse effects; however, the functional mechanism underlying acute antidepressant actions remains elusive. We report that subcutaneous injection of the selective DOP agonist KNT-127 reduced immobility in the forced swimming test, and that this antidepressant-like response was reversed by intracerebroventricular injection of the selective mechanistic (or mammalian) target of rapamycin (mTOR) inhibitor rapamycin or the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. KNT-127 also alleviated social avoidance and reduced sucrose consumption (anhedonia) among chronic vicarious social defeat stress model mice, which were similarly reversed by PI3K and mTOR inhibitors. In addition, KNT-127 increased phosphorylation levels of the mTOR signaling-related proteins Akt and p70S6 kinase in medial prefrontal cortex as revealed by immunoblotting. In the forced swimming test, a microinfusion of KNT-127 and another DOP agonist SNC80 in the infralimbic prefrontal cortex (IL-PFC) attenuated the immobility, which were blocked by rapamycin and LY294002. Perfusion of KNT-127 onto IL-PFC slices increased miniature excitatory postsynaptic current frequency and reduced miniature inhibitory postsynaptic current frequency in pyramidal neurons as measured by whole-cell patch-clamping, and both responses were reversed by rapamycin. Imaging of brain slices from transgenic mice with DOP-promoter-driven green fluorescent protein revealed that most DOPs were expressed in parvalbumin-positive interneurons in the IL-PFC. These findings suggest that DOP agonists exert antidepressant-like actions by suppressing GABA release from parvalbumin-positive interneurons via the PI3K-Akt-mTORC1-p70S6 kinase pathway, thereby enhancing IL-PFC pyramidal neuron excitation.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akari Hagiwara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Keita Kajino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Keita Iio
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
2
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
3
|
Brinks AS, Carrica LK, Tagler DJ, Gulley JM, Juraska JM. Timing of Methamphetamine Exposure during Adolescence Differentially Influences Parvalbumin and Perineuronal Net Immunoreactivity in the Medial Prefrontal Cortex of Female, but Not Male, Rats. Dev Neurosci 2024; 47:27-39. [PMID: 38547851 PMCID: PMC11436475 DOI: 10.1159/000538608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons. METHODS In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed using immunofluorescent labeling within the mPFC. RESULTS METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV-expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences the development of inhibitory circuits in the female mPFC. CONCLUSIONS This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females. INTRODUCTION Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons. METHODS In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed using immunofluorescent labeling within the mPFC. RESULTS METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV-expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences the development of inhibitory circuits in the female mPFC. CONCLUSIONS This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.
Collapse
Affiliation(s)
- Amara S. Brinks
- Program in Neuroscience, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Lauren K. Carrica
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Dominic J. Tagler
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Joshua M. Gulley
- Program in Neuroscience, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Janice M. Juraska
- Program in Neuroscience, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
4
|
Brinks AS, Carrica LK, Tagler DJ, Gulley JM, Juraska JM. Timing of methamphetamine exposure during adolescence differentially influences parvalbumin and perineuronal net immunoreactivity in the medial prefrontal cortex of female, but not male, rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.25.554911. [PMID: 38464016 PMCID: PMC10925164 DOI: 10.1101/2023.08.25.554911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity and could influence the activity-dependent maturational process of these neurons. In the present study, we used male and female Sprague Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (EA; 30-38 days old), late adolescence (LA; 40-48 days old), or young adulthood (60-68 days old). One day following exposure, effects of METH on PV cell and PNN expression were assessed using immunofluorescent labeling within the mPFC. METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences development of inhibitory circuits in the female mPFC. This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.
Collapse
|
5
|
Komlao P, Kraiwattanapirom N, Promyo K, Hein ZM, Chetsawang B. Melatonin enhances the restoration of neurological impairments and cognitive deficits during drug withdrawal in methamphetamine-induced toxicity and endoplasmic reticulum stress in rats. Neurotoxicology 2023; 99:305-312. [PMID: 37979660 DOI: 10.1016/j.neuro.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Methamphetamine (METH) is a psychostimulant with a very high addiction rate. Prolonged use of METH has been observed as one of the root causes of neurotoxicity. Melatonin (Mel) has been found to have a significant role in METH-induced neurotoxicity. This study aimed to investigate the restorative effect of Mel on behavioral flexibility in METH-induced cognitive deficits. Male Sprague-Dawley rats were randomly assigned to be intraperitoneally injected with saline (control) or Meth at 5 mg/kg for 7 consecutive days. Then, METH injection was withdrawn and rats in each group were subcutaneously injected with saline or Mel at 10 mg/kg for 14 consecutive days. The stereotypic behavioral test and attentional set-shifting task (ASST) were used to evaluate neurological functions and cognitive flexibility, respectively. Rats developed abnormal features of stereotyped behaviors and deficits in cognitive flexibility after 7 days of METH administration. However, post-treatment with Mel for 14 days after METH withdrawal dramatically ameliorated the neurological and cognitive deficits in METH-treated rats. Blood biomarkers indicated METH-induced systemic low-grade inflammation. Moreover, METH-induced endoplasmic reticulum (ER) stress in the prefrontal cortex was diminished by melatonin supplementation. These findings might reveal the therapeutic potential of Mel in METH toxicity-induced neurological and cognitive deficits.
Collapse
Affiliation(s)
- Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, Netherlands
| | - Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zaw Myo Hein
- Basic Medical Sciences Department, College of Medicine and Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand.
| |
Collapse
|
6
|
Armenta-Resendiz M, Assali A, Tsvetkov E, Cowan CW, Lavin A. Repeated methamphetamine administration produces cognitive deficits through augmentation of GABAergic synaptic transmission in the prefrontal cortex. Neuropsychopharmacology 2022; 47:1816-1825. [PMID: 35788684 PMCID: PMC9372065 DOI: 10.1038/s41386-022-01371-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Methamphetamine (METH) abuse is associated with the emergence of cognitive deficits and hypofrontality, a pathophysiological marker of many neuropsychiatric disorders that is produced by altered balance of local excitatory and inhibitory synaptic transmission. However, there is a dearth of information regarding the cellular and synaptic mechanisms underlying METH-induced cognitive deficits and associated hypofrontal states. Using PV-Cre transgenic rats that went through a METH sensitization regime or saline (SAL) followed by 7-10 days of home cage abstinence combined with cognitive tests, chemogenetic experiments, and whole-cell patch recordings on the prelimbic prefrontal cortex (PFC), we investigated the cellular and synaptic mechanisms underlying METH-induce hypofrontality. We report here that repeated METH administration in rats produces deficits in working memory and increases in inhibitory synaptic transmission onto pyramidal neurons in the PFC. The increased PFC inhibition is detected by an increase in spontaneous and evoked inhibitory postsynaptic synaptic currents (IPSCs), an increase in GABAergic presynaptic function, and a shift in the excitatory-inhibitory balance onto PFC deep-layer pyramidal neurons. We find that pharmacological blockade of D1 dopamine receptor function reduces the METH-induced augmentation of IPSCs, suggesting a critical role for D1 dopamine signaling in METH-induced hypofrontality. In addition, repeated METH administration increases the intrinsic excitability of parvalbumin-positive fast spiking interneurons (PV + FSIs), a key local interneuron population in PFC that contributes to the control of inhibitory tone. Using a cell type-specific chemogenetic approach, we show that increasing PV + FSIs activity in the PFC is necessary and sufficient to cause deficits in temporal order memory similar to those induced by METH. Conversely, reducing PV + FSIs activity in the PFC of METH-exposed rats rescues METH-induced temporal order memory deficits. Together, our findings reveal that repeated METH exposure increases PFC inhibitory tone through a D1 dopamine signaling-dependent potentiation of inhibitory synaptic transmission, and that reduction of PV + FSIs activity can rescue METH-induced cognitive deficits, suggesting a potential therapeutic approach to treating cognitive symptoms in patients suffering from METH use disorder.
Collapse
Affiliation(s)
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
7
|
The effect of self-administered methamphetamine on GABAergic interneuron populations and functional connectivity of the nucleus accumbens and prefrontal cortex. Psychopharmacology (Berl) 2022; 239:2903-2919. [PMID: 35920922 PMCID: PMC9385811 DOI: 10.1007/s00213-022-06175-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Methamphetamine (METH, "ice") is a potent and addictive psychostimulant. Abuse of METH perturbs neurotransmitter systems and induces neurotoxicity; however, the neurobiological mechanisms which underlie addiction to METH are not fully understood, limiting the efficacy of available treatments. Here we investigate METH-induced changes to neuronal nitric oxide synthase (nNOS), parvalbumin and calretinin-expressing GABAergic interneuron populations within the nucleus accumbens (NAc), prefrontal cortex (PFC) and orbitofrontal cortex (OFC). We hypothesise that dysfunction or loss of these GABAergic interneuron populations may disrupt the excitatory/inhibitory balance within the brain. METHODS Male Long Evans rats (N = 32) were trained to lever press for intravenous METH or received yoked saline infusions. Following 14 days of behavioural extinction, animals were given a non-contingent injection of saline or METH (1 mg/kg, IP) to examine drug-primed reinstatement to METH-seeking behaviours. Ninety minutes post-IP injection, animals were culled and brain sections were analysed for Fos, nNOS, parvalbumin and calretinin immunoreactivity in eight distinct subregions of the NAc, PFC and OFC. RESULTS METH exposure differentially affected GABAergic populations, with METH self-administration increasing nNOS immunoreactivity at distinct locations in the prelimbic cortex and decreasing parvalbumin immunoreactivity in the NAc. METH self-administration triggered reduced calretinin immunoreactivity, whilst acute METH administration produced a significant increase in calretinin immunoreactivity. As expected, non-contingent METH-priming treatment increased Fos immunoreactivity in subregions of the NAc and PFC. CONCLUSION Here we report that METH exposure in this model may alter the function of GABAergic interneurons in more subtle ways, such as alterations in neuronal firing or synaptic connectivity.
Collapse
|
8
|
Kuiper LB, Lucas KA, Mai V, Coolen LM. Enhancement of Drug Seeking Following Drug Taking in a Sexual Context Requires Anterior Cingulate Cortex Activity in Male Rats. Front Behav Neurosci 2020; 14:87. [PMID: 32670029 PMCID: PMC7330085 DOI: 10.3389/fnbeh.2020.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Individual variance in vulnerability to develop addictions is influenced by social factors. Specifically, drug-taking in a sexual context appears to enhance further drug-seeking behavior in human users, as these users identify the effects of drugs to enhance sexual pleasure as a primary reason for continued drug use. Methamphetamine (Meth) is commonly used in this context. Similarly, male rats that self-administered Meth immediately followed by sexual behavior display enhanced drug-seeking behavior, including attenuation of extinction and increased reinstatement to seeking of Meth-associated cues. Hence, drug-taking in a sexual context enhances vulnerability for addiction. However, the neural mechanisms by which this occurs are unknown. Here the hypothesis was tested that medial prefrontal cortex is essential for this effect of Meth and sex when experienced concurrently. First it was shown that CaMKII neurons in the anterior cingulate area (ACA) were co-activated by both Meth and sex. Next, chemogenetic inactivation of ACA CaMKII cells using AAV5-CaMKIIa-hM4Di-mCherry was shown not to affect Meth-induced locomotor activity or sexual behavior. Subsequently, chemogenetic inactivation of ACA CaMKII neurons during Meth self-administration followed by sexual behavior was shown to prevent the effects of Meth and sex on enhanced reinstatement of Meth-seeking but did not affect enhanced drug-seeking during extinction tests. These results indicate that ACA CaMKII cell activation during exposure to Meth in a sexual context plays an essential role in the subsequent enhancement of drug-seeking during reinstatement tests.
Collapse
Affiliation(s)
- Lindsey B Kuiper
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kathryn A Lucas
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vy Mai
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
9
|
Nudmamud-Thanoi S, Veerasakul S, Thanoi S. Pharmacogenetics of drug dependence: Polymorphisms of genes involved in GABA neurotransmission. Neurosci Lett 2020; 726:134463. [PMID: 31472163 DOI: 10.1016/j.neulet.2019.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
GABA plays a critical role in brain reward pathways via projecting signals from the ventral tegmental area to the nucleus accumbens. Activation of the reward circuitry by abused drugs induces abnormalities of GABA neurotransmission. Recent studies have indicated the involvement of GABAergic genes in the mechanism of drug dependence and its consequences. The aim of this paper is to provide a brief review of association studies of GABA-related genes with drug dependence. Single nucleotide polymorphisms (SNPs) in genes involved in GABA neurotransmission such as GABA receptor genes (GABR, GABBR), and glutamic acid decarboxylase genes (GAD) are the focus of this review as potential risk factors for drug dependence and its consequence psychosis.
Collapse
Affiliation(s)
- Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Siriluk Veerasakul
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Department of Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
10
|
Disinhibition of the prefrontal cortex leads to brain-wide increases in neuronal activation that are modified by spatial learning. Brain Struct Funct 2018; 224:171-190. [DOI: 10.1007/s00429-018-1769-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
|
11
|
Riordan AJ, Schaler AW, Fried J, Paine TA, Thornton JE. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action. Psychoneuroendocrinology 2018. [PMID: 29529524 DOI: 10.1016/j.psyneuen.2018.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABAA agonist, GABAA antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABAA agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABAA receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them.
Collapse
Affiliation(s)
- Alexander J Riordan
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Ari W Schaler
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Jenny Fried
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Tracie A Paine
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice E Thornton
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
12
|
Hankosky ER, Westbrook SR, Haake RM, Willing J, Raetzman LT, Juraska JM, Gulley JM. Age- and sex-dependent effects of methamphetamine on cognitive flexibility and 5-HT 2C receptor localization in the orbitofrontal cortex of Sprague-Dawley rats. Behav Brain Res 2018; 349:16-24. [PMID: 29715538 DOI: 10.1016/j.bbr.2018.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
Adolescents and females experience worse outcomes of drug use compared to adults and males. This could result from age- and sex-specific consequences of drug exposure on brain function and cognitive behavior. In the current study, we examined whether a history of intravenous methamphetamine (METH) self-administration impacted cognitive flexibility and 5-HT2CR localization in the orbitofrontal cortex (OFC) in an age- and sex-dependent manner. Strategy shifting was assessed in male and female Sprague-Dawley rats that had self-administered METH (0.08 mg/kg/inf) or received non-contingent infusions of saline during periadolescence or young adulthood. After all rats reached adulthood, they were tested in an operant strategy shifting task and their brains were subsequently analyzed using immunofluorescence to quantify co-localization of 5-HT2C receptors with parvalbumin interneurons in the OFC. We found that adolescent-onset females were the only group impaired during discrimination and reversal learning, but they did not exhibit changes in localization of 5-HT2C receptors. In contrast, adult-onset males exhibited a significant increase in co-localization of 5-HT2C receptors within parvalbumin interneurons in the left hemisphere of the OFC. These studies reveal that age and sex differences in drug-induced deficits in reversal learning and 5-HT2CR co-localization with parvalbumin interneurons are dissociable and can manifest independently. In addition, these data highlight the potential for certain treatment approaches to be more suitable in some populations compared to others, such as alleviating drug-induced cognitive deficits as a focus for treatment in adolescent females.
Collapse
Affiliation(s)
- Emily R Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40536, USA.
| | - Sara R Westbrook
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA.
| | - Rachel M Haake
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA.
| | - Jari Willing
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA.
| | - Lori T Raetzman
- Neuroscience Program, University of Illinois, Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA; Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| | - Janice M Juraska
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| | - Joshua M Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Wearne TA, Parker LM, Franklin JL, Goodchild AK, Cornish JL. Behavioral sensitization to methamphetamine induces specific interneuronal mRNA pathology across the prelimbic and orbitofrontal cortices. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:42-48. [PMID: 28351548 DOI: 10.1016/j.pnpbp.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Schizophrenia is associated with significant pathophysiological changes to interneurons within the prefrontal cortex (PFC), with mRNA and protein changes associated with the GABA network localized to specific interneuron subtypes. Methamphetamine is a commonly abused psychostimulant that can induce chronic psychosis and symptoms that are similar to schizophrenia, suggesting that chronic METH induced psychosis may be associated with similar brain pathology to schizophrenia in the PFC. The aim of this study, therefore, was to examine mRNA expression of interneuron markers across two regions of the PFC (prelimbic (PRL) and orbitofrontal cortices (OFC)) following METH sensitization, an animal model of METH psychosis. We also studied the association between GABA mRNA expression and interneuronal mRNA expression to identify whether particular changes to the GABA network could be localized to a specific inhibitory cellular phenotype. METH sensitization increased the transcriptional expression of calbindin, calretinin, somatostatin, cholecyctokinin and vasoactive intestinal peptide in the PRL while parvalbumin, calbindin, cholectokinin and vasoactive intestinal peptide were upregulated in the OFC. Based on our previous findings, we also found significant correlations between GAD67, GAT1 and parvalbumin while GAD67, GAD65 and GAT1 were positively correlated with cholecystokinin in the PRL of METH sensitized rats. Within the OFC, the expression of GABAAα1 was positively correlated with somatostatin while GABAAα5 was negatively associated with somatostatin and calbindin. These findings suggest that METH sensitization differentially changes the expression of mRNAs encoding for multiple peptides and calcium binding proteins across the PRL and the OFC. Furthermore, these findings support that changes to the GABA network may also occur within specific cell types. These results, therefore, provide the first evidence that METH sensitization mediates differential interneuronal pathology across the PRL and OFC and such changes could have profound consequences on behavior and cognitive output.
Collapse
Affiliation(s)
- Travis A Wearne
- Department of Psychology, Faculty of Human Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Lindsay M Parker
- Department of Biomedical Science, Faculty of Medicine and Health Science, Macquarie University, Sydney, NSW, Australia; ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, Australia
| | - Jane L Franklin
- Department of Psychology, Faculty of Human Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Ann K Goodchild
- Department of Biomedical Science, Faculty of Medicine and Health Science, Macquarie University, Sydney, NSW, Australia
| | - Jennifer L Cornish
- Department of Psychology, Faculty of Human Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia; ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Auger ML, Floresco SB. Prefrontal cortical GABAergic and NMDA glutamatergic regulation of delayed responding. Neuropharmacology 2017; 113:10-20. [DOI: 10.1016/j.neuropharm.2016.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023]
|
15
|
Urban KR, Li YC, Xing B, Gao WJ. A Clinically-Relevant Dose of Methylphenidate Enhances Synaptic Inhibition in the Juvenile Rat Prefrontal Cortex. ACTA ACUST UNITED AC 2017; 2:69-77. [PMID: 30221243 PMCID: PMC6136665 DOI: 10.17756/jrdsas.2016-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Methylphenidate (MPH) is perhaps the most commonly prescribed psychoactive substance for young children and adolescents; however, its effects on the immature brain are not well understood. MPH is increasingly abused by adolescents and prescriptions are being issued to increasingly younger children without rigorous psychological testing, raising the potential for misdiagnosis; it is therefore crucial to understand how this drug might impact a healthy, developing brain. Recently, we have shown that a clinically-relevant dose of MPH depresses the activity of pyramidal neurons in the prefrontal cortex of normal juvenile rats, but its effects on inhibitory synaptic transmission remain to be explored. We therefore recorded spontaneous (s), miniature (m), and evoked (e) inhibitory postsynaptic currents (IPSCs) in layer 5 pyramidal neurons in juvenile rat prefrontal cortex. We found a dose-dependent effect of MPH on sIPSC frequency but not amplitude, where 0.3 mg/kg significantly decreased frequency, but 1 mg/kg significantly increased frequency. Moreover, mIPSCs were not affected by either dose of MPH, whereas the amplitudes, as well as paired-pulse ratios and coefficient of variations of evoked IPSCs were significantly increased after MPH treatment, indicating a presynaptic action. Tonic GABA current was also not affected by MPH treatment. Taken together, these results suggest that MPH administration to a healthy juvenile may enhance excitation of GABAergic interneurons; thus shifting the excitation-inhibition balance in the prefrontal cortex towards inhibition, and depressing overall prefrontal cortical activity. Our findings also indicate that the adolescent brain is more sensitive to MPH than previously thought, and dose ranges need to be reconsidered for age as well as size.
Collapse
Affiliation(s)
- Kimberly R Urban
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.,Department of General Anesthesia, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
16
|
GABAergic mRNA expression is differentially expressed across the prelimbic and orbitofrontal cortices of rats sensitized to methamphetamine: Relevance to psychosis. Neuropharmacology 2016; 111:107-118. [PMID: 27580848 DOI: 10.1016/j.neuropharm.2016.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022]
Abstract
Psychotic disorders, such as schizophrenia, are characterized by prevalent and persistent executive deficits that are believed to be the result of dysfunctional inhibitory gamma-aminobutyric acid (GABA) processing of the prefrontal cortex (PFC). Methamphetamine (METH) is a commonly used psychostimulant that can induce psychotic and cognitive symptoms that are indistinguishable to schizophrenia, suggesting that METH-induced psychosis may have a similar GABAergic profile of the PFC. As the PFC consists of multiple subregions, the aim of the current study was to investigate changes to GABAergic mRNA expression in the prelimbic (PRL) and orbitofrontal (OFC) cortices of the PFC in rats sensitized to repeated METH administration. Male Sprague Dawley rats underwent daily METH or saline injections for 7 days. Following 14 days of withdrawal, rats were challenged with acute METH administration, RNA was isolated from the PRL and OFC and quantitative PCR was used to compare the relative expression of GABA enzymes, transporters, metabolites and receptor subunits. GAD67, GAD65, GAT1, GAT3, VGAT and GABAT mRNA expression were upregulated in the PRL. Ionotropic GABAA receptor subunits α1, α3, α5 and β2 were specifically upregulated in the OFC. These findings suggest that alterations to GABAergic mRNA expression following sensitization to METH are biologically dissociated between the OFC and PRL, suggesting that GABAergic gene expression is significantly altered following chronic METH exposure in a brain-region and GABA-specific manner. These changes may lead to profound consequences on central inhibitory mechanisms of localized regions of the PFC and may underpin common behavioral phenotypes seen across psychotic disorders.
Collapse
|
17
|
Fachim HA, Srisawat U, Dalton CF, Harte MK, Marsh S, Neill JC, Reynolds GP. Subchronic administration of phencyclidine produces hypermethylation in the parvalbumin gene promoter in rat brain. Epigenomics 2016; 8:1179-83. [PMID: 27529801 DOI: 10.2217/epi-2016-0050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A deficit in parvalbumin neurons is found in schizophrenia and several animal models of the disease. In this preliminary study, we determined whether one such model, phencyclidine (PCP) administration, results in changes in DNA methylation in the rat Pvalb promoter. MATERIALS & METHODS DNA from hippocampus and prefrontal cortex from rats, which 6 weeks previously received either 2 mg/kg PCP or vehicle for 7 days, underwent bisulphite pyrosequencing to determine methylation. RESULTS PCP administration induced significantly greater methylation at one of two Pvalb CpG sites in both prefrontal cortex and hippocampus, while no significant difference was found in long interspersed nucleotide element-1, a global measure of DNA methylation. CONCLUSION Subchronic PCP administration results in a specific hypermethylation in the Pvalb promoter which may contribute to parvalbumin deficits in this animal model of psychosis.
Collapse
Affiliation(s)
- Helene A Fachim
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Umarat Srisawat
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Michael K Harte
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | - Samuel Marsh
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | - Joanna C Neill
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| |
Collapse
|
18
|
Effect of Methamphetamine Exposure on Expression of Calcium Binding Proteins in Rat Frontal Cortex and Hippocampus. Neurotox Res 2016; 30:427-33. [DOI: 10.1007/s12640-016-9628-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 11/26/2022]
|
19
|
Kang S, Paul K, Hankosky ER, Cox CL, Gulley JM. D1 receptor-mediated inhibition of medial prefrontal cortex neurons is disrupted in adult rats exposed to amphetamine in adolescence. Neuroscience 2016; 324:40-9. [PMID: 26946269 DOI: 10.1016/j.neuroscience.2016.02.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 02/03/2023]
Abstract
Amphetamine (AMPH) exposure leads to changes in behavior and dopamine receptor function in the prefrontal cortex (PFC). Since dopamine plays an important role in regulating GABAergic transmission in the PFC, we investigated if AMPH exposure induces long-lasting changes in dopamine's ability to modulate inhibitory transmission in the PFC as well as whether the effects of AMPH differed depending on the age of exposure. Male Sprague-Dawley rats were given saline or 3 mg/kg AMPH (i.p.) repeatedly during adolescence or adulthood and following a withdrawal period of up to 5 weeks (Experiment 1) or up to 14 weeks (Experiment 2), they were sacrificed for in vitro whole-cell recordings in layer V/VI of the medial PFC. We found that in brain slices from either adolescent- or adult-exposed rats, there was an attenuation of dopamine-induced increases in inhibitory synaptic currents in pyramidal cells. These effects did not depend on age of exposure, were mediated at least partially by a reduced sensitivity of D1 receptors in AMPH-treated rats, and were associated with an enhanced behavioral response to the drug in a separate group of rats given an AMPH challenge following the longest withdrawal period. Together, these data reveal a prolonged effect of AMPH exposure on medial PFC function that persisted for up to 14 weeks in adolescent-exposed animals. These long-lasting neurophysiological changes may be a contributing mechanism to the behavioral consequences that have been observed in those with a history of amphetamine abuse.
Collapse
Affiliation(s)
- S Kang
- Neuroscience Program, University of Illinois, Urbana-Champaign, USA
| | - K Paul
- Neuroscience Program, University of Illinois, Urbana-Champaign, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, USA; Beckman Institute for Advanced Science, University of Illinois, Urbana-Champaign, USA
| | - E R Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign, USA
| | - C L Cox
- Neuroscience Program, University of Illinois, Urbana-Champaign, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, USA; Department of Pharmacology, University of Illinois, Urbana-Champaign, USA; Beckman Institute for Advanced Science, University of Illinois, Urbana-Champaign, USA.
| | - J M Gulley
- Neuroscience Program, University of Illinois, Urbana-Champaign, USA; Department of Psychology, University of Illinois, Urbana-Champaign, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
20
|
Tse MT, Piantadosi PT, Floresco SB. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry 2015; 77:929-39. [PMID: 25442792 DOI: 10.1016/j.biopsych.2014.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia.
Collapse
Affiliation(s)
- Maric T Tse
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick T Piantadosi
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan B Floresco
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Kongsui R, Beynon SB, Johnson SJ, Walker FR. Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. J Neuroinflammation 2014; 11:182. [PMID: 25343964 PMCID: PMC4213482 DOI: 10.1186/s12974-014-0182-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
Background Microglial morphology within the healthy brain has been the subject of a number of observational studies. These have suggested that microglia may consist of separate classes, which possess substantially different morphological features. Critically, there have been no systematic quantitative studies of microglial morphology within the healthy brain. Methods We examined microglial cells within the adult rat prefrontal cortex. At high magnification, digital reconstructions of cells labelled with the microglial-specific marker ionized calcium-binding adapter molecule-1 (Iba-1) were made in each of the cortical layers. These reconstructions were subsequently analyzed to determine the convex hull area of the cells, their somal perimeter, the length of processes, the number of processes, the extent of process branching and the volume of processes. We additionally examined whether cells’ morphological features were associated with cell size or numerical density. Results Our analysis indicated that while there was substantial variability in the size of cells within the prefrontal cortex, cellular morphology was extremely consistent within each of the cortical layers. Conclusions Our results provide quantitative confirmation that microglia are largely homogenous in the uninjured rodent prefrontal cortex.
Collapse
|
22
|
Gaykema RPA, Nguyen XMT, Boehret JM, Lambeth PS, Joy-Gaba J, Warthen DM, Scott MM. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior. Front Neuroanat 2014; 8:60. [PMID: 25071465 PMCID: PMC4076747 DOI: 10.3389/fnana.2014.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/12/2014] [Indexed: 02/03/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular and prelimbic/anterior cingulate subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that select activation of these cell types may be required to support high cognitive demand states such as observed during exploration while being dispensable during the ingestion of freely available food.
Collapse
Affiliation(s)
- Ronald P A Gaykema
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville VA, USA
| | - Xuan-Mai T Nguyen
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville VA, USA
| | - Jessica M Boehret
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville VA, USA
| | - Philip S Lambeth
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville VA, USA
| | - Jonathan Joy-Gaba
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville VA, USA
| | - Daniel M Warthen
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville VA, USA
| | - Michael M Scott
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville VA, USA
| |
Collapse
|
23
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
24
|
Velázquez-Sánchez C, García-Verdugo JM, Murga J, Canales JJ. The atypical dopamine transport inhibitor, JHW 007, prevents amphetamine-induced sensitization and synaptic reorganization within the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:73-80. [PMID: 23385166 DOI: 10.1016/j.pnpbp.2013.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 11/17/2022]
Abstract
Benztropine (BZT) analogs, a family of agents with high affinity for the dopamine transporter have been postulated as potential treatments in stimulant abuse due to their ability to attenuate a wide range of effects evoked by psychomotor stimulants such as cocaine and amphetamine (AMPH). Repeating administration of drugs, including stimulants, can result in behavioral sensitization, a progressive increase in their psychomotor activating effects. We examined in mice the sensitizing effects and the neuroplasticity changes elicited by chronic AMPH exposure, and the modulation of these effects by the BZT derivative and atypical dopamine uptake inhibitor, JHW007, a candidate medication for stimulant abuse. The results indicated that JHW007 did not produce sensitized locomotor activity when given alone but prevented the sensitized motor behavior induced by chronic AMPH administration. Morphological analysis of medium spiny neurons of the nucleus accumbens revealed that JHW 007 prevented the neuroadaptations induced by chronic AMPH exposure, including increments in dendritic arborization, lengthening of dendritic processes and increases in spine density. Furthermore, data revealed that AMPH produced an increase in the density of asymmetric, possibly glutamatergic synapses in the nucleus accumbens, an effect that was also blocked by JHW007 pretreatment. The present observations demonstrate that JHW007 is able to prevent not only AMPH-induced behavioral sensitization but also the long-term structural changes induced by chronic AMPH in the nucleus accumbens. Such findings support the development and evaluation of BZT derivatives as possible leads for treatment in stimulant addiction.
Collapse
Affiliation(s)
- Clara Velázquez-Sánchez
- Behavioural Neuroscience, Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
25
|
Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ, Walker FR. Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 2013; 126:75-91. [PMID: 23512378 DOI: 10.1007/s00401-013-1102-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Chronic stress is well recognized to decrease the number of GFAP⁺ astrocytes within the prefrontal cortex (PFC). Recent research, however, has suggested that our understanding of how stress alters astrocytes may be incomplete. Specifically, chronic stress has been shown to induce a unique form of microglial remodelling, but it is not yet clear whether astrocytes also undergo similar structural modifications. Such alterations may be significant given the role of astrocytes in modulating synaptic function. Accordingly, in the current study we have examined changes in astrocyte morphology following exposure to chronic stress in adult rats, using three-dimensional digital reconstructions of astrocytes. Our analysis indicated that chronic stress produced profound atrophy of astrocyte process length, branching and volume. We additionally examined changes in astrocyte-specific S100β, which are both a putative astrocyte marker and a protein whose expression is associated with astrocyte distress. While we found that S100β levels were increased by stress, this increase was not correlated with atrophy. We further established that while chronic stress was associated with a decrease in astrocyte numbers when GFAP labelling was used as a marker, we could find no evidence of a decrease in the total number of cells, based on Nissl staining, or in the number of S100β⁺ cells. This finding suggests that chronic stress may not actually reduce astrocyte numbers and may instead selectively decrease GFAP expression. The results of the current study are significant as they indicate stress-induced astrocyte-mediated disturbances may not be due to a loss of cells but rather due to significant remodeling of the astrocyte network.
Collapse
|
26
|
O’Donnell P. Cortical interneurons, immune factors and oxidative stress as early targets for schizophrenia. Eur J Neurosci 2012; 35:1866-70. [DOI: 10.1111/j.1460-9568.2012.08130.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex 2012; 23:1784-97. [PMID: 22710611 DOI: 10.1093/cercor/bhs151] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recently, it has been discovered that the working memory deficits induced by exposure to chronic stress can be prevented by treating stressed animals with minocycline, a putative inhibitor of microglial activity. One of the pressing issues that now requires clarification is exactly how exposure to chronic stress modifies microglial morphology, this being a significant issue as microglial morphology is tightly coupled with their function. To examine how chronic stress alters microglial morphology, we digitally reconstructed microglia within the rat medial prefrontal cortex. Our analysis revealed that stress increased the internal complexity of microglia, enhancing ramification (i.e. branching) without altering the overall area occupied by the cell and that this effect was more pronounced in larger cells. We subsequently determined that minocycline treatment largely abolished the pro-ramifying effects of stress. With respect to mechanisms, we could not find any evidence of increased inflammation or neurodegeneration (interleukin-1β, MHC-II, CD68, terminal deoxynucleotidyl transferase dUTP nick end labeling, and activated caspase-3). We did, however, find that chronic stress markedly increased the expression of β1-integrin (CD29), a protein previously implicated in microglial ramification. Together, these findings highlight that increased ramification of microglia may represent an important neurobiological mechanism through which microglia mediate the behavioral effects of chronic psychological stress.
Collapse
Affiliation(s)
- Madeleine Hinwood
- Laboratory of Affective Neuroscience and Neuroimmunology, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Tse MTL, Cantor A, Floresco SB. Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning. J Neurosci 2011; 31:11282-94. [PMID: 21813688 PMCID: PMC6623364 DOI: 10.1523/jneurosci.1810-11.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/24/2011] [Accepted: 06/16/2011] [Indexed: 01/02/2023] Open
Abstract
Repeated exposure to psychostimulants such as amphetamine (AMPH) disrupts cognitive and behavioral processes mediated by the medial prefrontal cortical (mPFC) and basolateral amygdala (BLA). The present study investigated the effects of repeated AMPH exposure on the neuromodulatory actions of dopamine (DA) on BLA-mPFC circuitry and cognitive/emotional processing mediated by these circuits. Rats received five AMPH (2 mg/kg) or saline injections (controls) over 10 d, followed by 2-4 week drug washout. In vivo neurophysiological extracellular recordings in urethane-anesthetized rats were used to obtain data from mPFC neurons that were either inhibited or excited by BLA stimulation. In controls, acute AMPH attenuated BLA-evoked inhibitory or excitatory responses; these effects were mimicked by selective D(2) or D(1) agonists, respectively. However, in AMPH-treated rats, the ability of these dopaminergic manipulations to modulate BLA-driven decreases/increases in mPFC activity was abolished. Repeated AMPH also blunted the excitatory effects of ventral tegmental area stimulation on mPFC neural firing. Behavioral studies assessed the effect of repeated AMPH on decision making with conditioned punishment, a process mediated by BLA-mPFC circuitry and mesocortical DA. These treatments impaired the ability of rats to use conditioned aversive stimuli (footshock-associated cue) to guide the direction of instrumental responding. Collectively, these data suggest that repeated AMPH exposure can lead to persistent disruption of dopaminergic modulation of BLA-mPFC circuitry, which may underlie impairments in cognitive/emotional processing observed in stimulant abusers. Furthermore, they suggest that impairments in decision making guided by aversive stimuli observed in stimulant abusers may be the result of repeated drug exposure.
Collapse
Affiliation(s)
- Maric T. L. Tse
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Anna Cantor
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Stan B. Floresco
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| |
Collapse
|
29
|
Fanous S, Lacagnina MJ, Nikulina EM, Hammer RP. Sensitized activation of Fos and brain-derived neurotrophic factor in the medial prefrontal cortex and ventral tegmental area accompanies behavioral sensitization to amphetamine. Neuropharmacology 2011; 61:558-64. [PMID: 21570990 DOI: 10.1016/j.neuropharm.2011.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Behavioral sensitization, or augmented locomotor response to successive drug exposures, results from neuroadaptive changes contributing to addiction. Both the medial prefrontal cortex (mPFC) and ventral tegmental area (VTA) influence behavioral sensitization and display increased immediate-early gene and BDNF expression after psychostimulant administration. Here we investigate whether mPFC neurons innervating the VTA exhibit altered Fos or BDNF expression during long-term sensitization to amphetamine. Male Sprague-Dawley rats underwent unilateral intra-VTA infusion of the retrograde tracer Fluorogold (FG), followed by 5 daily injections of either amphetamine (2.5 mg/kg, i.p.) or saline vehicle. Four weeks later, rats were challenged with amphetamine (1.0 mg/kg, i.p.) or saline (1.0 mL/kg, i.p.). Repeated amphetamine treatment produced locomotor sensitization upon drug challenge. Two hours later, rats were euthanized, and mPFC sections were double-immunolabeled for either Fos-FG or Fos-BDNF. Tissue from the VTA was also double-immunolabeled for Fos-BDNF. Amphetamine challenge increased Fos and BDNF expression in the mPFC regardless of prior drug experience, and further augmented mPFC BDNF expression in sensitized rats. Similarly, more Fos-FG and Fos-BDNF double-labeling was observed in the mPFC of sensitized rats compared to drug-naïve rats after amphetamine challenge. Repeated amphetamine treatment also increased VTA BDNF, while both acute and repeated amphetamine treatment increased Fos and Fos-BDNF co-labeling, an effect enhanced in sensitized rats. These findings point to a role of cortico-tegmental BDNF in long-term amphetamine sensitization.
Collapse
Affiliation(s)
- Sanya Fanous
- Department of Pharmacology, Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | |
Collapse
|
30
|
Enomoto T, Tse MT, Floresco SB. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry 2011; 69:432-41. [PMID: 21146155 DOI: 10.1016/j.biopsych.2010.09.038] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. METHODS We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. RESULTS Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. CONCLUSIONS These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia.
Collapse
Affiliation(s)
- Takeshi Enomoto
- Department of Psychology and Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|
31
|
Gottesmann C. The development of the science of dreaming. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 92:1-29. [PMID: 20870060 DOI: 10.1016/s0074-7742(10)92001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the main peripheral features of dreaming were identified two millennia ago, the neurobiological study of the basic and higher integrated processes underlying rapid eye movement (REM) sleep only began about 70 years ago. Today, the combined contributions of the successive and complementary methods of electrophysiology, imaging, pharmacology, and neurochemistry have provided a good level of knowledge of the opposite but complementary activating and inhibitory processes which regulate waking mentation and which are disturbed during REM sleep, inducing a schizophrenic-like mental activity.
Collapse
Affiliation(s)
- Claude Gottesmann
- Départment de Biologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
32
|
Perturbations in different forms of cost/benefit decision making induced by repeated amphetamine exposure. Psychopharmacology (Berl) 2009; 205:189-201. [PMID: 19365622 DOI: 10.1007/s00213-009-1529-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/22/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Psychostimulant abuse has been linked to impairments in cost-benefit decision making. OBJECTIVE We assessed the effects of repeated amphetamine (AMPH) treatment in rodents on two distinct forms of decision making. MATERIALS AND METHODS Separate groups of rats were trained for 26 days on either a probabilistic (risk) or effort-discounting task, each consisting of four discrete blocks of ten choice trials. One lever always delivered a smaller reward (one or two pellets), whereas another lever delivered a four-pellet reward. For risk-discounting, the probability of receiving the larger reward decreased across trial blocks (100-12.5%), whereas on the effort task, four pellets could be obtained after a ratio of presses that increased across blocks (2-20). After training, rats received 15 saline or AMPH injections (escalating from 1 to 5 mg/kg) and were then retested during acute and long-term withdrawal. RESULTS Repeated AMPH administration increased risky choice 2-3 weeks after drug exposure, whereas these treatments did not alter effort-based decision making in a separate group of animals. However, prior AMPH exposure sensitized the effects of acute AMPH on both forms of decision making, whereby lower doses were effective at inducing "risky" and "lazy" patterns of choice. CONCLUSIONS Repeated AMPH exposure leads to relatively long-lasting increases in risky choice, as well as sensitization to the effects of acute AMPH on different forms of cost/benefit decision making. These findings suggest that maladaptive decision-making processes exhibited by psychostimulant abusers may be caused in part by repeated drug exposure.
Collapse
|
33
|
Morshedi MM, Rademacher DJ, Meredith GE. Increased synapses in the medial prefrontal cortex are associated with repeated amphetamine administration. Synapse 2009; 63:126-35. [PMID: 19016489 DOI: 10.1002/syn.20591] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Psychostimulant drug experience leads not only to long-lasting changes in behavior but also modifications in the activity and morphology of pyramidal neurons in the medial prefrontal cortex (mPFC). The objective of this study was to establish whether repeated treatment of rats with amphetamine (AMPH) is accompanied by changes in the pattern or types of synapses in the mPFC and, specifically, onto neurons that project to the lateral hypothalamus, where our earlier work has shown increased markers of neuronal activity after repeated AMPH treatment (Morshedi and Meredith [2008] Psychopharmacology (Berl) 197:179-189). Rats were treated with a behaviorally sensitizing regimen of AMPH, following which synapses in the infralimbic and prelimbic cortices of the mPFC, were analyzed with unbiased stereology (physical disector and electron microscopy). All synapses were counted and their targets were identified by standard methodological criteria. Repeated AMPH administration was associated with a significant increase in the number of asymmetric axospinous synapses, no change in axodendritic or axosomatic contacts, and no change in the total number of synapses on corticolateral hypothalamic pyramidal neurons compared to vehicle-treated rats. Therefore, behavioral sensitization as a result of repeated exposure to AMPH is accompanied by the increased formation of spine, but not dendritic, synapses onto pyramidal neurons in the mPFC.
Collapse
Affiliation(s)
- Maud M Morshedi
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
34
|
Repeated amphetamine administration induces Fos in prefrontal cortical neurons that project to the lateral hypothalamus but not the nucleus accumbens or basolateral amygdala. Psychopharmacology (Berl) 2008; 197:179-89. [PMID: 18080115 PMCID: PMC2553393 DOI: 10.1007/s00213-007-1021-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 11/09/2007] [Indexed: 02/04/2023]
Abstract
RATIONALE The development of sensitization to amphetamine (AMPH) is dependent on increases in excitatory outflow from the medial prefrontal cortex (mPFC) to subcortical centers. These projections are clearly important for the progressive enhancement of the behavioral response during drug administration that persists through withdrawal. OBJECTIVES The objective of this study was to identify the mPFC subcortical pathway(s) activated by a sensitizing regimen of AMPH. MATERIALS AND METHODS Using retrograde labeling techniques, Fos activation was evaluated in the predominant projection pathways of the mPFC of sensitized rats after a challenge injection of AMPH. RESULTS There was a significant increase in Fos-immunoreactive cells in the mPFC, nucleus accumbens (NAc), basolateral amygdala (BLA), and lateral hypothalamus (LH) of rats treated repeatedly with AMPH when compared to vehicle-treated controls. The mPFC pyramidal neurons that project to the LH but not the NAc or BLA show a significant induction of Fos after repeated AMPH treatment. In addition, we found a dramatic increase in Fos-activated orexin neurons. CONCLUSIONS The LH, a region implicated in natural and drug reward processes, may play a role in the development and persistence of sensitization to repeated AMPH through its connections with the mPFC and possibly through its orexin neurons.
Collapse
|