1
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
2
|
Santifort KM, Mandigers PJJ. Dystonia in veterinary neurology. J Vet Intern Med 2022; 36:1872-1881. [PMID: 36086931 DOI: 10.1111/jvim.16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
Dystonia is a clinical sign and main feature of many movement disorders in humans as well as veterinary species. It is characterized by sustained or intermittent involuntary muscle contractions causing abnormal (often repetitive) movements, postures, or both. This review discusses the terminology and definition of dystonia, its phenomenology, and its pathophysiology, and provides considerations regarding the diagnosis and treatment of dystonia in dogs and cats. In addition, currently recognized or reported disorders in dogs and cats in which dystonia is a particular or main feature are discussed and comparisons are made between disorders featuring dystonia in humans and animals. We suggest that when describing the phenomenology of dogs and cats with dystonia, if possible the following should be included: activity being performed at onset (e.g., resting or running or exercise-induced), body distribution, duration, responsiveness (subjective), severity, temporal pattern (i.e., paroxysmal or persistent, severity at onset and at later stages), presence or absence of autonomic signs (e.g., salivation), presence or absence of preceding signs (e.g., restlessness), presence or absence of signs after dystonia subsides (e.g., sleepiness), coexistence of other movement disorders, any other neurological manifestations, and possible links to administered medications, intoxications or other associated factors. We also suggest that dystonia be classified based on its etiology as either structural genetic, suspected genetic, reactive, or unknown.
Collapse
Affiliation(s)
| | - Paul J J Mandigers
- Evidensia Referral Hospitals, Arnhem, The Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Mustafá ER, López Soto EJ, Martínez Damonte V, Rodríguez SS, Lipscombe D, Raingo J. Constitutive activity of the Ghrelin receptor reduces surface expression of voltage-gated Ca 2+ channels in a Ca Vβ-dependent manner. J Cell Sci 2017; 130:3907-3917. [PMID: 29038230 DOI: 10.1242/jcs.207886] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated Ca2+ (CaV) channels couple membrane depolarization to Ca2+ influx, triggering a range of Ca2+-dependent cellular processes. CaV channels are, therefore, crucial in shaping neuronal activity and function, depending on their individual temporal and spatial properties. Furthermore, many neurotransmitters and drugs that act through G protein coupled receptors (GPCRs), modulate neuronal activity by altering the expression, trafficking, or function of CaV channels. GPCR-dependent mechanisms that downregulate CaV channel expression levels are observed in many neurons but are, by comparison, less studied. Here we show that the growth hormone secretagogue receptor type 1a (GHSR), a GPCR, can inhibit the forwarding trafficking of several CaV subtypes, even in the absence of agonist. This constitutive form of GPCR inhibition of CaV channels depends on the presence of a CaVβ subunit. CaVβ subunits displace CaVα1 subunits from the endoplasmic reticulum. The actions of GHSR on CaV channels trafficking suggest a role for this signaling pathway in brain areas that control food intake, reward, and learning and memory.
Collapse
Affiliation(s)
- Emilio R Mustafá
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Eduardo J López Soto
- Department of Neuroscience, Brown University; Sidney E. Frank Hall for Life Sciences, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Valentina Martínez Damonte
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Diane Lipscombe
- Department of Neuroscience, Brown University; Sidney E. Frank Hall for Life Sciences, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Jesica Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| |
Collapse
|
4
|
Jayabal S, Ljungberg L, Watt AJ. Transient cerebellar alterations during development prior to obvious motor phenotype in a mouse model of spinocerebellar ataxia type 6. J Physiol 2016; 595:949-966. [PMID: 27531396 DOI: 10.1113/jp273184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Spinocerebellar ataxia type 6 (SCA6) is a midlife-onset neurodegenerative disease caused by a CACNA1A mutation; CACNA1A is also implicated in cerebellar development. We have previously shown that when disease symptoms are present in midlife in SCA684Q/84Q mice, cerebellar Purkinje cells spike with reduced rate and precision. In contrast, we find that during postnatal development (P10-13), SCA684Q/84Q Purkinje cells spike with elevated rate and precision. Although surplus climbing fibres are linked to ataxia in other mouse models, we found surplus climbing fibre inputs on developing (P10-13) SCA684Q/84Q Purkinje cells when motor deficits were not detected. Developmental alterations were transient and were no longer observed in weanling (P21-24) SCA684Q/84Q Purkinje cells. Our results suggest that changes in the developing cerebellar circuit can occur without detectable motor abnormalities, and that changes in cerebellar development may not necessarily persist into adulthood. ABSTRACT Although some neurodegenerative diseases are caused by mutations in genes that are known to regulate neuronal development, surprisingly, patients may not present disease symptoms until adulthood. Spinocerebellar ataxia type 6 (SCA6) is one such midlife-onset disorder in which the mutated gene, CACNA1A, is implicated in cerebellar development. We wondered whether changes were observed in the developing cerebellum in SCA6 prior to the detection of motor deficits. To address this question, we used a transgenic mouse with a hyper-expanded triplet repeat (SCA684Q/84Q ) that displays late-onset motor deficits at 7 months, and measured cerebellar Purkinje cell synaptic and intrinsic properties during postnatal development. We found that firing rate and precision were enhanced during postnatal development in P10-13 SCA684Q/84Q Purkinje cells, and observed surplus multiple climbing fibre innervation without changes in inhibitory input or dendritic structure during development. Although excess multiple climbing fibre innervation has been associated with ataxic symptoms in several adult transgenic mice, we observed no detectable changes in cerebellar-related motor behaviour in developing SCA684Q/84Q mice. Interestingly, we found that developmental alterations were transient, as both Purkinje cell firing properties and climbing fibre innervation from weanling-aged (P21-24) SCA684Q/84Q mice were indistinguishable from litter-matched control mice. Our results demonstrate that significant alterations in neuronal circuit development may be observed without any detectable behavioural read-out, and that early changes in brain development may not necessarily persist into adulthood in midlife-onset diseases.
Collapse
Affiliation(s)
- Sriram Jayabal
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, H3G 0B1, Canada
| | - Lovisa Ljungberg
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada
| |
Collapse
|
5
|
Benedetti B, Benedetti A, Flucher BE. Loss of the calcium channel β4 subunit impairs parallel fibre volley and Purkinje cell firing in cerebellum of adult ataxic mice. Eur J Neurosci 2016; 43:1486-98. [PMID: 27003325 PMCID: PMC4949674 DOI: 10.1111/ejn.13241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/08/2023]
Abstract
The auxiliary voltage-gated calcium channel subunit β4 supports targeting of calcium channels to the cell membrane, modulates ionic currents and promotes synaptic release in the central nervous system. β4 is abundant in cerebellum and its loss causes ataxia. However, the type of calcium channels and cerebellar functions affected by the loss of β4 are currently unknown. We therefore studied the structure and function of Purkinje cells in acute cerebellar slices of the β4 (-/-) ataxic (lethargic) mouse, finding that loss of β4 affected Purkinje cell input, morphology and pacemaker activity. In adult lethargic cerebellum evoked postsynaptic currents from parallel fibres were depressed, while paired-pulse facilitation and spontaneous synaptic currents were unaffected. Because climbing fibre input was spared, the parallel fibre/climbing fibre input ratio was reduced. The dendritic arbor of adult lethargic Purkinje cells displayed fewer and shorter dendrites, but a normal spine density. Accordingly, the width of the molecular and granular layers was reduced. These defects recapitulate the impaired cerebellar maturation observed upon Cav 2.1 ataxic mutations. However, unlike Cav 2.1 mutations, lethargic Purkinje cells also displayed a striking decrease in pacemaker firing frequency, without loss of firing regularity. All these deficiencies appear in late development, indicating the importance of β4 for the normal differentiation and function of mature Purkinje cells networks. The observed reduction of the parallel fibre input, the altered parallel fibre/climbing fibre ratio and the reduced Purkinje cell output can contribute to the severe motor impairment caused by the loss of the calcium channel β4 subunit in lethargic mice.
Collapse
Affiliation(s)
- Bruno Benedetti
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, A-6020, Austria
| | - Ariane Benedetti
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, A-6020, Austria
| | - Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, A-6020, Austria
| |
Collapse
|
6
|
Hess EJ, Jinnah H. Mouse Models of Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Rose SJ, Kriener LH, Heinzer AK, Fan X, Raike RS, van den Maagdenberg AMJM, Hess EJ. The first knockin mouse model of episodic ataxia type 2. Exp Neurol 2014; 261:553-62. [PMID: 25109669 DOI: 10.1016/j.expneurol.2014.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/07/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022]
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes.
Collapse
Affiliation(s)
- Samuel J Rose
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lisa H Kriener
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ann K Heinzer
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xueliang Fan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert S Raike
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Department of Neurology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Ellen J Hess
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Zhang L, Chung SK, Chow BKC. The knockout of secretin in cerebellar Purkinje cells impairs mouse motor coordination and motor learning. Neuropsychopharmacology 2014; 39:1460-8. [PMID: 24356714 PMCID: PMC3988549 DOI: 10.1038/npp.2013.344] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Li Zhang
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Sookja Kim Chung
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
9
|
Lerner RP, Niethammer M, Eidelberg D. Understanding the anatomy of dystonia: determinants of penetrance and phenotype. Curr Neurol Neurosci Rep 2013; 13:401. [PMID: 24114145 PMCID: PMC3883436 DOI: 10.1007/s11910-013-0401-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dystonias comprise a group of syndromes characterized by prolonged involuntary muscle contractions resulting in repetitive movements and abnormal postures. Primary dystonia has been associated with over 14 different genotypes, most of which follow an autosomal dominant inheritance pattern with reduced penetrance. Independent of etiology, the disease is characterized by extensive variability in disease phenotype and clinical severity. Recent neuroimaging studies investigating this phenomenon in manifesting and non-manifesting genetic carriers of dystonia have discovered microstructural integrity differences in the cerebello-thalamo-cortical tract in both groups related to disease penetrance. Further study suggests these differences to be specific to subrolandic white matter regions somatotopically related to clinical phenotype. Clinical severity was correlated to the degree of microstructural change. These findings suggest a mechanism for the penetrance and clinical variability observed in dystonia and may represent a novel therapeutic target for patients with refractory limb symptoms.
Collapse
Affiliation(s)
- Renata P Lerner
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | | | | |
Collapse
|
10
|
Girardi E, Auzmendi J, Charó N, Gori MB, Castro M. 3-mercaptopropionic acid-induced seizures decrease NR2B expression in Purkinje cells: cyclopentyladenosine effect. Cell Mol Neurobiol 2010; 30:985-90. [PMID: 20625810 PMCID: PMC11498741 DOI: 10.1007/s10571-010-9546-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
Abstract
Inhibitory mechanism of cerebellum epileptic activity can be involved depending on the intensity and frequency of seizure convulsions. N-methyl-D-aspartate receptors (NMDARs) play key roles in excitatory synaptic transmission and have been implicated in neurological disorders: in cerebellum, they have specific characteristics. NMDARs are heteromeric complexes, and the expression of functional receptors in mammalian cells requires the subunit NR1 (essential) and one NR2 subtype of the four isoforms: NR2A-NR2D. In mature Purkinje cells, the combination of NR1 with NR2B subunits forms functional NMDARs; NR2B subunit may be altered in exocitotoxic events. Cyclopentyladenosine (CPA), an adenosine analogue, administered to rats, for one or more days, increases seizure threshold induced by the convulsant drug 3-mercaptopropionic acid (MP). In this study, we focused on the expression of NR2B in cerebellum after repetitive seizures induced by MP and the effect of adenosine analogue CPA administered alone or previous to MP (CPA + MP). A significant decrease in NR2B in the whole cerebellum was observed after MP and CPA administration with a tendency to recover to normal values in the combined treatment of CPA administered 30 min before MP by Western blot assay. In immunohistochemical studies, NR2B expression was observed and analysed in Purkinje cells. NR2B expression was decreased after MP (55%) and CPA (12%) administration, and CPA injected 30 min before MP led to 28% reduction in Purkinje cells. These results could be related to Purkinje cell damage or alternatively to avoid the excitotoxic effect. Results recorded after CPA + MP treatment seemed involved in decreasing the convulsant MP effect.
Collapse
Affiliation(s)
- E Girardi
- Instituto de Biología Celular y Neurociencia, Facultad de Medicina, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
11
|
Striessnig J, Bolz HJ, Koschak A. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch 2010; 460:361-74. [PMID: 20213496 PMCID: PMC2883925 DOI: 10.1007/s00424-010-0800-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 12/24/2022]
Abstract
Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming alpha1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 alpha1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 alpha1), and Timothy syndrome (Cav1.2 alpha1; reviewed separately in this issue). Cav1.3 alpha1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function.
Collapse
Affiliation(s)
- Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Peter-Mayr-Strasse 1, 6020, Innsbruck, Austria.
| | | | | |
Collapse
|
12
|
Gruol DL, Netzeband JG, Nelson TE. Somatic Ca2+ signaling in cerebellar Purkinje neurons. J Neurosci Res 2010; 88:275-89. [PMID: 19681168 DOI: 10.1002/jnr.22204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activity-driven Ca(2+) signaling plays an important role in a number of neuronal functions, including neuronal growth, differentiation, and plasticity. Both cytosolic and nuclear Ca(2+) has been implicated in these functions. In the current study, we investigated membrane-to-nucleus Ca(2+) signaling in cerebellar Purkinje neurons in culture to gain insight into the pathways and mechanisms that can initiate nuclear Ca(2+) signaling in this neuronal type. Purkinje neurons are known to express an abundance of Ca(2+) signaling molecules such as voltage-gated Ca(2+) channels, ryanodine receptors, and IP3 receptors. Results show that membrane depolarization evoked by brief stimulation with K(+) saline elicits a prominent Ca(2+) signal in the cytosol and nucleus of the Purkinje neurons. Ca(2+) influx through P/Q- and L-type voltage-gated Ca(2+) channels and Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores contributed to the Ca(2+) signal, which spread from the plasma membrane to the nucleus. At strong K(+) stimulations, the amplitude of the nuclear Ca(2+) signal exceeded that of the cytosolic Ca(2+) signal, suggesting the involvement of a nuclear amplification mechanism and/or differences in Ca(2+) buffering in these two cellular compartments. An enhanced nuclear Ca(2+) signal was more prominent for Ca(2+) signals elicited by membrane depolarization than for Ca(2+) signals elicited by activation of the metabotropic glutamate receptor pathway (mGluR1), which is linked to Ca(2+) release from intracellular stores controlled by the IP3 receptor.
Collapse
Affiliation(s)
- D L Gruol
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
13
|
Shimada N, Handa S, Uchida Y, Fukuda M, Maruyama N, Asaga H, Choi EK, Lee J, Ishigami A. Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. J Neurosci Res 2010; 88:798-806. [PMID: 19830834 DOI: 10.1002/jnr.22255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptidylarginine deiminases (PADs) are a group of posttranslational modification enzymes that citrullinate (deiminate) protein arginine residues in a Ca(2+)-dependent manner. Enzymatic citrullination abolishes positive charges of native protein molecules, inevitably causing significant alterations in their structure and functions. Among the five isoforms of PADs, PAD2 and PAD4 are proved occupants of the central nervous system (CNS), and especially PAD2 is a main PAD enzyme expressed in the CNS. We previously reported that abnormal protein citrullination by PAD2 has been closely associated with the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and prion disease. Protein citrullination in these patients is thought to play a role during the initiation and/or progression of disease. However, the contribution of changes in PAD2 levels, and consequent citrullination, during developmental and aging processes remained unclear. Therefore, we used quantitative real-time RT-PCR, Western blot analysis, and immunohistochemical methods to measure PAD2 expression and localization in the brain during those processes. PAD2 mRNA expression was detected in the brains of mice as early as embryonic day 15, and its expression in cerebral cortex, hippocampus, and cerebellum increased significantly as the animals aged from 3 to 30 months old. No citrullinated proteins were detected during that period. Moreover, we found here, for the first time, that PAD2 localized specifically in the neuronal cells of the cerebral cortex and Purkinje cells of the cerebellum. These findings indicate that, despite PAD2's normally inactive status, it becomes active and citrullinates cellular proteins, but only when the intracellular Ca(2+) balance is upset during neurodegenerative changes.
Collapse
Affiliation(s)
- Nobuko Shimada
- Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Benton MD, Raman IM. Stabilization of Ca current in Purkinje neurons during high-frequency firing by a balance of Ca-dependent facilitation and inactivation. Channels (Austin) 2009; 3:393-401. [PMID: 19806011 PMCID: PMC2897944 DOI: 10.4161/chan.3.6.9838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Purkinje neurons fire spontaneous action potentials at ∼50 spikes/sec and generate more than 100 spikes/sec during cerebellum-mediated behaviors. Many voltage-gated channels, including Ca channels, can inactivate and/or facilitate with repeated stimulation, raising the question of how these channels respond to regular, rapid trains of depolarizations. To test whether Ca currents are modulated during firing, we recorded voltage-clamped Ca currents, predominantly carried by P-type Ca channels, from acutely dissociated mouse Purkinje neurons at 30-33°C (1 mM Ca). With 0.5 mM intracellular EGTA, 1-second trains of either spontaneous action potential waveforms or brief depolarizing steps at 50 Hz evoked Ca tail currents that were stable, remaining within 5% of the first tail current throughout the train. Higher frequency trains (100 and 200 Hz) elicited a maximal inactivation of <10%. To test whether this stability of Ca currents resulted from a lack of modulation or from an equilibrium between facilitation and inactivation, we manipulated the permeant ion (Ca vs. Ba) and Ca buffering (0.5 vs. 10 mM EGTA). With low buffering, Ba accelerated the initial inactivation evoked by 1-second trains, but reduced its extent at 200 Hz, consistent with an early calcium-dependent facilitation (CDF) and late calcium-dependent inactivation (CDI) at high frequencies. Increasing the Ca buffer favored CDF. These data suggest that stable Ca current amplitudes result from a balance of CDF, CDI, and voltage-dependent inactivation. This modest net Ca-dependent modulation may contribute to the ability of Purkinje neurons to sustain long periods of regular firing and synaptic transmission.
Collapse
Affiliation(s)
- Mark D. Benton
- Interdepartmental Neuroscience Program; Northwestern University; Evanston, IL USA
| | - Indira M. Raman
- Interdepartmental Neuroscience Program; Northwestern University; Evanston, IL USA,Department of Neurobiology and Physiology; Northwestern University; Evanston, IL USA,Correspondence to: Indira M. Raman;
| |
Collapse
|
15
|
Chen G, Popa LS, Wang X, Gao W, Barnes J, Hendrix CM, Hess EJ, Ebner TJ. Low-frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol 2008; 101:234-45. [PMID: 18987121 DOI: 10.1152/jn.90829.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tottering mouse is an autosomal recessive disorder involving a missense mutation in the gene encoding P/Q-type voltage-gated Ca2+ channels. The tottering mouse has a characteristic phenotype consisting of transient attacks of dystonia triggered by stress, caffeine, or ethanol. The neural events underlying these episodes of dystonia are unknown. Flavoprotein autofluorescence optical imaging revealed transient, low-frequency oscillations in the cerebellar cortex of anesthetized and awake tottering mice but not in wild-type mice. Analysis of the frequencies, spatial extent, and power were used to characterize the oscillations. In anesthetized mice, the dominant frequencies of the oscillations are between 0.039 and 0.078 Hz. The spontaneous oscillations in the tottering mouse organize into high power domains that propagate to neighboring cerebellar cortical regions. In the tottering mouse, the spontaneous firing of 83% (73/88) of cerebellar cortical neurons exhibit oscillations at the same low frequencies. The oscillations are reduced by removing extracellular Ca2+ and blocking L-type Ca2+ channels. The oscillations are likely generated intrinsically in the cerebellar cortex because they are not affected by blocking AMPA receptors or by electrical stimulation of the parallel fiber-Purkinje cell circuit. Furthermore, local application of an L-type Ca2+ agonist in the tottering mouse generates oscillations with similar properties. The beam-like response evoked by parallel fiber stimulation is reduced in the tottering mouse. In the awake tottering mouse, transcranial flavoprotein imaging revealed low-frequency oscillations that are accentuated during caffeine-induced attacks of dystonia. During dystonia, oscillations are also present in the face and hindlimb electromyographic (EMG) activity that become significantly coherent with the oscillations in the cerebellar cortex. These low-frequency oscillations and associated cerebellar cortical dysfunction demonstrate a novel abnormality in the tottering mouse. These oscillations are hypothesized to be involved in the episodic movement disorder in this mouse model of episodic ataxia type 2.
Collapse
Affiliation(s)
- Gang Chen
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E., Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|