1
|
Vasylyev DV, Liu CJ, Waxman SG. Sodium channels in non-excitable cells: powerful actions and therapeutic targets beyond Hodgkin and Huxley. Trends Cell Biol 2025; 35:381-398. [PMID: 39743470 DOI: 10.1016/j.tcb.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Voltage-gated sodium channels (VGSCs) are best known for their role in the generation and propagation of action potentials in neurons, muscle cells, and cardiac myocytes, which have traditionally been labeled as 'excitable'. However, emerging evidence challenges this traditional perspective. It is now clear that VGSCs are also expressed in a broad spectrum of cells outside the neuromuscular realm, where they regulate diverse cellular functions. In this review, we summarize current knowledge on the expression, regulation, and function of VGSCs in non-neuromuscular cells, highlighting their contributions to physiological processes and pathological conditions. Dynamic expression patterns of VGSCs in different cell types, involvement of VGSCs in cellular functions, such as phagocytosis, motility, and cytokine release, and their potential as therapeutic targets for diseases that include inflammatory disorders, osteoarthritis (OA), and cancer, are discussed. This new understanding of VGSCs and their effects on cells outside the neuromuscular realm opens new avenues for research and therapeutic interventions.
Collapse
Affiliation(s)
- Dmytro V Vasylyev
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
2
|
Peters C, Aberle T, Sock E, Brunner J, Küspert M, Hillgärtner S, Wüst HM, Wegner M. Voltage-Gated Ion Channels Are Transcriptional Targets of Sox10 during Oligodendrocyte Development. Cells 2024; 13:1159. [PMID: 38995010 PMCID: PMC11240802 DOI: 10.3390/cells13131159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial cells depends upon Sox10. These include the Nav1.1, Cav2.2, Kv1.1, and Kir4.1 channels. For each of the four encoding genes, we found at least one regulatory region that is activated by Sox10 in vitro and at the same time bound by Sox10 in vivo. Cell-specific deletion of Sox10 in oligodendroglial cells furthermore led to a strong downregulation of all four ion channels in a mouse model and thus in vivo. Our study provides a clear functional link between voltage-gated ion channels and the transcriptional regulatory network in oligodendroglial cells. Furthermore, our study argues that Sox10 exerts at least some of its functions in oligodendrocyte progenitor cells, in myelinating oligodendrocytes, or throughout lineage development via these ion channels. By doing so, we present one way in which oligodendroglial development and properties can be linked to neuronal activity to ensure crosstalk between cell types during the development and function of the central nervous system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hannah M. Wüst
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.P.); (T.A.); (E.S.); (J.B.); (M.K.); (S.H.)
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.P.); (T.A.); (E.S.); (J.B.); (M.K.); (S.H.)
| |
Collapse
|
3
|
Zhong S, Kiyoshi CM, Du Y, Wang W, Luo Y, Wu X, Taylor AT, Ma B, Aten S, Liu X, Zhou M. Genesis of a functional astrocyte syncytium in the developing mouse hippocampus. Glia 2023; 71:1081-1098. [PMID: 36598109 PMCID: PMC10777263 DOI: 10.1002/glia.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Astrocytes are increasingly shown to operate as an isopotential syncytium in brain function. Protoplasmic astrocytes acquire this ability to functionally go beyond the single-cell level by evolving into a spongiform morphology, cytoplasmically connecting into a syncytium, and expressing a high density of K+ conductance. However, none of these cellular/functional features exist in neonatal newborn astrocytes, which imposes a basic question of when a functional syncytium evolves in the developing brain. Our results show that the spongiform morphology of individual astrocytes and their spatial organization all reach stationary levels by postnatal day (P) 15 in the hippocampal CA1 region. Functionally, astrocytes begin to uniformly express a mature level of passive K+ conductance by P11. We next used syncytial isopotentiality measurement to monitor the maturation of the astrocyte syncytium. In uncoupled P1 astrocytes, the substitution of endogenous K+ by a Na+ -electrode solution ([Na+ ]p ) resulted in the total elimination of the physiological membrane potential (VM ), and outward K+ conductance as predicted by the Goldman-Hodgkin-Katz (GHK) equation. As more astrocytes are coupled to each other through gap junctions during development, the [Na+ ]p -induced loss of physiological VM and the outward K+ conductance is progressively compensated by the neighboring astrocytes. By P15, a stably established syncytial isopotentiality (-73 mV), and a fully compensated outward K+ conductance appeared in all [Na+ ]p -recorded astrocytes. Thus, in view of the developmental timeframe wherein a singular syncytium is anatomically and functionally established for intra-syncytium K+ equilibration, an astrocyte syncytium becomes fully operational at P15 in the mouse hippocampus.
Collapse
Affiliation(s)
- Shiying Zhong
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Conrad M. Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei Wang
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology, Tongji Medical College, Wuhan, 430030, China
| | - Yumeng Luo
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xiao Wu
- Department of Neurology, Wuhan First Hospital, Wuhan 430022, China
| | - Anne T. Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Baofeng Ma
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xueyuan Liu
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Zhou M, Du Y, Aten S, Terman D. On the electrical passivity of astrocyte potassium conductance. J Neurophysiol 2021; 126:1403-1419. [PMID: 34525325 DOI: 10.1152/jn.00330.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Predominant expression of leak-type K+ channels provides astrocytes a high membrane permeability to K+ ions and a hyperpolarized membrane potential that are crucial for astrocyte function in brain homeostasis. In functionally mature astrocytes, the expression of leak K+ channels creates a unique membrane K+ conductance that lacks voltage-dependent rectification. Accordingly, the conductance is named ohmic or passive K+ conductance. Several inwardly rectifying and two-pore domain K+ channels have been investigated for their contributions to passive conductance. Meanwhile, gap junctional coupling has been postulated to underlie the passive behavior of membrane conductance. It is now clear that the intrinsic properties of K+ channels and gap junctional coupling can each act alone or together to bring about a passive behavior of astrocyte conductance. Additionally, while the passive conductance can generally be viewed as a K+ conductance, the actual representation of this conductance is a combined expression of multiple known and unknown K+ channels, which has been further modified by the intricate morphology of individual astrocytes and syncytial gap junctional coupling. The expression of the inwardly rectifying K+ channels explains the inward-going component of passive conductance disobeying Goldman-Hodgkin-Katz constant field outward rectification. However, the K+ channels encoding the outward-going passive currents remain to be determined in the future. Here, we review our current understanding of ion channels and biophysical mechanisms engaged in the passive astrocyte K+ conductance, propose new studies to resolve this long-standing puzzle in astrocyte physiology, and discuss the functional implication(s) of passive behavior of K+ conductance on astrocyte physiology.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
6
|
Kamen Y, Pivonkova H, Evans KA, Káradóttir RT. A Matter of State: Diversity in Oligodendrocyte Lineage Cells. Neuroscientist 2021; 28:144-162. [PMID: 33567971 DOI: 10.1177/1073858420987208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes which myelinate axons in the central nervous system. Although classically thought to be a homogeneous population, OPCs are reported to have different developmental origins and display regional and temporal diversity in their transcriptome, response to growth factors, and physiological properties. Similarly, evidence is accumulating that myelinating oligodendrocytes display transcriptional heterogeneity. Analyzing this reported heterogeneity suggests that OPCs, and perhaps also myelinating oligodendrocytes, may exist in different functional cell states. Here, we review the evidence indicating that OPCs and oligodendrocytes are diverse, and we discuss the implications of functional OPC states for myelination in the adult brain and for myelin repair.
Collapse
Affiliation(s)
- Yasmine Kamen
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Helena Pivonkova
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kimberley A Evans
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ragnhildur T Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
Bedner P, Jabs R, Steinhäuser C. Properties of human astrocytes and NG2 glia. Glia 2019; 68:756-767. [DOI: 10.1002/glia.23725] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical FacultyUniversity of Bonn Bonn Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical FacultyUniversity of Bonn Bonn Germany
| | | |
Collapse
|
8
|
Du Y, Wang W, Lutton AD, Kiyoshi CM, Ma B, Taylor AT, Olesik JW, McTigue DM, Askwith CC, Zhou M. Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp Neurol 2018; 303:1-11. [PMID: 29407729 DOI: 10.1016/j.expneurol.2018.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 01/16/2023]
Abstract
Membrane potential (VM) depolarization occurs immediately following cerebral ischemia and is devastating for the astrocyte homeostasis and neuronal signaling. Previously, an excessive release of extracellular K+ and glutamate has been shown to underlie an ischemia-induced VM depolarization. Ischemic insults should impair membrane ion channels and disrupt the physiological ion gradients. However, their respective contribution to ischemia-induced neuronal and glial depolarization and loss of neuronal excitability are unanswered questions. A short-term oxygen-glucose deprivation (OGD) was used for the purpose of examining the acute effect of ischemic conditions on ion channel activity and physiological K+ gradient in neurons and glial cells. We show that a 30 min OGD treatment exerted no measurable damage to the function of membrane ion channels in neurons, astrocytes, and NG2 glia. As a result of the resilience of membrane ion channels, neuronal spikes last twice as long as our previously reported 15 min time window. In the electrophysiological analysis, a 30 min OGD-induced dissipation of transmembrane K+ gradient contributed differently in brain cell depolarization: severe in astrocytes and neurons, and undetectable in NG2 glia. The discrete cellular responses to OGD corresponded to a total loss of 69% of the intracellular K+ contents in hippocampal slices as measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). A major brain cell depolarization mechanism identified here is important for our understanding of cerebral ischemia pathology. Additionally, further understanding of the resilient response of NG2 glia to ischemia-induced intracellular K+ loss and depolarization should facilitate the development of future stroke therapy.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei Wang
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anthony D Lutton
- Trace Element Research Laboratory, The Ohio State University, Columbus, OH 43210, USA
| | - Conrad M Kiyoshi
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Baofeng Ma
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anne T Taylor
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - John W Olesik
- Trace Element Research Laboratory, The Ohio State University, Columbus, OH 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Candice C Askwith
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Heterogeneity and function of hippocampal macroglia. Cell Tissue Res 2017; 373:653-670. [PMID: 29204745 DOI: 10.1007/s00441-017-2746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
The contribution of glial cells to normal and impaired hippocampal function is increasingly being recognized, although important questions as to the mechanisms that these cells use for their crosstalk with neurons and capillaries are still unanswered or lead to controversy. Astrocytes in the hippocampus are morphologically variable and a single cell contacts with its processes more than 100,000 synapses. They predominantly express inward rectifier K+ channels and transporters serving homeostatic function but may also release gliotransmitters to modify neuronal signaling and brain circulation. Intracellular Ca2+ transients are key events in the interaction of astrocytes with neurons and the vasculature. Hippocampal NG2 glia represent a population of cells with proliferative capacity throughout adulthood. Intriguingly, they receive direct synaptic input from pyramidal neurons and interneurons and express a multitude of ion channels and receptors. Despite in-depth knowledge about the features of these transmembrane proteins, the physiological impact of NG2 glial cells and their synaptic input remain nebulous. Because of the low abundance of oligodendrocytes in the hippocampus, limited information is available about their specific properties. Given the multitude of signaling molecules expressed by the various types of hippocampal glial cells (and because of space constraints), we focus, in this review, on those properties that are considered key for the interaction of the respective cell type with its neighborhood.
Collapse
|
10
|
Zhong S, Du Y, Kiyoshi CM, Ma B, Alford CC, Wang Q, Yang Y, Liu X, Zhou M. Electrophysiological behavior of neonatal astrocytes in hippocampal stratum radiatum. Mol Brain 2016; 9:34. [PMID: 27004553 PMCID: PMC4802662 DOI: 10.1186/s13041-016-0213-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/12/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neonatal astrocytes are diverse in origin, and undergo dramatic change in gene expression, morphological differentiation and syncytial networking throughout development. Neonatal astrocytes also play multifaceted roles in neuronal circuitry establishment. However, the extent to which neonatal astrocytes differ from their counterparts in the adult brain remains unknown. RESULTS Based on ALDH1L1-eGFP expression or sulforhodamine 101 staining, neonatal astrocytes at postnatal day 1-3 can be reliably identified in hippocampal stratum radiatum. They exhibit a more negative resting membrane potential (V M), -85 mV, than mature astrocytes, -80 mV and a variably rectifying whole-cell current profile due to complex expression of voltage-gated outward transient K(+) (IKa), delayed rectifying K(+) (IKd) and inward K(+) (IKin) conductances. Differing from NG2 glia, depolarization-induced inward Na(+) currents (INa) could not be detected in neonatal astrocytes. A quasi-physiological V M of -69 mV was retained when inwardly rectifying Kir4.1 was inhibited by 100 μM Ba(2+) in both wild type and TWIK-1/TREK-1 double gene knockout astrocytes, indicating expression of additional leak K(+) channels yet unknown. In dual patch recording, electrical coupling was detected in 74 % (14/19 pairs) of neonatal astrocytes with largely variable coupling coefficients. The increasing gap junction coupling progressively masked the rectifying K(+) conductances to account for an increasing number of linear voltage-to-current relationship passive astrocytes (PAs). Gap junction inhibition, by 100 μM meclofenamic acid, substantially reduced membrane conductance and converted all the neonatal PAs to variably rectifying astrocytes. The low density expression of leak K(+) conductance in neonatal astrocytes corresponded to a ~50 % less K(+) uptake capacity compared to adult astrocytes. CONCLUSIONS Neonatal astrocytes predominantly express a variety of rectifying K(+) conductances, form discrete cell-to-cell gap junction coupling and are deficient in K(+) homeostatic capacity.
Collapse
Affiliation(s)
- Shiying Zhong
- />Department of Neurology, Shanghai 10th Hospital of Tongji University, School of Medicine, 301 Yan Chang Zhong Road, Shanghai, 200072 China
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yixing Du
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Conrad M. Kiyoshi
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Baofeng Ma
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Catherine C. Alford
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Qi Wang
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yongjie Yang
- />Department of Neuroscience, Tufts University School of Medicine, Boston, MA USA
| | - Xueyuan Liu
- />Department of Neurology, Shanghai 10th Hospital of Tongji University, School of Medicine, 301 Yan Chang Zhong Road, Shanghai, 200072 China
| | - Min Zhou
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| |
Collapse
|
11
|
Du Y, Kiyoshi CM, Wang Q, Wang W, Ma B, Alford CC, Zhong S, Wan Q, Chen H, Lloyd EE, Bryan RM, Zhou M. Genetic Deletion of TREK-1 or TWIK-1/TREK-1 Potassium Channels does not Alter the Basic Electrophysiological Properties of Mature Hippocampal Astrocytes In Situ. Front Cell Neurosci 2016; 10:13. [PMID: 26869883 PMCID: PMC4738265 DOI: 10.3389/fncel.2016.00013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 01/03/2023] Open
Abstract
We have recently shown that a linear current-to-voltage (I-V) relationship of membrane conductance (passive conductance) reflects the intrinsic property of K+ channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (VM) essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K+ channels remains elusive. TREK-1 two-pore domain K+ channel (K2P) is highly expressed in astrocytes, and covalent association of TREK-1 with TWIK-1, another highly expressed astrocytic K2P, has been reported as a mechanism underlying the trafficking of heterodimer TWIK-1/TREK-1 channel to the membrane and contributing to astrocyte passive conductance. To decipher the individual contribution of TREK-1 and address whether the appearance of passive conductance is conditional to the co-expression of TWIK-1/TREK-1 in astrocytes, TREK-1 single and TWIK-1/TREK-1 double gene knockout mice were used in the present study. The relative quantity of mRNA encoding other astrocyte K+ channels, such as Kir4.1, Kir5.1, and TREK-2, was not altered in these gene knockout mice. Whole-cell recording from hippocampal astrocytes in situ revealed no detectable changes in astrocyte passive conductance, VM, or membrane input resistance (Rin) in either kind of gene knockout mouse. Additionally, TREK-1 proteins were mainly located in the intracellular compartments of the hippocampus. Altogether, genetic deletion of TREK-1 alone or together with TWIK-1 produced no obvious alteration in the basic electrophysiological properties of hippocampal astrocytes. Thus, future research focusing on other K+ channels may shed light on this long-standing and important question in astrocyte physiology.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Neurology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Conrad M Kiyoshi
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Qi Wang
- Department of Neuroscience, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Neurology, Meitan General HospitalXibahe Nanli, Beijing, China
| | - Wei Wang
- Department of Physiology, Institute of Brain Research, School of Basic Medicine, Huazhong University of Science and Technology Wuhan, China
| | - Baofeng Ma
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Catherine C Alford
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Shiying Zhong
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Haijun Chen
- Department of Biological Science, University at Albany, State University of New York Albany, NY, USA
| | - Eric E Lloyd
- Department of Anesthesiology, Baylor College of Medicine Houston, TX, USA
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine Houston, TX, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|
12
|
Larson VA, Zhang Y, Bergles DE. Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles. Brain Res 2015; 1638:138-160. [PMID: 26385417 DOI: 10.1016/j.brainres.2015.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
NG2(+) glial cells are a dynamic population of non-neuronal cells that give rise to myelinating oligodendrocytes in the central nervous system. These cells express numerous ion channels and neurotransmitter receptors, which endow them with a complex electrophysiological profile that is unique among glial cells. Despite extensive analysis of the electrophysiological properties of these cells, relatively little was known about the molecular identity of the channels and receptors that they express. The generation of new RNA-Seq datasets for NG2(+) cells has provided the means to explore how distinct genes contribute to the physiological properties of these progenitors. In this review, we systematically compare the results obtained through RNA-Seq transcriptional analysis of purified NG2(+) cells to previous physiological and molecular studies of these cells to define the complement of ion channels and neurotransmitter receptors expressed by NG2(+) cells in the mammalian brain and discuss the potential significance of the unique physiological properties of these cells. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Valerie A Larson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Jiang P, Chen C, Liu XB, Selvaraj V, Liu W, Feldman DH, Liu Y, Pleasure DE, Li RA, Deng W. Generation and characterization of spiking and nonspiking oligodendroglial progenitor cells from embryonic stem cells. Stem Cells 2015; 31:2620-31. [PMID: 23940003 DOI: 10.1002/stem.1515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/27/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells (PSCs) have been differentiated into oligodendroglial progenitor cells (OPCs), providing promising cell replacement therapies for many central nervous system disorders. Studies from rodents have shown that brain OPCs express a variety of ion channels, and that a subset of brain OPCs express voltage-gated sodium channel (NaV ), mediating the spiking properties of OPCs. However, it is unclear whether PSC-derived OPCs exhibit electrophysiological properties similar to brain OPCs and the role of NaV in the functional maturation of OPCs is unknown. Here, using a mouse embryonic stem cell (mESC) green fluorescent protein (GFP)-Olig2 knockin reporter line, we demonstrated that unlike brain OPCs, all the GFP(+) /Olig2(+) mESC-derived OPCs (mESC-OPCs) did not express functional NaV and failed to generate spikes (hence termed "nonspiking mESC-OPCs"), while expressing the delayed rectifier and inactivating potassium currents. By ectopically expressing NaV 1.2 α subunit via viral transduction, we successfully generated mESC-OPCs with spiking properties (termed "spiking mESC-OPCs"). After transplantation into the spinal cord and brain of myelin-deficient shiverer mice, the spiking mESC-OPCs demonstrated better capability in differentiating into myelin basic protein expressing oligodendrocytes and in myelinating axons in vivo than the nonspiking mESC-OPCs. Thus, by generating spiking and nonspiking mESC-OPCs, this study reveals a novel function of NaV in OPCs in their functional maturation and myelination, and sheds new light on ways to effectively develop PSC-derived OPCs for future clinical applications.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Biochemistry and Molecular Medicine, School of Medicine, Sacramento, California, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ma B, Xu G, Wang W, Enyeart JJ, Zhou M. Dual patch voltage clamp study of low membrane resistance astrocytes in situ. Mol Brain 2014; 7:18. [PMID: 24636341 PMCID: PMC3995526 DOI: 10.1186/1756-6606-7-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/13/2014] [Indexed: 12/04/2022] Open
Abstract
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.
Collapse
Affiliation(s)
| | | | | | | | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Abstract
NG2 expressing oligodendrocyte precursor cells stand out from other types of glial cells by receiving classical synaptic contacts from many neurons. This unconventional form of signaling between neurons and glial cells enables NG2 cells to receive information about the activity of presynaptic neurons with high temporal and spatial precision and has been postulated to be involved in activity-dependent myelination. While this still unproven concept is generally compelling, how NG2 cells may integrate synaptic input has hardly been addressed to date. Here we review the biophysical characteristics of synaptic currents and membrane properties of NG2 cells and discuss their capabilities to perform complex temporal and spatial signal integration and how this may be important for activity-dependent myelination.
Collapse
Affiliation(s)
- Wenjing Sun
- Experimental Neurophysiology, Department of Neurosurgery, University Clinic Bonn Bonn, Germany
| | - Dirk Dietrich
- Experimental Neurophysiology, Department of Neurosurgery, University Clinic Bonn Bonn, Germany
| |
Collapse
|
16
|
Black J, Waxman S. Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron 2013; 80:280-91. [DOI: 10.1016/j.neuron.2013.09.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
|
17
|
Neuron-NG2 cell synapses: novel functions for regulating NG2 cell proliferation and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402843. [PMID: 23984358 PMCID: PMC3747365 DOI: 10.1155/2013/402843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.
Collapse
|
18
|
Ma BF, Xie MJ, Zhou M. Bicarbonate efflux via GABA(A) receptors depolarizes membrane potential and inhibits two-pore domain potassium channels of astrocytes in rat hippocampal slices. Glia 2012; 60:1761-72. [PMID: 22855415 DOI: 10.1002/glia.22395] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022]
Abstract
Increasing evidence indicates the functional expression of ionotropic γ-aminobutyric acid receptor (GABA(A) -R) in astrocytes. However, it remains controversial in regard to the intracellular Cl(-) concentration ([Cl(-) ](i) ) and the functional role of anion-selective GABA(A) -R in astrocytes. In gramicidin perforated-patch recordings from rat hippocampal CA1 astrocytes, GABA and GABA(A) -R-specific agonist THIP depolarized astrocyte membrane potential (V(m) ), and the THIP-induced currents reversed at the voltages between -75.3 and -78.3 mV, corresponding to a [Cl(-) ](i) of 3.1-3.9 mM that favored a passive distribution of Cl(-) anions across astrocyte membrane. Further analysis showed that GABA(A) -R-induced V(m) depolarization was ascribed to HCO(3) (-) efflux, while a passively distributed Cl(-) mediated no net flux or influx of Cl(-) that leads to an unchanged or hyperpolarized V(m) . In addition to a rapidly activated GABA(A) -R current component, GABA and THIP also induced a delayed inward current (DIC) in 63% of astrocytes. The DIC became manifest after agonist withdrawal and enhanced in amplitude with increasing agonist application duration or concentrations. Astrocytic two-pore domain K(+) channels (K2Ps), especially TWIK-1, appeared to underlie the DIC, because (1) acidic intracellular pH, as a result of HCO(3) (-) efflux, inhibited TWIK-1, (2) the DIC remained in the Cs(+) recording solutions that inhibited conventional K(+) channels, and (3) the DIC was completely inhibited by 1 mM quinine but not by blockers for other cation/anion channels. Altogether, HCO(3) (-) efflux through activated GABA(A) -R depolarizes astrocyte V(m) and induces a delayed inhibition of K2Ps K(+) channels via intracellular acidification.
Collapse
Affiliation(s)
- Bao-Feng Ma
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|
19
|
Honsa P, Pivonkova H, Dzamba D, Filipova M, Anderova M. Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 2012; 7:e36816. [PMID: 22590616 PMCID: PMC3349640 DOI: 10.1371/journal.pone.0036816] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/07/2012] [Indexed: 11/18/2022] Open
Abstract
Polydendrocytes (also known as NG2 glial cells) constitute a fourth major glial cell type in the adult mammalian central nervous system (CNS) that is distinct from other cell types. Although much evidence suggests that these cells are multipotent in vitro, their differentiation potential in vivo under physiological or pathophysiological conditions is still controversial. To follow the fate of polydendrocytes after CNS pathology, permanent middle cerebral artery occlusion (MCAo), a commonly used model of focal cerebral ischemia, was carried out on adult NG2creBAC:ZEG double transgenic mice, in which enhanced green fluorescent protein (EGFP) is expressed in polydendrocytes and their progeny. The phenotype of the EGFP+ cells was analyzed using immunohistochemistry and the patch-clamp technique 3, 7 and 14 days after MCAo. In sham-operated mice (control), EGFP+ cells in the cortex expressed protein markers and displayed electrophysiological properties of polydendrocytes and oligodendrocytes. We did not detect any co-labeling of EGFP with neuronal, microglial or astroglial markers in this region, thus proving polydendrocyte unipotent differentiation potential under physiological conditions. Three days after MCAo the number of EGFP+ cells in the gliotic tissue dramatically increased when compared to control animals, and these cells displayed properties of proliferating cells. However, in later phases after MCAo a large subpopulation of EGFP+ cells expressed protein markers and electrophysiological properties of astrocytes that contribute to the formation of glial scar. Importantly, some EGFP+ cells displayed membrane properties typical for neural precursor cells, and moreover these cells expressed doublecortin (DCX) – a marker of newly-derived neuronal cells. Taken together, our data indicate that polydendrocytes in the dorsal cortex display multipotent differentiation potential after focal ischemia.
Collapse
Affiliation(s)
- Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Pivonkova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Dzamba
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marcela Filipova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
20
|
Lalo U, Pankratov Y, Parpura V, Verkhratsky A. Ionotropic receptors in neuronal-astroglial signalling: what is the role of "excitable" molecules in non-excitable cells. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:992-1002. [PMID: 20869992 DOI: 10.1016/j.bbamcr.2010.09.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 01/02/2023]
Abstract
Astroglial cells were long considered to serve merely as the structural and metabolic supporting cast and scenery against which the shining neurones perform their illustrious duties. Relatively recent evidence, however, indicates that astrocytes are intimately involved in many of the brain's functions. Astrocytes possess a diverse assortment of ionotropic transmitter receptors, which enable these glial cells to respond to many of the same signals that act on neurones. Ionotropic receptors mediate neurone-driven signals to astroglial cells in various brain areas including neocortex, hippocampus and cerebellum. Activation of ionotropic receptors trigger rapid signalling events in astroglia; these events, represented by local Ca(2+) or Na(+) signals provide the mechanism for fast neuronal-glial signalling at the synaptic level. Since astrocytes can detect chemical transmitters that are released from neurones and can release their own extracellular signals, gliotransmitters, they are intricately involved in homocellular and heterocellular signalling mechanisms in the nervous system. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Ulyana Lalo
- Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
21
|
Liu Z, Liu S, Ren G, Zhang T, Yang Z. Nano-CuO inhibited voltage-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway. J Appl Toxicol 2011; 31:439-45. [DOI: 10.1002/jat.1611] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/29/2010] [Accepted: 10/08/2010] [Indexed: 01/09/2023]
|
22
|
Paez P, Fulton D, Colwell C, Campagnoni A. Voltage-operated Ca2+and Na+channels in the oligodendrocyte lineage. J Neurosci Res 2009; 87:3259-66. [DOI: 10.1002/jnr.21938] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 2009; 29:8551-64. [PMID: 19571146 DOI: 10.1523/jneurosci.5784-08.2009] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expression of a linear current-voltage (I-V) relationship (passive) K(+) membrane conductance is a hallmark of mature hippocampal astrocytes. However, the molecular identifications of the K(+) channels underlying this passive conductance remain unknown. We provide the following evidence supporting significant contribution of the two-pore domain K(+) channel (K(2P)) isoforms, TWIK-1 and TREK-1, to this conductance. First, both passive astrocytes and the cloned rat TWIK-1 and TREK-1 channels expressed in CHO cells conduct significant amounts of Cs(+) currents, but vary in their relative P(Cs)/P(K) permeability, 0.43, 0.10, and 0.05, respectively. Second, quinine, which potently inhibited TWIK-1 (IC(50) = 85 microm) and TREK-1 (IC(50) = 41 microm) currents, also inhibited astrocytic passive conductance by 58% at a concentration of 200 microm. Third, a moderate sensitivity of passive conductance to low extracellular pH (6.0) supports a combined expression of acid-insensitive TREK-1, and to a lesser extent, acid-sensitive TWIK-1. Fourth, the astrocyte passive conductance showed low sensitivity to extracellular Ba(2+), and extracellular Ba(2+) blocked TWIK-1 channels at an IC(50) of 960 microm and had no effect on TREK-1 channels. Finally, an immunocytochemical study showed colocalization of TWIK-1 and TREK-1 proteins with the astrocytic markers GLAST and GFAP in rat hippocampal stratum radiatum. In contrast, another K(2P) isoform TASK-1 was mainly colocalized with the neuronal marker NeuN in hippocampal pyramidal neurons and was expressed at a much lower level in astrocytes. These results support TWIK-1 and TREK-1 as being the major components of the long-sought K(+) channels underlying the passive conductance of mature hippocampal astrocytes.
Collapse
|
24
|
Sypecka J, Sarnowska A, Domanska-Janik K. Crucial role of the local micro-environment in fate decision of neonatal rat NG2 progenitors. Cell Prolif 2009; 42:661-71. [PMID: 19614677 DOI: 10.1111/j.1365-2184.2009.00618.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The fate choice of neural progenitor cells could be dictated by local cellular environment of the adult CNS. The aim of our study was to investigate the effect of hippocampal tissue on differentiation and maturation of oligodendrocyte NG2 precursor cells. MATERIALS AND METHODS Hippocampal slice culture was established from the brains of 7-day-old rats. NG2 precursor cells, obtained from a 12-day-old mixed primary culture of neonatal rat cerebral hemispheres, were labelled with chloromethyl-fluorescein-diacetete and seeded on the hippocampal slices. After 7-14 days in co-culture, cells were stained with neural markers. RESULTS NG2 cells differentiated predominantly into oligodendrocytes, presenting various stages of maturation: progenitors (NG2), pre-oligodendrocytes (O4) and finally mature GalC-positive cells. However, except for a few cells with astrocyte-specific S100b staining, a considerable number of these cells differentiated into neurons: TUJ(+) and even MAP-2(+) cells were frequently observed. Moreover, a certain population of these cells preserved proliferative properties of primary precursor cells, as revealed by Ki67 expression. CONCLUSIONS The neuronal micro-environment provided by the culture of hippocampal slices is potent for induction of neurogenesis from oligodendrocyte NG2(+)/PDGFRalpha(+)/CNP(+) progenitor cells and promotes their differentiation not only into macroglia but also into neurons. It also sustains their proliferative capacity. The results indicate the crucial role of the local cellular environment in fate decision of primary NG2(+) multipotent neural progenitor cells, which may affect their behaviour after transplantation into the central nervous system.
Collapse
Affiliation(s)
- J Sypecka
- NeuroRepair Department, Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
25
|
Chen PH, Cai WQ, Wang LY, Deng QY. A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain. Brain Res 2008; 1243:27-37. [DOI: 10.1016/j.brainres.2008.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/18/2008] [Accepted: 09/10/2008] [Indexed: 12/29/2022]
|