1
|
Gomaa MM, Nabil El Achy S, Hezema NN. Could metformin modulate the outcome of chronic murine toxoplasmosis? Acta Trop 2024; 258:107339. [PMID: 39084481 DOI: 10.1016/j.actatropica.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Toxoplasmosis is a pervasive parasitic infection possessing a chief impact on both public health and veterinary medicine. Unfortunately, the commercially-available anti-Toxoplasma agents have either serious side effects or diminished efficiency, specifically on the Toxoplasma tissue cysts. In the present study, metformin (The first-line treatment for type 2 diabetes mellitus) was investigated for the first time against chronic cerebral toxoplasmosis in mice model experimentally-infected with ME49 strain versus spiramycin. Two metformin regimens were applied; starting one week before the infection and four weeks PI. Parasitological, ultrastructural, histopathological, immunohistochemical, immunological, and biochemical assessments were performed. The anti-parasitic effect of metformin was granted by the statistically-significant reduction in tissue-cyst burden in both treatment regimens. This was accompanied by markedly-mutilated ultrastructure and profound amelioration of the cerebral histopathology with remarkable decline in the brain CD4+ and CD8+ T cell count. Besides, diminution of anti-Toxoplasma IgG and brain GSH levels was evident. Ultimately, the present findings highlighted the powerful promising therapeutic role of metformin in the management of chronic toxoplasmosis on a basis of anti-parasitic, anti-inflammatory, and anti-oxidant possessions.
Collapse
Affiliation(s)
- Maha Mohamed Gomaa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Nassef Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Zheng Z, Lu X, Zhou D, Deng XF, Liu QX, Liu XB, Zhang J, Li YQ, Zheng H, Dai JG. A novel enemy of cancer: recent investigations into protozoan anti-tumor properties. Front Cell Infect Microbiol 2024; 13:1325144. [PMID: 38274735 PMCID: PMC10808745 DOI: 10.3389/fcimb.2023.1325144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer remains a significant global health issue, despite advances in screening and treatment. While existing tumor treatment protocols such as surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy have proven effective in enhancing the prognosis for some patients, these treatments do not benefit all patients. Consequently, certain types of cancer continue to exhibit a relatively low 5-year survival rate. Therefore, the pursuit of novel tumor intervention strategies may help improve the current effectiveness of tumor treatment. Over the past few decades, numerous species of protozoa and their components have exhibited anti-tumor potential via immune and non-immune mechanisms. This discovery introduces a new research direction for the development of new and effective cancer treatments. Through in vitro experiments and studies involving tumor-bearing mice, the anti-tumor ability of Toxoplasma gondii, Plasmodium, Trypanosoma cruzi, and other protozoa have unveiled diverse mechanisms by which protozoa combat cancer, demonstrating encouraging prospects for their application. In this review, we summarize the anti-tumor ability and anti-tumor mechanisms of various protozoa and explore the potential for their clinical development and application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third Military) Medical University, Chongqing, China
| | - Ji-gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third Military) Medical University, Chongqing, China
| |
Collapse
|
3
|
Xiao J, Savonenko A, Yolken RH. Strain-specific pre-existing immunity: A key to understanding the role of chronic Toxoplasma infection in cognition and Alzheimer's diseases? Neurosci Biobehav Rev 2022; 137:104660. [PMID: 35405182 DOI: 10.1016/j.neubiorev.2022.104660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Toxoplasma exposure can elicit cellular and humoral immune responses. In the case of chronic Toxoplasma infection, these immune responses are long-lasting. Some studies suggest that pre-existing immunity from Toxoplasma infection can shape immune responses and resistance to other pathogens and brain insults later in life. Much evidence has been generated suggesting Toxoplasma infection may contribute to cognitive impairment in the elderly. However, there have also been studies that disagree with the conclusion. Toxoplasma has many strain types, with virulence being the most notable difference. There is also considerable variation in the outcomes following Toxoplasma exposure ranging from resolved to persistent infection. Therefore, the brain microenvironment, particularly cellular constituents, differs based on the infecting strain (virulent versus hypovirulent) and infection stage (resolved versus persistent). Such difference might play a critical role in determining the outcome of the host on subsequent challengings to the brain. The ability of Toxoplasma strains to set up distinct stages for neurodegenerative pathology through varying degrees of virulence provides unique experimental tools for characterizing these pathways.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Lee SH, Jung BK, Song H, Seo HG, Chai JY, Oh BM. Neuroprotective Effect of Chronic Intracranial Toxoplasma gondii Infection in a Mouse Cerebral Ischemia Model. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:461-466. [PMID: 32871641 PMCID: PMC7462801 DOI: 10.3347/kjp.2020.58.4.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade various organs in the host body, including the central nervous system. Chronic intracranial T. gondii is known to be associated with neuroprotection against neurodegenerative diseases through interaction with host brain cells in various ways. The present study investigated the neuroprotective effects of chronic T. gondii infection in mice with cerebral ischemia experimentally produced by middle cerebral artery occlusion (MCAO) surgery. The neurobehavioral effects of cerebral ischemia were assessed by measurement of Garcia score and Rotarod behavior tests. The volume of brain ischemia was measured by triphenyltetrazolium chloride staining. The expression levels of related genes and proteins were determined. After cerebral ischemia, corrected infarction volume was significantly reduced in T. gondii infected mice, and their neurobehavioral function was significantly better than that of the uninfection control group. Chronic T. gondii infection induced the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in the brain before MCAO. T. gondii infection also increased the expression of vascular endothelial growth factor after the cerebral ischemia. It is suggested that chronic intracerebral infection of T. gondii may be a potential preconditioning strategy to reduce neural deficits associated with cerebral ischemia and induce brain ischemic tolerance through the regulation of HIF-1α expression.
Collapse
Affiliation(s)
- Seung Hak Lee
- Department of Rehabilitation Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07653, Korea
| | - Hyemi Song
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07653, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, 03080 Seoul, Korea
| | - Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07653, Korea.,Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, 03080 Seoul, Korea
| |
Collapse
|
5
|
Aging with Toxoplasma gondii results in pathogen clearance, resolution of inflammation, and minimal consequences to learning and memory. Sci Rep 2020; 10:7979. [PMID: 32409672 PMCID: PMC7224383 DOI: 10.1038/s41598-020-64823-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Persistent inflammation has been identified as a contributor to aging-related neurodegenerative disorders such as Alzheimer's disease. Normal aging, in the absence of dementia, also results in gradual cognitive decline and is thought to arise, in part, because of a chronic pro-inflammatory state in the brain. Toxoplasma gondii is an obligate intracellular parasite that establishes a persistent, asymptomatic infection of the central nervous system (CNS) accompanied by a pro-inflammatory immune response in many of its hosts, including humans and rodents. Several studies have suggested that the inflammation generated by certain strains of T. gondii infection can be neuroprotective in the context of a secondary insult like beta-amyloid accumulation or stroke. Given these neuroprotective studies, we hypothesized that a prolonged infection with T. gondii may protect against age-associated decline in cognition. To test this hypothesis, we infected young adult mice with either of two genetically distinct, persistent T. gondii strains (Prugniaud/type II/haplogroup 2 and CEP/type III/haplogroup 3) and monitored mouse weight, survival, and learning and memory over the ensuing 20 months. At the end of the study, we evaluated CNS inflammation and parasite burden in the surviving mice. We found that parasite infection had no impact on age-associated decline in learning and memory and that by 20 months post infection, in the surviving mice, we found no evidence of parasite DNA, cysts, or inflammation in the CNS. In addition, we found that mice infected with type III parasites, which are supposed to be less virulent than the type II parasites, had a lower rate of long-term survival. Collectively, these data indicate that T. gondii may not cause a life-long CNS infection. Rather, parasites are likely slowly cleared from the CNS and infection and parasite clearance neither positively nor negatively impacts learning and memory in aging.
Collapse
|
6
|
Abstract
Toxoplasma gondii is a ubiquitous, intracellular protozoan parasite with a broad range of intermediate hosts, including humans and rodents. In many hosts, T. gondii establishes a latent long-term infection by converting from its rapidly dividing or lytic form to its slowly replicating and encysting form. In humans and rodents, the major organ for encystment is the central nervous system (CNS), which has led many to investigate how this persistent CNS infection might influence rodent and human behavior and, more recently, neurodegenerative diseases. Toxoplasma gondii is a ubiquitous, intracellular protozoan parasite with a broad range of intermediate hosts, including humans and rodents. In many hosts, T. gondii establishes a latent long-term infection by converting from its rapidly dividing or lytic form to its slowly replicating and encysting form. In humans and rodents, the major organ for encystment is the central nervous system (CNS), which has led many to investigate how this persistent CNS infection might influence rodent and human behavior and, more recently, neurodegenerative diseases. Given the interest in this topic, here we seek to take a global approach to the data for and against the effects of latent T. gondii on behavior and neurodegeneration and the proposed mechanisms that might underlie behavior modifications.
Collapse
|
7
|
Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. Dissecting Amyloid Beta Deposition Using Distinct Strains of the Neurotropic Parasite Toxoplasma gondii as a Novel Tool. ASN Neuro 2017; 9:1759091417724915. [PMID: 28817954 PMCID: PMC5565021 DOI: 10.1177/1759091417724915] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023] Open
Abstract
Genetic and pathologic data suggest that amyloid beta (Aβ), produced by processing of the amyloid precursor protein, is a major initiator of Alzheimer's disease (AD). To gain new insights into Aβ modulation, we sought to harness the power of the coevolution between the neurotropic parasite Toxoplasma gondii and the mammalian brain. Two prior studies attributed Toxoplasma-associated protection against Aβ to increases in anti-inflammatory cytokines (TGF-β and IL-10) and infiltrating phagocytic monocytes. These studies only used one Toxoplasma strain making it difficult to determine if the noted changes were associated with Aβ protection or simply infection. To address this limitation, we infected a third human amyloid precursor protein AD mouse model (J20) with each of the genetically distinct, canonical strains of Toxoplasma (Type I, Type II, or Type III). We then evaluated the central nervous system (CNS) for Aβ deposition, immune cell responses, global cytokine environment, and parasite burden. We found that only Type II infection was protective against Aβ deposition despite both Type II and Type III strains establishing a chronic CNS infection and inflammatory response. Compared with uninfected and Type I-infected mice, both Type II- and Type III-infected mice showed increased numbers of CNS T cells and microglia and elevated pro-inflammatory cytokines, but neither group showed a >2-fold elevation of TGF-β or IL-10. These data suggest that we can now use our identification of protective (Type II) and nonprotective (Type III) Toxoplasma strains to determine what parasite and host factors are linked to decreased Aβ burden rather than simply with infection.
Collapse
Affiliation(s)
| | | | - Wes R. MacDonald
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Jenna Franco
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Anita A. Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Khoshnam SE, Winlow W, Farzaneh M. The Interplay of MicroRNAs in the Inflammatory Mechanisms Following Ischemic Stroke. J Neuropathol Exp Neurol 2017; 76:548-561. [DOI: 10.1093/jnen/nlx036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Carter CJ. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders. J Pathog 2013; 2013:965046. [PMID: 23533776 PMCID: PMC3603208 DOI: 10.1155/2013/965046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/18/2012] [Accepted: 09/10/2012] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P from 8.01E - 05 (ADHD) to 1.22E - 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself.
Collapse
Affiliation(s)
- C. J. Carter
- Polygenic Pathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
10
|
Salat D, Campos M, Montaner J. [Advances in the pathophysiology and management of infections in the acute phase of stroke]. Med Clin (Barc) 2012; 139:681-7. [PMID: 22652018 DOI: 10.1016/j.medcli.2012.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/14/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022]
Abstract
Infection in the acute phase of stroke has been identified as an independent predictor of poor outcome, both in the short and intermediate term. Various factors raising the risk of developing an infection (exposure to multiple pathogens, disruption of the protective function of the mucous membranes and a state of relative immunosuppression) coexist during the acute phase of stroke. Several risk factors have been identified for their development (especially increasing age and stroke severity). It has been proposed that infection contributes to a worse prognosis through different mechanisms, notably the development of an inflammatory response to brain tissue (with a potential to add secondary damage to that caused by the ischemic insult). Clinical trials evaluating the prophylactic and early administration of antibiotics to reduce the incidence of infection in the acute phase of stroke have yielded inconsistent results. Immunomodulating strategies, which may provide therapeutic alternatives in the future, are currently being evaluated.
Collapse
Affiliation(s)
- David Salat
- Laboratorio de Investigación Neurovascular, Unidad Neurovascular, Departamento de Neurología, Hospital Vall d'Hebron, Barcelona, España
| | | | | |
Collapse
|
11
|
Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10:471-80. [PMID: 21511199 DOI: 10.1016/s1474-4422(11)70066-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is the second most common cause of death worldwide and a major cause of acquired disability in adults. Despite tremendous progress in understanding the pathophysiology of stroke, translation of this knowledge into effective therapies has largely failed, with the exception of thrombolysis, which only benefits a small proportion of patients. Systemic and local immune responses have important roles in causing stroke and are implicated in the primary and secondary progression of ischaemic lesions, as well as in repair, recovery, and overall outcome after a stroke. However, potential therapeutic targets in the immune system and inflammatory responses have not been well characterised. Development of novel and effective therapeutic strategies for stroke will require further investigation of these pathways in terms of their temporal profile (before, during, and after stroke) and risk-to-benefit therapeutic ratio of modulating them.
Collapse
Affiliation(s)
- Richard Macrez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, UMR CNRS 6232 Ci-NAPs, Cyceron, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 2009; 22:294-301. [DOI: 10.1097/wco.0b013e32832b4db3] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|