1
|
Miranda M, Giachero M, Weisstaub NV, Morici JF. Editorial: Updates on memory modulation in health and disease. Front Behav Neurosci 2023; 17:1205371. [PMID: 37214642 PMCID: PMC10193039 DOI: 10.3389/fnbeh.2023.1205371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Affiliation(s)
- Magdalena Miranda
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Marcelo Giachero
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Noelia V. Weisstaub
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Institut du Fer a Moulin, UMR-S 1270, INSERM and Sorbonne Univerité, Paris, France
| |
Collapse
|
2
|
İlhan SÖ, Fincan GSÖ, Okçay Y, Koç DS, Aşkın Cİ, Kibar AK, Vural İM, Sarıoğlu Y. Enhancing effect of nicotine on electrical field stimulation elicited contractile responses in isolated rabbit bladder straight muscle; the role of cannabinoid and vanilloid receptors. Turk J Med Sci 2022; 52:1814-1820. [PMID: 36945969 PMCID: PMC10390188 DOI: 10.55730/1300-0144.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nicotine acts as an agonist of nicotinic acetylcholine receptors (nAChR). These receptors belong to a superfamily of ligand-gated ion channels. We previously demonstrated that nicotine increased electrical field stimulation (EFS)-induced contractile or relaxation responses, possibly by facilitating neurotransmitter release from nerve terminals in various rabbit tissues. Studies have shown that there is an interaction between the endocannabinoid and nicotinic systems. This study aimed to investigate the interaction between nicotine and the endocannabinoid system in the rabbit urine bladder and also investigate the enhancing effect of nicotine on EFS-induced contractile responses in rabbit isolated bladder smooth muscle and its interaction with the endocannabinoid system. METHODS The New Zealand albino male adult rabbits were used for this study. Following scarification, the urine bladder was rapidly excised, and then uniform strips were prepared. Each strip was mounted under 1 g isometric resting tension in an organ bath containing 20 mL of Krebs-Henseleit solution. After obtaining EFS-induced contractile responses, 10-4 M concentrations of nicotine were applied to the preparations, and EFS was stopped after 5 stimulations. Following washing, the same experimental procedure was performed with the same tissue in the presence of AM251 (a cannabinoid CB1R antagonist, 10-6 M), AM630 (a cannabinoid CB2R antagonist, 10-6 M), and capsazepine (a vanilloid receptor antagonist, 3 × 10-6 M). RESULTS Nicotine enhanced the EFS-induced contraction responses by 17.16% ± 2.81% at a 4-Hz stimulation frequency. Cannabinoid receptor antagonists AM251 and AM630 reduced this increasing effect of nicotine although it was not significant and vanilloid receptor antagonist capsazepine did not significantly alter the nicotines' effect. DISCUSSION These results show that enhancing effect of nicotine in the smooth muscle of the rabbit bladder, even though it was not significant endocannabinoid system possibly have a role in nicotines' effect.
Collapse
Affiliation(s)
- Sevil Özger İlhan
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | - Yağmur Okçay
- Department of Pharmacology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Derya Sebile Koç
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Celil İlker Aşkın
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayşe Kübra Kibar
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - İsmail Mert Vural
- Department of Pharmacology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Yusuf Sarıoğlu
- Department of Medical Pharmacology, Faculty of Medicine, İstinye University, İstanbul, Turkey
| |
Collapse
|
3
|
Hunter SK, Hoffman MC, D’Alessandro A, Wyrwa A, Noonan K, Zeisel SH, Law AJ, Freedman R. Prenatal choline, cannabis, and infection, and their association with offspring development of attention and social problems through 4 years of age. Psychol Med 2022; 52:3019-3028. [PMID: 33491615 PMCID: PMC8310535 DOI: 10.1017/s0033291720005061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Prenatal choline is a key nutrient, like folic acid and vitamin D, for fetal brain development and subsequent mental function. We sought to determine whether effects of higher maternal plasma choline concentrations on childhood attention and social problems, found in an initial clinical trial of choline supplementation, are observed in a second cohort. METHODS Of 183 mothers enrolled from an urban safety net hospital clinic, 162 complied with gestational assessments and brought their newborns for study at 1 month of age; 83 continued assessments through 4 years of age. Effects of maternal 16 weeks of gestation plasma choline concentrations ⩾7.07 μM, 1 s.d. below the mean level obtained with supplementation in the previous trial, were compared to lower levels. The Attention Problems and Withdrawn Syndrome scales on Child Behavior Checklist 1½-5 were the principal outcomes. RESULTS Higher maternal plasma choline was associated with lower mean Attention Problems percentiles in children, and for male children, with lower Withdrawn percentiles. Higher plasma choline concentrations also reduced Attention Problems percentiles for children of mothers who used cannabis during gestation as well as children of mothers who had gestational infection. CONCLUSIONS Prenatal choline's positive associations with early childhood behaviors are found in a second, more diverse cohort. Increases in attention problems and social withdrawal in early childhood are associated with later mental illnesses including attention deficit disorder and schizophrenia. Choline concentrations in the pregnant women in this study replicate other research findings suggesting that most pregnant women do not have adequate choline in their diets.
Collapse
Affiliation(s)
- Sharon K. Hunter
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
| | - M. Camille Hoffman
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Anna Wyrwa
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kathleen Noonan
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
| | - Steven H. Zeisel
- Departments of Nutrition and Pediatrics, University of North Carolina, Chapel Hill, NC 27599
| | - Amanda J. Law
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Robert Freedman
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
4
|
Vural IM, Ozturk Fincan GS, Koc DS, Okcay Y, Askin CI, Kibar AK, Ilhan SO, Sarioglu Y. Effects of cannabinoid and vanilloid receptor antagonists on nicotine induced relaxation response enhancement in rabbit corpus cavernosum. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:514-519. [PMID: 35656074 PMCID: PMC9150803 DOI: 10.22038/ijbms.2022.62222.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
Objectives Endocannabinoids and nicotine regulate the neurotransmitter release in different central and peripheral synapses. Various studies in the literature demonstrate the interaction between endocannabinoid and nicotinic systems, especially in the central nervous system. The interaction between nicotinic and endocannabinoid systems was investigated in this study. We aimed to show the effects of cannabinoid and vanilloid receptor antagonists on nicotine-induced relaxation response increases in rabbit corpus cavernosum. Materials and Methods From a total of seven male albino rabbits, three or four equal strips were cut from each corpus cavernosum and inserted in isolated organ baths. Tissues were contracted with phenylephrine (3×10-5 M). After contraction reached a plateau, strips were stimulated with EFS, and with the stabilization of EFS relaxation responses, 10-4 M of nicotine was administered to tissues. After that, in order to investigate the effects of AM251 (CB1 antagonist), AM630 (CB2 inverse agonist) or capsazepine (a vanilloid receptor antagonist) were given to different tissues, after the resting period. Results Nicotine (10-4 M) increased the EFS-induced relaxation responses (14.60%±2.94%, P<0.05). AM630 decreased the enhancement of nicotine-induced EFS relaxation responses (nicotine 10-4 M enhancement: 17.16%±3.19%; nicotine 10-4 M enhancement in the presence of AM630 10-6 M: 4.44%±3.43% P<0.05; n=6), whereas effects of AM251 and capsazepine were not significant. Conclusion In the present study, nicotine increased the amplitudes of EFS-induced relaxation responses probably via nicotinic acetylcholine receptors located on the nitrergic nerves of the corpus cavernosum. We showed the role of cannabinoid-like endo-ligands in nicotine-induced enhancement via CB2 receptors but not CB1 and VR1 receptors.
Collapse
Affiliation(s)
- Ismail Mert Vural
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey,Corresponding author: Ismail Mert Vural. Pharmacology Department, Gulhane Faculty of Pharmacy, University of Health Sciences Turkey, Etlik mah. Kecioren, 06018, Ankara/Turkey. ;
| | | | - Derya Sebile Koc
- Department of Medical Pharmacology, School of Medicine, Gazi University, Ankara, Turkey
| | - Yagmur Okcay
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Celil Ilker Askin
- Department of Medical Pharmacology, School of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Kubra Kibar
- Department of Medical Pharmacology, School of Medicine, Gazi University, Ankara, Turkey
| | - Sevil Ozger Ilhan
- Department of Medical Pharmacology, School of Medicine, Gazi University, Ankara, Turkey
| | - Yusuf Sarioglu
- Department of Medical Pharmacology, School of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
5
|
Thomason ME, Palopoli AC, Jariwala NN, Werchan DM, Chen A, Adhikari S, Espinoza-Heredia C, Brito NH, Trentacosta CJ. Miswiring the brain: Human prenatal Δ9-tetrahydrocannabinol use associated with altered fetal hippocampal brain network connectivity. Dev Cogn Neurosci 2021; 51:101000. [PMID: 34388638 PMCID: PMC8363827 DOI: 10.1016/j.dcn.2021.101000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence supports a link between maternal prenatal cannabis use and altered neural and physiological development of the child. However, whether cannabis use relates to altered human brain development prior to birth, and specifically, whether maternal prenatal cannabis use relates to connectivity of fetal functional brain systems, remains an open question. The major objective of this study was to identify whether maternal prenatal cannabis exposure (PCE) is associated with variation in human brain hippocampal functional connectivity prior to birth. Prenatal drug toxicology and fetal fMRI data were available in a sample of 115 fetuses [43 % female; mean age 32.2 weeks (SD = 4.3)]. Voxelwise hippocampal connectivity analysis in a subset of age and sex-matched fetuses revealed that PCE was associated with alterations in fetal dorsolateral, medial and superior frontal, insula, anterior temporal, and posterior cingulate connectivity. Classification of group differences by age 5 outcomes suggest that compared to the non-PCE group, the PCE group is more likely to have increased connectivity to regions associated with less favorable outcomes and to have decreased connectivity to regions associated with more favorable outcomes. This is preliminary evidence that altered fetal neural connectome may contribute to neurobehavioral vulnerability observed in children exposed to cannabis in utero.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA; Department of Population Health, New York University Medical Center, New York, NY, USA; Neuroscience Institute, New York University Medical Center, New York, NY, USA.
| | - Ava C Palopoli
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Nicki N Jariwala
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Denise M Werchan
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Alan Chen
- Department of Population Health, New York University Medical Center, New York, NY, USA
| | - Samrachana Adhikari
- Department of Population Health, New York University Medical Center, New York, NY, USA
| | - Claudia Espinoza-Heredia
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Natalie H Brito
- Department of Applied Psychology, New York University, New York, NY, USA
| | | |
Collapse
|
6
|
Kang YJ, Clement EM, Park IH, Greenfield LJ, Smith BN, Lee SH. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy. Exp Neurol 2021; 342:113724. [PMID: 33915166 DOI: 10.1016/j.expneurol.2021.113724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Temporal lobe epilepsy (TLE) is characterized by recurrent spontaneous seizures and behavioral comorbidities. Reduced hippocampal theta oscillations and hyperexcitability that contribute to cognitive deficits and spontaneous seizures are present beyond the sclerotic hippocampus in TLE. However, the mechanisms underlying compromised network oscillations and hyperexcitability observed in circuits remote from the sclerotic hippocampus are largely unknown. Cholecystokinin (CCK)-expressing basket cells (CCKBCs) critically participate in hippocampal theta rhythmogenesis, and regulate neuronal excitability. Thus, we examined whether CCKBCs were vulnerable in nonsclerotic regions of the ventral hippocampus remote from dorsal sclerotic hippocampus using the intrahippocampal kainate (IHK) mouse model of TLE, targeting unilateral dorsal hippocampus. We found a decrease in the number of CCK+ interneurons in ipsilateral ventral CA1 regions from epileptic mice compared to those from sham controls. We also found that the number of boutons from CCK+ interneurons was reduced in the stratum pyramidale, but not in other CA1 layers, of ipsilateral hippocampus in epileptic mice, suggesting that CCKBCs are vulnerable. Electrical recordings showed that synaptic connectivity and strength from surviving CCKBCs to CA1 pyramidal cells (PCs) were similar between epileptic mice and sham controls. In agreement with reduced CCKBC number in TLE, electrical recordings revealed a significant reduction in amplitude and frequency of IPSCs in CA1 PCs evoked by carbachol (commonly used to excite CCK+ interneurons) in ventral CA1 regions from epileptic mice versus sham controls. These findings suggest that loss of CCKBCs beyond the hippocampal lesion may contribute to hyperexcitability and compromised network oscillations in TLE.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Bret N Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Sang-Hun Lee
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
7
|
Wang Z, Liu T, Yin C, Li Y, Gao F, Yu L, Wang Q. Electroacupuncture Pretreatment Ameliorates Anesthesia and Surgery-Induced Cognitive Dysfunction via Activation of an α7-nAChR Signal in Aged Rats. Neuropsychiatr Dis Treat 2021; 17:2599-2611. [PMID: 34413646 PMCID: PMC8370114 DOI: 10.2147/ndt.s322047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) after anesthesia and surgery (AS) is a common complication in the elderly population. A cholinergic-dependent signal, the alpha7-nicotinic acetylcholine receptor (α7-nAChR), has been suggested to regulate cognitive processes in a variety of neurologic diseases. In the current study, we determined whether electroacupuncture (EA) pretreatment ameliorates AS-induced POCD in aged rats, as well as the underlying mechanism. METHODS Male Sprague-Dawley rats (20 months old) were randomly assigned to the following 5 groups (n=12): vehicle; POCD (tibial fracture surgery); EA plus POCD; EA plus POCD and alpha-bungarotoxin (α-BGT); and POCD plus α-BGT groups. Alpha-bungarotoxin (1 μg/kg), a selective antagonist of α7-nAChR, was administrated via intraperitoneal injection before EA. Thirty days post-AS, the Morris water maze and a novel objective recognition test were used to evaluate cognitive function. Neuronal amount, apoptosis, microglial activation, percentage of high mobility group box 1 (HMGB1)- and nuclear factor-κB (NF-κB)-positive microglia, and levels of HMGB-1 downstream factors, including NF-κB, interleukin-6 (IL-6), and IL-1β, were detected by Nissl staining, immunofluorescence, and Western blot assays. RESULTS EA pretreatment significantly increased crossing platform times and elevated the time with a novel object, restored the quantity of neurons, decreased TUNEL-positive neurons, alleviated activation of microglia, downregulated expression of HMGB1 and NF-κB in the microglia, and reduced levels of phosphor-NF-κB, IL-6, and IL-1β 35 days after AS, while α-BGT partially reversed these changes. CONCLUSION EA pretreatment improved AS-induced POCD in aged rats, and the underlying mechanism may be associated with inhibition of HMGB1-NF-κB via an α7-nAChR signal in the microglia.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China.,Department of Anesthesiology, Handan Central Hospital, Handan, Hebei, People's Republic of China
| | - Tianlin Liu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Fang Gao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Lili Yu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| |
Collapse
|
8
|
Hoffman MC, Hunter SK, D’Alessandro A, Noonan K, Wyrwa A, Freedman R. Interaction of maternal choline levels and prenatal Marijuana's effects on the offspring. Psychol Med 2020; 50:1716-1726. [PMID: 31364525 PMCID: PMC7055467 DOI: 10.1017/s003329171900179x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study investigated whether higher maternal choline levels mitigate effects of marijuana on fetal brain development. Choline transported into the amniotic fluid from the mother activates α7-nicotinic acetylcholine receptors on fetal cerebro-cortical inhibitory neurons, whose development is impeded by cannabis blockade of their cannabinoid-1(CB1) receptors. METHODS Marijuana use was assessed during pregnancy from women who later brought their newborns for study. Mothers were informed about choline and other nutrients, but not specifically for marijuana use. Maternal serum choline was measured at 16 weeks gestation. RESULTS Marijuana use for the first 10 weeks gestation or more by 15% of mothers decreased newborns' inhibition of evoked potentials to repeated sounds (d' = 0.55, p < 0.05). This effect was ameliorated if women had higher gestational choline (rs = -0.50, p = 0.011). At 3 months of age, children whose mothers continued marijuana use through their 10th gestational week or more had poorer self-regulation (d' = -0.79, p < 0.05). This effect was also ameliorated if mothers had higher gestational choline (rs = 0.54, p = 0.013). Maternal choline levels correlated with the children's improved duration of attention, cuddliness, and bonding with parents. CONCLUSIONS Prenatal marijuana use adversely affects fetal brain development and subsequent behavioral self-regulation, a precursor to later, more serious problems in childhood. Stopping marijuana use before 10 weeks gestational age prevented these effects. Many mothers refuse to cease use because of familiarity with marijuana and belief in its safety. Higher maternal choline mitigates some of marijuana's adverse effects on the fetus.
Collapse
Affiliation(s)
- M. Camille Hoffman
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- Department of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Sharon K. Hunter
- Department of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Kathleen Noonan
- Department of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Anna Wyrwa
- Department of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
9
|
de Jong IE, Mørk A. Antagonism of the 5-HT 6 receptor – Preclinical rationale for the treatment of Alzheimer's disease. Neuropharmacology 2017; 125:50-63. [DOI: 10.1016/j.neuropharm.2017.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022]
|
10
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
11
|
Gass N, Weber-Fahr W, Sartorius A, Becker R, Didriksen M, Stensbøl TB, Bastlund JF, Meyer-Lindenberg A, Schwarz AJ. An acetylcholine alpha7 positive allosteric modulator rescues a schizophrenia-associated brain endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7. Eur Neuropsychopharmacol 2016; 26:1150-60. [PMID: 27061851 DOI: 10.1016/j.euroneuro.2016.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
The 15q13.3 microdeletion copy number variation is strongly associated with schizophrenia and epilepsy. The CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is hypothesized to be one of the main genes in this deletion causing the neuropsychiatric phenotype. Here we used a recently developed 15q13.3 microdeletion mouse model to explore whether an established schizophrenia-associated connectivity phenotype is replicated in a murine model, and whether positive modulation of nAChA7 receptor might pharmacologically normalize the connectivity patterns. Resting-state fMRI data were acquired from male mice carrying a hemizygous 15q13.3 microdeletion (N=9) and from wild-type mice (N=9). To study the connectivity profile of 15q13.3 mice and test the effect of nAChA7 positive allosteric modulation, the 15q13.3 mice underwent two imaging sessions, one week apart, receiving a single intraperitoneal injection of either 15mg/kg Lu AF58801 or saline. The control group comprised wild-type mice treated with saline. We performed seed-based functional connectivity analysis to delineate aberrant connectivity patterns associated with the deletion (15q13.3 mice (saline treatment) versus wild-type mice (saline treatment)) and their modulation by Lu AF58801 (15q13.3 mice (Lu AF58801 treatment) versus 15q13.3 mice (saline treatment)). Compared to wild-type mice, 15q13.3 mice evidenced a predominant hyperconnectivity pattern. The main effect of Lu AF58801 was a normalization of elevated functional connectivity between prefrontal and frontal, hippocampal, striatal, thalamic and auditory regions. The strongest effects were observed in brain regions expressing nAChA7Rs, namely hippocampus, cerebral cortex and thalamus. These effects may underlie the antiepileptic, pro-cognitive and auditory gating deficit-reversal effects of nAChA7R stimulation.
Collapse
Affiliation(s)
- Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | | | | | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Adam J Schwarz
- Tailored Therapeutics - Neuroscience, Eli Lilly and Company, Indianapolis, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
12
|
Helboe L, Egebjerg J, de Jong IEM. Distribution of serotonin receptor 5-HT6 mRNA in rat neuronal subpopulations: A double in situ hybridization study. Neuroscience 2015; 310:442-54. [PMID: 26424380 DOI: 10.1016/j.neuroscience.2015.09.064] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/01/2022]
Abstract
The 5-HT6 receptor (5-HT6R) is almost exclusively expressed in the brain and has emerged as a promising target for cognitive disorders, including Alzheimer's disease. In the present study, we have determined the cell types on which the 5-HT6R is expressed by colocalizing 5-HT6R mRNA with that of a range of neuronal and interneuronal markers in the rat brain. Here, we show that 5-HT6R mRNA was expressed at high levels in medium spiny neurons in caudate putamen and in nucleus accumbens, as well as in the olfactory tubercle. Striatal 5-HT6R mRNA was colocalized with both dopamine D1 and D2 receptor mRNA. 5-HT6R mRNA was moderately expressed in the hippocampus and throughout cortical regions in glutamatergic neurons coexpressing vGluT1. A subset of GAD67-positive GABAergic interneurons (approximately 15%) expressed 5-HT6R mRNA in the cortex and hippocampus, the majority of which belonged to the 5-HT3a receptor (5-HT3aR)-expressing subpopulation. In contrast, 5-HT6R mRNA was only expressed to a minor extent in the parvalbumin and somatostatin subpopulations. A subset of calbindin- and calretinin-positive GABAergic interneurons expressed 5-HT6R mRNA while only a very minor fraction of VIP or NPY interneurons in forebrain structures expressed 5-HT6R mRNA. Serotonergic, dopaminergic or cholinergic neurons did not express 5-HT6R mRNA. These data indicate that the 5-HT6R is located on GABAergic and glutamatergic principal neurons, and on a subset of interneurons mainly belonging to the 5-HT3aR subgroup suggesting that the 5-HT6R is positioned to regulate the balance between excitatory and inhibitory signaling in the brain. These data provide new insights into the mechanisms of 5-HT6R signaling.
Collapse
Affiliation(s)
- L Helboe
- Department of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark.
| | - J Egebjerg
- Department of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark.
| | - I E M de Jong
- Department of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark.
| |
Collapse
|
13
|
5-HT receptor-mediated modulation of granule cell inhibition after juvenile stress recovers after a second exposure to adult stress. Neuroscience 2015; 293:67-79. [DOI: 10.1016/j.neuroscience.2015.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
|
14
|
Oz M, Al Kury L, Keun-Hang SY, Mahgoub M, Galadari S. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors. Eur J Pharmacol 2014; 731:100-5. [DOI: 10.1016/j.ejphar.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 01/31/2023]
|
15
|
Localization of α7 nicotinic acetylcholine receptor immunoreactivity on GABAergic interneurons in layers I-III of the rat retrosplenial granular cortex. Neuroscience 2013; 252:443-59. [PMID: 23985568 DOI: 10.1016/j.neuroscience.2013.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023]
Abstract
The rat retrosplenial granular cortex (RSG) receives cholinergic input from the medial septum-diagonal band (MS-DB) of the cholinergic basal forebrain (CBF), with projections terminating in layers I-III of RSG. The modulatory effects of acetylcholine (ACh) on cortical GABAergic interneurons in these layers are mediated by α7 nicotinic acetylcholine receptors (α7nAChRs). α7nAChRs are most abundant in the cerebral cortex and are largely localized to GABAergic interneurons. However, the CBF projection to the RSG has not been studied in detail, and the cellular or subcellular distribution of α7nAChRs in the rat RSG remains unclear. The main objective of this study was to test that α7nAChRs reside on GABAergic interneurons in CBF terminal fields of the rat RSG. First, we set out to define the characteristics of CBF projections from the MS-DB to layers of the RSG using anterograde neural tracing and immunohistochemical labeling with cholinergic markers. These results revealed that the pattern of axon terminal labeling in layer Ia, as well as layer II/III of the RSG is remarkably similar to the pattern of cholinergic axons in the RSG. Next, we investigated the relationship between α7nAChRs, labeled using either α-bungarotoxin or α7nAChR antibody, and the local neurochemical environment by labeling surrounding cells with antibodies against glutamic acid decarboxylase (GAD), parvalbumin (PV) and reelin (a marker of the ionotropic serotonin receptor-expressing GABAergic interneurons). α7nAChRs were found to be localized on both somatodendritic and neuronal elements within subpopulations of GABAergic PV-, reelin-stained and non PV-stained neurons in layers I-III of the RSG. Finally, electron microscopy revealed that α7nAChRs are GAD- and PV-positive cytoplasmic and neuronal elements. These results strongly suggest that ACh released from CBF afferents is transmitted via α7nAChR to GAD-, PV-, and reelin-positive GABAergic interneurons in layers I-III of the RSG.
Collapse
|
16
|
Schulz SB, Heidmann KE, Mike A, Klaft ZJ, Heinemann U, Gerevich Z. First and second generation antipsychotics influence hippocampal gamma oscillations by interactions with 5-HT3 and D3 receptors. Br J Pharmacol 2013; 167:1480-91. [PMID: 22817643 DOI: 10.1111/j.1476-5381.2012.02107.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Disturbed cortical gamma band oscillations (30-80 Hz) have been observed in schizophrenia: positive symptoms of the disease correlate with an increase in gamma oscillation power, whereas negative symptoms are associated with a decrease. EXPERIMENTAL APPROACH Here we investigated the effects of first and second generation antipsychotics (FGAs and SGAs, respectively) on gamma oscillations. The FGAs haloperidol, flupenthixol, chlorpromazine, chlorprothixene and the SGAs clozapine, risperidone, ziprasidone, amisulpride were applied on gamma oscillations induced by acetylcholine and physostigmine in the CA3 region of rat hippocampal slices. KEY RESULTS Antipsychotics inhibited the power of gamma oscillations and increased the bandwidth of the gamma band. Haloperidol and clozapine had the highest inhibitory effects. To determine which receptor is responsible for the alterations in gamma oscillations, the effects of the antipsychotics were plotted against their pK(i) values for 19 receptors and analysed for correlation. Our results indicated that 5-HT(3) receptors have an enhancing effect on gamma oscillations whereas dopamine D(3) receptors inhibit them. To test this prediction, m-chlorophenylbiguanide, PD 128907 and CP 809101, selective agonists at 5-HT(3) , D(3) and 5-HT(2C) receptors were applied and revealed that 5-HT(3) receptors indeed enhanced the gamma power whereas D(3) receptors reduced it. As predicted, 5-HT(2C) receptors had no effects on gamma oscillations. CONCLUSION AND IMPLICATIONS Our data suggest that antipsychotics alter hippocampal gamma oscillations by interacting with 5-HT(3) and dopamine D(3) receptors. Moreover, a correlation of receptor affinities with the biological effects can be used to predict targets for the pharmacological effects of multi-target drugs.
Collapse
Affiliation(s)
- Steffen B Schulz
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany NeuroCure Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Khakpai F, Nasehi M, Haeri-Rohani A, Eidi A, Zarrindast MR. Septo-hippocampo-septal loop and memory formation. Basic Clin Neurosci 2013; 4:5-23. [PMID: 25337323 PMCID: PMC4202558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/23/2012] [Accepted: 12/26/2012] [Indexed: 10/26/2022] Open
Abstract
The Cholinergic and GABAergic fibers of the medial septal/diagonal band of Broca (MS/ DB) area project to the hippocampus and constitute the septo-hippocampal pathway, which has been proven to play a role in learning and memory. In addition, the hippocampus has bidirectional connections with the septum so that to self-regulate of cholinergic input. The activity of septal and hippocampal neurons is modulated by several neurotransmitter systems including glutamatergic neurons from the entorhinal cortex, serotonergic fibers from the raphe nucleus, dopaminergic neurons from the ventral tegmental area (VTA), histaminergic cells from the tuberomammillary nucleus and adrenergic fibers from the locus coeruleus (LC). Thus, changes in the glutamatergic, serotonergic and other systems-mediated transmission in the MS/DB may influence cholinergic or GABAergic transmission in the hippocampus.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran,Corresponding Author: Fatemeh Khakpai, MA, Institute for Cognitive Science Studies (ICSS), Tehran, Iran. P.O.Box 13145-784, Tel:+9821-66402569/ Fax: +9821-66402569. E-mail:
| | - Mohammad Nasehi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Garmsar Branch, Semnan, Iran
| | | | - Akram Eidi
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | |
Collapse
|
18
|
Cea-del Rio CA, McBain CJ, Pelkey KA. An update on cholinergic regulation of cholecystokinin-expressing basket cells. J Physiol 2011; 590:695-702. [PMID: 22199168 DOI: 10.1113/jphysiol.2011.225342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Information processing and transfer within cortical circuits requires precise spatiotemporal coordination of excitatory principal cell activity by a relatively small population of inhibitory interneurons that exhibit remarkable anatomical, molecular and electrophysiological diversity. One subtype of interneuron, the cholecystokinin-expressing basket cell (CCKBC), is particularly well suited to integrate and impart emotional features of an animal's physiological state to principal cell entrainment through the inhibitory network as CCKBCs are highly susceptible to neuromodulation by local and subcortically generated signals commonly associated with 'mood' such as cannabinoids, serotonin and acetylcholine. Here we briefly review recent studies that have elucidated the cellular mechanisms underlying cholinergic regulation of CCKBCs.
Collapse
|
19
|
Abstract
A diversity of GABAergic cell types exist within each brain area, and each cell type is thought to play a unique role in the modulation of principal cell output. Basket cells, whose axon terminals surround principal cell somata and proximal dendrites, have a privileged and influential position for regulating the firing of principal cells. This review explores the dichotomy of the two basket cell classes, cholecystokinin- (CCK) and parvalbumin (PV)-containing basket cells, beginning with differences at the level of the individual cell and subsequently focusing on two ways in which this intrinsic dichotomy is enhanced by extrinsic factors. Neuromodulatory influences, exemplified by the effects of the peptide CCK, dynamically enhance the differential functions of the two cell types. Specifications at the level of the postsynaptic principal cell, including input-specific differences in chloride handling and differences in long-range projection patterns of the principal cell targets, also enhance the distinct network function of basket cells. In this review, new findings will be highlighted concerning the roles of neuromodulatory control and postsynaptic long-range projection pattern in the definition of basket cell function.
Collapse
Affiliation(s)
- Caren Armstrong
- Department of Anatomy & Neurobiology, University of California, Irvine, CA 92617-1280, USA.
| | | |
Collapse
|
20
|
Nerve terminal nicotinic acetylcholine receptors initiate quantal GABA release from perisomatic interneurons by activating axonal T-type (Cav3) Ca²⁺ channels and Ca²⁺ release from stores. J Neurosci 2011; 31:13546-61. [PMID: 21940446 DOI: 10.1523/jneurosci.2781-11.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Release of conventional neurotransmitters is mainly controlled by calcium (Ca²⁺) influx via high-voltage-activated (HVA), Ca(v)2, channels ("N-, P/Q-, or R-types") that are opened by action potentials. Regulation of transmission by subthreshold depolarizations does occur, but there is little evidence that low-voltage-activated, Ca(v)3 ("T-type"), channels take part. GABA release from cortical perisomatic-targeting interneurons affects numerous physiological processes, and yet its underlying control mechanisms are not fully understood. We investigated whether T-type Ca²⁺ channels are involved in regulating GABA transmission from these cells in rat hippocampal CA1 using a combination of whole-cell voltage-clamp, multiple-fluorescence confocal microscopy, dual-immunolabeling electron-microscopy, and optogenetic methods. We show that Ca(v)3.1, T-type Ca²⁺ channels can be activated by α3β4 nicotinic acetylcholine receptors (nAChRs) that are located on the synaptic regions of the GABAergic perisomatic-targeting interneuronal axons, including the parvalbumin-expressing cells. Asynchronous, quantal GABA release can be triggered by Ca²⁺ influx through presynaptic T-type Ca²⁺ channels, augmented by Ca²⁺ from internal stores, following focal microiontophoretic activation of the α3β4 nAChRs. The resulting GABA release can inhibit pyramidal cells. The T-type Ca²⁺ channel-dependent mechanism is not dependent on, or accompanied by, HVA channel Ca²⁺ influx, and is insensitive to agonists of cannabinoid, μ-opioid, or GABA(B) receptors. It may therefore operate in parallel with the normal HVA-dependent processes. The results reveal new aspects of the regulation of GABA transmission and contribute to a deeper understanding of ACh and nicotine actions in CNS.
Collapse
|
21
|
Masiulis I, Yun S, Eisch AJ. The interesting interplay between interneurons and adult hippocampal neurogenesis. Mol Neurobiol 2011; 44:287-302. [PMID: 21956642 DOI: 10.1007/s12035-011-8207-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Irene Masiulis
- UT Southwestern Medical Center, Dallas, TX 75390-9070, USA.
| | | | | |
Collapse
|
22
|
Ledri M, Sørensen AT, Erdelyi F, Szabo G, Kokaia M. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y. Hippocampus 2011; 21:198-211. [DOI: 10.1002/hipo.20740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
24
|
Pietr MD, Knutsen PM, Shore DI, Ahissar E, Vogel Z. Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J Neurophysiol 2010; 104:2532-42. [PMID: 20844105 DOI: 10.1152/jn.01039.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whisking is controlled by multiple, possibly functionally segregated, motor sensory-motor loops. While testing for effects of endocannabinoids on whisking, we uncovered the first known functional segregation of channels controlling whisking amplitude and timing. Channels controlling amplitude, but not timing, were modulated by cannabinoid receptor type 1 (CB1R). Systemic administration of CB1R agonist Δ(9)-tetrahydrocannabinol (Δ(9)-THC) reduced whisking spectral power across all tested doses (1.25-5 mg/kg), whereas whisking frequency was affected at only very high doses (5 mg/kg). Concomitantly, whisking amplitude and velocity were significantly reduced in a dose-dependent manner (25-43 and 26-50%, respectively), whereas cycle duration and bilateral synchrony were hardly affected (3-16 and 3-9%, respectively). Preadministration of CB1R antagonist SR141716A blocked Δ(9)-THC-induced kinematic alterations of whisking, and when administered alone, increased whisking amplitude and velocity but affected neither cycle duration nor synchrony. These findings indicate that whisking amplitude and timing are controlled by separate channels and that endocannabinoids modulate amplitude control channels.
Collapse
|
25
|
Yang KHS, Isaev D, Morales M, Petroianu G, Galadari S, Oz M. The effect of Δ9-tetrahydrocannabinol on 5-HT3 receptors depends on the current density. Neuroscience 2010; 171:40-9. [PMID: 20800662 DOI: 10.1016/j.neuroscience.2010.08.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/02/2010] [Accepted: 08/20/2010] [Indexed: 11/26/2022]
Abstract
The effects of Δ(9)-tetrahydrocannabinol (THC), the psychoactive component of cannabis, on the function of 5-HT type 3 (5-HT(3)) receptors were investigated using a two-electrode voltage clamp technique in Xenopus oocytes, and a whole-cell patch clamp technique in rat nodose ganglion neurons. In oocytes injected with 3 ng cRNA of 5-HT(3A) receptor, THC reversibly inhibited currents evoked with 5-HT (1 μM) in a concentration-dependent manner (IC(50)=1.2 μM). The extent of THC inhibition was inversely correlated with the amount of cRNA injected and the mean 5-HT(3A) receptor current densities. Pretreatment with actinomycin D, which inhibits transcription, decreased the mean 5-HT(3) receptor current density and increased the extent of THC inhibition on 5-HT(3) receptor-mediated currents. The IC(50) values for THC increased from 285 nM to 1.2 μM in oocytes injected with 1 and 3 ng of 5-HT(3A) cRNA, respectively. In radioligand binding studies on membrane preparations of oocytes expressing 5-HT(3A) receptors, THC did not alter the specific binding of a 5-HT(3A) receptor antagonist, [(3)H]GR65630. In the presence of 1 μM THC, the maximum 5-HT-induced response was also inhibited without a significant change in 5-HT potency, indicating that THC acts as a noncompetitive antagonist on 5-HT(3) receptors. In adult rat nodose ganglion neurons, application of 1 μM THC caused a significant inhibition of 5-HT(3) receptors, extent of which correlated with the density of 5-HT-induced currents, indicating that the observed THC effects occur in mammalian neurons. The inhibition of 5-HT(3) receptors by THC may contribute to its pharmacological actions in nociception and emesis.
Collapse
Affiliation(s)
- K H S Yang
- Department of Biological Sciences, Schmid College of Science, Chapman University, One University Drive, Orange, CA 92866, USA
| | | | | | | | | | | |
Collapse
|
26
|
Cea-del Rio CA, Lawrence JJ, Tricoire L, Erdelyi F, Szabo G, McBain CJ. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J Neurosci 2010; 30:6011-24. [PMID: 20427660 PMCID: PMC2883452 DOI: 10.1523/jneurosci.5040-09.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/20/2009] [Accepted: 03/09/2010] [Indexed: 01/22/2023] Open
Abstract
Cholinergic neuromodulation of hippocampal circuitry promotes network oscillations and facilitates learning and memory through cellular actions on both excitatory and inhibitory circuits. Despite widespread recognition that neurochemical content discriminates between functionally distinct interneuron populations, there has been no systematic examination of whether neurochemically distinct interneuron classes undergo differential cholinergic neuromodulation in the hippocampus. Using GFP transgenic mice that enable the visualization of perisomatically targeting parvalbumin-positive (PV+) or cholecystokinin-positive (CCK+) basket cells (BCs), we tested the hypothesis that neurochemically distinct interneuron populations are differentially engaged by muscarinic acetylcholine receptor (mAChR) activation. Cholinergic fiber activation revealed that CCK BCs were more sensitive to synaptic release of ACh than PV BCs. In response to depolarizing current steps, mAChR activation of PV BCs and CCK BCs also elicited distinct cholinergic response profiles, differing in mAChR-induced changes in action potential (AP) waveform, firing frequency, and intrinsic excitability. In contrast to PV BCs, CCK BCs exhibited a mAChR-induced afterdepolarization (mADP) that was frequency and activity-dependent. Pharmacological, molecular, and loss-of-function data converged on the presence of M3 mAChRs in distinguishing CCK BCs from PV BCs. Firing frequency of CCK BCs was controlled through M3 mAChRs but PV BC excitability was altered solely through M1 mAChRs. Finally, upon mAChR activation, glutamatergic transmission enhanced cellular excitability preferentially in CCK BCs but not in PV BCs. Our findings demonstrate that cell type-specific cholinergic specializations are present on neurochemically distinct interneuron subtypes in the hippocampus, revealing an organizing principle that cholinergic neuromodulation depends critically on neurochemical identity.
Collapse
Affiliation(s)
- Christian A. Cea-del Rio
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - J. Josh Lawrence
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, and
| | - Ludovic Tricoire
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Ferenc Erdelyi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Gabor Szabo
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Chris J. McBain
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| |
Collapse
|
27
|
Moriguchi S, Shioda N, Han F, Yeh JZ, Narahashi T, Fukunaga K. Galantamine enhancement of long-term potentiation is mediated by calcium/calmodulin-dependent protein kinase II and protein kinase C activation. Hippocampus 2009; 19:844-54. [DOI: 10.1002/hipo.20572] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Francesconi W, Berton F, Repunte-Canonigo V, Hagihara K, Thurbon D, Lekic D, Specio SE, Greenwell TN, Chen SA, Rice KC, Richardson HN, O'Dell LE, Zorrilla EP, Morales M, Koob GF, Sanna PP. Protracted withdrawal from alcohol and drugs of abuse impairs long-term potentiation of intrinsic excitability in the juxtacapsular bed nucleus of the stria terminalis. J Neurosci 2009; 29:5389-401. [PMID: 19403807 PMCID: PMC2938175 DOI: 10.1523/jneurosci.5129-08.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 11/21/2022] Open
Abstract
The juxtacapsular bed nucleus of the stria terminalis (jcBNST) is activated in response to basolateral amygdala (BLA) inputs through the stria terminalis and projects back to the anterior BLA and to the central nucleus of the amygdala. Here we show a form of long-term potentiation of the intrinsic excitability (LTP-IE) of jcBNST neurons in response to high-frequency stimulation of the stria terminalis. This LTP-IE, which was characterized by a decrease in the firing threshold and increased temporal fidelity of firing, was impaired during protracted withdrawal from self-administration of alcohol, cocaine, and heroin. Such impairment was graded and was more pronounced in rats that self-administered amounts of the drugs sufficient to maintain dependence. Dysregulation of the corticotropin-releasing factor (CRF) system has been implicated in manifestation of protracted withdrawal from dependent drug use. Administration of the selective corticotropin-releasing factor receptor 1 (CRF(1)) antagonist R121919 [2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7-dipropylamino-pyrazolo[1,5-a]pyrimidine)], but not of the CRF(2) antagonist astressin(2)-B, normalized jcBNST LTP-IE in animals with a history of alcohol dependence; repeated, but not acute, administration of CRF itself produced a decreased jcBNST LTP-IE. Thus, changes in the intrinsic properties of jcBNST neurons mediated by chronic activation of the CRF system may contribute to the persistent emotional dysregulation associated with protracted withdrawal.
Collapse
Affiliation(s)
- Walter Francesconi
- Molecular and Integrative Neurosciences Department and
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Fulvia Berton
- Molecular and Integrative Neurosciences Department and
| | | | | | - David Thurbon
- Molecular and Integrative Neurosciences Department and
| | - Dusan Lekic
- Molecular and Integrative Neurosciences Department and
| | - Sheila E. Specio
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Thomas N. Greenwell
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Scott A. Chen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Kenner C. Rice
- National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Heather N. Richardson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Laura E. O'Dell
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Marisela Morales
- Laboratory of Cellular Neurophysiology, National Institutes on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, and
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
29
|
Scherma M, Fadda P, Le Foll B, Forget B, Fratta W, Goldberg SR, Tanda G. The endocannabinoid system: a new molecular target for the treatment of tobacco addiction. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:468-81. [PMID: 19128204 PMCID: PMC3821699 DOI: 10.2174/187152708786927859] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tobacco addiction is one of the leading preventable causes of mortality in the world and nicotine appears to be the main critical psychoactive component in establishing and maintaining tobacco dependence. Several lines of evidence suggest that the rewarding effects of nicotine, which underlie its abuse potential, can be modulated by manipulating the endocannabinoid system. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors reduces or eliminates many behavioral and neurochemical effects of nicotine that are related to its addictive potential. This review will focus on the recently published literature about the role of the endocannabinoid system in nicotine addiction and on the endocannabinoid system as a novel molecular target for the discovery of medications for tobacco dependence.
Collapse
Affiliation(s)
- Maria Scherma
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Paola Fadda
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, and University of Toronto, Toronto, Canada
| | - Benoit Forget
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, and University of Toronto, Toronto, Canada
| | - Walter Fratta
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Gianluigi Tanda
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| |
Collapse
|
30
|
Abstract
This report is based upon a clinical case series describing five patients who volitionally adultered cannabis with a variety of compounds that shared a common trait-cholinergic modulation. They included a nicotinic agonist, muscarinic antagonist and antiacetylcholinesterase compounds. Some of these compounds (e.g. tobacco) are known to exert pharmacokinetic effects upon cannabinoids (e.g. improved drug absorption). Contrarily, our patients claimed that the compounds altered pharmacodynamic 'cannabimimetic' effects. The case series was supported by forensic identification of adulterants and by use of a symptom causality algorithm. A survey of the gray literature and drug culture web sites indicated that the case series portended a larger social phenomenon. Furthermore, many clinical reports, animal behaviour studies and in vitro mechanistic studies substantiated our observations. In conclusion, we provide empirical data regarding a new trend in the drug culture-cholinergic modulation of cannabinoid effects-that presents new research directions.
Collapse
Affiliation(s)
- John M McPartland
- Department of Family Medicine, College of Medicine, University of Vermont, 53 Washington Street Ext., Middlebury, VT 05753, USA.
| | | | | |
Collapse
|
31
|
Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci 2008; 31:317-27. [DOI: 10.1016/j.tins.2008.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 01/26/2023]
|