1
|
Wang X, Sun S, Chen H, Yun B, Zhang Z, Wang X, Wu Y, Lv J, He Y, Li W, Chen L. Identification of key genes and therapeutic drugs for cocaine addiction using integrated bioinformatics analysis. Front Neurosci 2023; 17:1201897. [PMID: 37469839 PMCID: PMC10352680 DOI: 10.3389/fnins.2023.1201897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Cocaine is a highly addictive drug that is abused due to its excitatory effect on the central nervous system. It is critical to reveal the mechanisms of cocaine addiction and identify key genes that play an important role in addiction. Methods In this study, we proposed a centrality algorithm integration strategy to identify key genes in a protein-protein interaction (PPI) network constructed by deferential genes from cocaine addiction-related datasets. In order to investigate potential therapeutic drugs for cocaine addiction, a network of targeted relationships between nervous system drugs and key genes was established. Results Four key genes (JUN, FOS, EGR1, and IL6) were identified and well validated using CTD database correlation analysis, text mining, independent dataset analysis, and enrichment analysis methods, and they might serve as biomarkers of cocaine addiction. A total of seventeen drugs have been identified from the network of targeted relationships between nervous system drugs and key genes, of which five (disulfiram, cannabidiol, dextroamphetamine, diazepam, and melatonin) have been shown in the literature to play a role in the treatment of cocaine addiction. Discussion This study identified key genes and potential therapeutic drugs for cocaine addiction, which provided new ideas for the research of the mechanism of cocaine addiction.
Collapse
|
2
|
López AJ, Johnson AR, Euston TJ, Wilson R, Nolan SO, Brady LJ, Thibeault KC, Kelly SJ, Kondev V, Melugin P, Kutlu MG, Chuang E, Lam TT, Kiraly DD, Calipari ES. Cocaine self-administration induces sex-dependent protein expression in the nucleus accumbens. Commun Biol 2021; 4:883. [PMID: 34272455 PMCID: PMC8285523 DOI: 10.1038/s42003-021-02358-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Substance use disorder (SUD) is a chronic neuropsychiatric condition characterized by long-lasting alterations in the neural circuitry regulating reward and motivation. Substantial work has focused on characterizing the molecular substrates that underlie these persistent changes in neural function and behavior. However, this work has overwhelmingly focused on male subjects, despite mounting clinical and preclinical evidence that females demonstrate dissimilar progression to SUD and responsivity to stimulant drugs of abuse, such as cocaine. Here, we show that sex is a critical biological variable that defines drug-induced plasticity in the nucleus accumbens (NAc). Using quantitative mass spectrometry, we assessed the protein expression patterns induced by cocaine self-administration and demonstrated unique molecular profiles between males and females. We show that 1. Cocaine self-administration induces non-overlapping protein expression patterns in significantly regulated proteins in males and females and 2. Critically, cocaine-induced protein regulation differentially interacts with sex to eliminate basal sexual dimorphisms in the proteome. Finally, eliminating these baseline differences in the proteome is concomitant with the elimination of sex differences in behavior for non-drug rewards. Together, these data suggest that cocaine administration is capable of rewriting basal proteomic function and reward-associated behaviors.
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Tanner J Euston
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rashaun Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- WM Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Kimberly C Thibeault
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Shannon J Kelly
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Veronika Kondev
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Patrick Melugin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - M Gunes Kutlu
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Emily Chuang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- WM Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, New Haven, CT, USA
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Center for Autism, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Zhu R, Bu Q, Fu D, Shao X, Jiang L, Guo W, Chen B, Liu B, Hu Z, Tian J, Zhao Y, Cen X. Toll-like receptor 3 modulates the behavioral effects of cocaine in mice. J Neuroinflammation 2018; 15:93. [PMID: 29571298 PMCID: PMC5865345 DOI: 10.1186/s12974-018-1130-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The nucleus accumbens in the midbrain dopamine limbic system plays a key role in cocaine addiction. Toll-like receptors (TLRs) are important pattern-recognition receptors (PPRs) in the innate immune system that are also involved in drug dependence; however, the detailed mechanism is largely unknown. METHODS The present study was designed to investigate the potential role of TLR3 in cocaine addiction. Cocaine-induced conditioned place preference (CPP), locomotor activity, and self-administration were used to determine the effects of TLR3 in the rewarding properties of cocaine. Lentivirus-mediated re-expression of Tlr3 (LV-TLR3) was applied to determine if restoration of TLR3 expression in the NAc is sufficient to restore the cocaine effect in TLR3-/- mice. The protein levels of phospho-NF-κB p65, IKKβ, and p-IκBα both in the cytoplasm and nucleus of cocaine-induced CPP mice were detected by Western blot. RESULTS We showed that both TLR3 deficiency and intra-NAc injection of TLR3 inhibitors significantly attenuated cocaine-induced CPP, locomotor activity, and self-administration in mice. Importantly, the TLR3-/- mice that received intra-NAc injection of LV-TLR3 displayed significant increases in cocaine-induced CPP and locomotor activity. Finally, we found that TLR3 inhibitor reverted cocaine-induced upregulation of phospho-NF-κB p65, IKKβ, and p-IκBα. CONCLUSIONS Taken together, our results describe that TLR3 modulates cocaine-induced behaviors and provide further evidence supporting a role for central pro-inflammatory immune signaling in drug reward. We propose that TLR3 blockade could be a novel approach to treat cocaine addiction.
Collapse
Affiliation(s)
- Ruiming Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China.,Healthy Food Evaluation Research Center, Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065, China
| | - Dengqi Fu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Xue Shao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Bo Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Bin Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Zhengtao Hu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #28 Gaopeng Street, High Technological Development Zone, Chengdu, 610041, China.
| |
Collapse
|
4
|
Jaworski J, Kalita K, Knapska E. c-Fos and neuronal plasticity: the aftermath of Kaczmarek’s theory. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Liu CH, Ren J, Liu PK. Amphetamine manipulates monoamine oxidase-A level and behavior using theranostic aptamers of transcription factors AP-1/NF-kB. J Biomed Sci 2016; 23:21. [PMID: 26841904 PMCID: PMC4738766 DOI: 10.1186/s12929-016-0239-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice. METHODS We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 μl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity. RESULTS In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p < 0.05, t test), but not activity of the B isomer (MAO-B), in the ventral tegmental area (VTA) and substantia nigra (SN) of C57black6 mice. The change in MAO-A level coincided with a reversed amphetamine-induced restless behavior of mice. Pretreatments with saline, 5ECdsCreB, 5ECdsSP-1, 5ECdsRan or 5ECssAP-1 had no effect. CONCLUSION Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn, diminishes MAO-A ability in the VTA of the mesolimbic dopaminergic pathway that has been implicated in cells under stress especially in the SN and VTA. This study has implications for design for the treatment of drug exposure and perhaps Parkinson's dementia.
Collapse
Affiliation(s)
- Christina H Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Present address: NIH, 6707 Democracy Blvd, Suite 200, Bethesda, MD, 20892, USA
| | - Jiaqian Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Philip K Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
6
|
The neuronal activity-driven transcriptome. Mol Neurobiol 2014; 51:1071-88. [PMID: 24935719 DOI: 10.1007/s12035-014-8772-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Activity-driven transcription is a key event associated with long-lasting forms of neuronal plasticity. Despite the efforts to investigate the regulatory mechanisms that control this complex process and the important advances in the knowledge of the function of many activity-induced genes in neurons, as well as the specific contribution of activity-regulated transcription factors, our understanding of how activity-driven transcription operates at the systems biology level is still very limited. This review focuses on the research of neuronal activity-driven transcription from an "omics" perspective. We will discuss the different high-throughput approaches undertaken to characterize the gene programs downstream of specific activity-regulated transcription factors, including CREB, SRF, MeCP2, Fos, Npas4, and others, and the interplay between epigenetic and transcriptional mechanisms underlying neuronal plasticity changes. Although basic questions remain unanswered and important challenges still lie ahead, the refinement of genome-wide techniques for investigating the neuronal transcriptome and epigenome promises great advances.
Collapse
|
7
|
Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression. Am J Dermatopathol 2014; 35:722-30. [PMID: 23392134 DOI: 10.1097/dad.0b013e31827eaf0b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex.
Collapse
|
8
|
Liu CH, Ren J, Liu CM, Liu PK. Intracellular gene transcription factor protein-guided MRI by DNA aptamers in vivo. FASEB J 2013; 28:464-73. [PMID: 24115049 DOI: 10.1096/fj.13-234229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which transcription factor (TF) protein AP-1 modulates amphetamine's effects on gene transcription in living brains are unclear. We describe here the first part of our studies to investigate these mechanisms, specifically, our efforts to develop and validate aptamers containing the binding sequence of TF AP-1 (5ECdsAP1), in order to elucidate its mechanism of action in living brains. This AP-1-targeting aptamer, as well as a random sequence aptamer with no target (5ECdsRan) as a control, was partially phosphorothioate modified and tagged with superparamagnetic iron oxide nanoparticles (SPIONs), gold, or fluorescein isothiothianate contrast agent for imaging. Optical and transmission electron microscopy studies revealed that 5ECdsAP1 is taken up by endocytosis and is localized in the neuronal endoplasmic reticulum. The results of magnetic resonance imaging (MRI) with SPION-5ECdsAP1 revealed that neuronal AP-1 TF protein levels were elevated in neurons of live male C57black6 mice after amphetamine exposure; however, pretreatment with SCH23390, a dopaminergic receptor antagonist, suppressed this elevation. As studies in transgenic mice with neuronal dominant-negative A-FOS mutant protein, which has no binding affinity for the AP-1 sequence, showed a completely null MRI signal in the striatum, we can conclude that the MR signal reflects specific binding between the 5ECdsAP1 aptamer and endogenous AP-1 protein. Together, these data lend support to the application of 5ECdsAP1 aptamer for intracellular protein-guided imaging and modulation of gene transcription, which will thus allow investigation of the mechanisms of signal transduction in living brains.
Collapse
Affiliation(s)
- Christina H Liu
- 3Massachusetts General Hospital, CNY149 (2301) Thirteenth St., Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
9
|
Roth A, Kyzar E, Cachat J, Stewart AM, Green J, Gaikwad S, O’Leary TP, Tabakoff B, Brown RE, Kalueff AV. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:312-25. [PMID: 23123364 PMCID: PMC4141078 DOI: 10.1016/j.pnpbp.2012.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/04/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022]
Abstract
Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming.
Collapse
Affiliation(s)
- Andrew Roth
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Evan Kyzar
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jonathan Cachat
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Adam Michael Stewart
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jeremy Green
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Siddharth Gaikwad
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Timothy P. O’Leary
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Richard E. Brown
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Allan V. Kalueff
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- ZENEREI Institute, Slidell, LA 70458, USA
| |
Collapse
|
10
|
cAMP response element-binding protein is a primary hub of activity-driven neuronal gene expression. J Neurosci 2012; 31:18237-50. [PMID: 22171029 DOI: 10.1523/jneurosci.4554-11.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long-lasting forms of neuronal plasticity require de novo gene expression, but relatively little is known about the events that occur genome-wide in response to activity in a neuronal network. Here, we unveil the gene expression programs initiated in mouse hippocampal neurons in response to different stimuli and explore the contribution of four prominent plasticity-related transcription factors (CREB, SRF, EGR1, and FOS) to these programs. Our study provides a comprehensive view of the intricate genetic networks and interactions elicited by neuronal stimulation identifying hundreds of novel downstream targets, including novel stimulus-associated miRNAs and candidate genes that may be differentially regulated at the exon/promoter level. Our analyses indicate that these four transcription factors impinge on similar biological processes through primarily non-overlapping gene-expression programs. Meta-analysis of the datasets generated in our study and comparison with publicly available transcriptomics data revealed the individual and collective contribution of these transcription factors to different activity-driven genetic programs. In addition, both gain- and loss-of-function experiments support a pivotal role for CREB in membrane-to-nucleus signal transduction in neurons. Our data provide a novel resource for researchers wanting to explore the genetic pathways associated with activity-regulated neuronal functions.
Collapse
|
11
|
The arylstibonic acid compound NSC13746 disrupts B-ZIP binding to DNA in living cells. Eur J Cell Biol 2010; 89:564-73. [PMID: 20362353 DOI: 10.1016/j.ejcb.2009.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 10/30/2009] [Accepted: 11/09/2009] [Indexed: 01/07/2023] Open
Abstract
The inhibition of DNA binding of basic leucine zipper (B-ZIP) transcription factors is a clinically relevant molecular target. Our laboratory has previously reported two methods of inhibiting B-ZIP DNA binding in solution: 1) an arylstibonic acid compound that binds to the basic region, stabilizes the B-ZIP dimer, and prevents B-ZIP DNA binding and 2) dominant negative proteins, termed A-ZIPs, that heterodimerize with B-ZIP domains in a leucine zipper-dependent manner. To determine if these two agents also inhibit DNA binding in live cells, GFP-tagged B-ZIP domains and mCherry-tagged A-ZIP domains were transfected into NIH3T3 cells to assess protein localization and Fluorescence Recovery After nuclear Photobleaching (FRAP). FRAP, showed that all six GFP-B-ZIP domains examined recovered faster in the nucleus in the presence of drug that we interpret represents an inhibition of DNA binding. Faster recovery in the presence of the A-ZIP was leucine zipper dependent. The arylstibonic also induced a cytoplasmic localization of all B-ZIP domains while the A-ZIPs induced a leucine zipper-dependent cytoplasmic localization. Thus, the change in cellular localization of B-ZIP domains could be used as a high-throughput assay for inhibitors of B-ZIP DNA binding. Additionally, the arylstibonic acid compound was cytostatic in clear cell sarcoma cells, which express a chimera between the B-ZIP domain of ATF-1 and N-terminal activation domain of EWS but not in K562 cells that express a non-B-ZIP containing chimeric protein BCR-ABL. These studies suggest that arylstibonic acid compounds or other small molecules capable of inhibiting B-ZIP DNA binding could be valuable anticancer agents.
Collapse
|