1
|
Ciralli B, Malfatti T, Hilscher MM, Leao RN, Cederroth CR, Leao KE, Kullander K. Unraveling the role of Slc10a4 in auditory processing and sensory motor gating: Implications for neuropsychiatric disorders? Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110930. [PMID: 38160852 DOI: 10.1016/j.pnpbp.2023.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Psychiatric disorders, such as schizophrenia, are complex and challenging to study, partly due to the lack of suitable animal models. However, the absence of the Slc10a4 gene, which codes for a monoaminergic and cholinergic associated vesicular transporter protein, in knockout mice (Slc10a4-/-), leads to the accumulation of extracellular dopamine. A major challenge for studying schizophrenia is the lack of suitable animal models that accurately represent the disorder. We sought to overcome this challenge by using Slc10a4-/- mice as a potential model, considering their altered dopamine levels. This makes them a potential animal model for schizophrenia, a disorder known to be associated with altered dopamine signaling in the brain. METHODS The locomotion, auditory sensory filtering and prepulse inhibition (PPI) of Slc10a4-/- mice were quantified and compared to wildtype (WT) littermates. Intrahippocampal electrodes were used to record auditory event-related potentials (aERPs) for quantifying sensory filtering in response to paired-clicks. The channel above aERPs phase reversal was chosen for reliably comparing results between animals, and aERPs amplitude and latency of click responses were quantified. WT and Slc10a4-/- mice were also administered subanesthetic doses of ketamine to provoke psychomimetic behavior. RESULTS Baseline locomotion during auditory stimulation was similar between Slc10a4-/- mice and WT littermates. In WT animals, normal auditory processing was observed after i.p saline injections, and it was maintained under the influence of 5 mg/kg ketamine, but disrupted by 20 mg/kg ketamine. On the other hand, Slc10a4-/- mice did not show significant differences between N40 S1 and S2 amplitude responses in saline or low dose ketamine treatment. Auditory gating was considered preserved since the second N40 peak was consistently suppressed, but with increased latency. The P80 component showed higher amplitude, with shorter S2 latency under saline and 5 mg/kg ketamine treatment in Slc10a4-/- mice, which was not observed in WT littermates. Prepulse inhibition was also decreased in Slc10a4-/- mice when the longer interstimulus interval of 100 ms was applied, compared to WT littermates. CONCLUSION The Slc10a4-/- mice responses indicate that cholinergic and monoaminergic systems participate in the PPI magnitude, in the temporal coding (response latency) of the auditory sensory gating component N40, and in the amplitude of aERPs P80 component. These results suggest that Slc10a4-/- mice can be considered as potential models for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Barbara Ciralli
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Thawann Malfatti
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden; Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Markus M Hilscher
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Richardson N Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Katarina E Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Feng S, Guo L, Wang S, Chen L, Chang H, Hang B, Mao J, Snijders AM, Lu Y, Ding D. Association of Serum Bile Acid and Unsaturated Fatty Acid Profiles with the Risk of Diabetic Retinopathy in Type 2 Diabetic Patients. Diabetes Metab Syndr Obes 2023; 16:2117-2128. [PMID: 37465650 PMCID: PMC10351529 DOI: 10.2147/dmso.s411522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
AIM We aimed to identify the ability of serum bile acids (BAs) and unsaturated fatty acids (UFAs) profiles to predict the development of diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM) patients. METHODS We first used univariate and multivariate analysis to compare 15 serum BA and 11 UFA levels in healthy control (HC) group (n = 82), T2DM patients with DR (n = 58) and T2DM patients without DR (n = 60). Forty T2DM patients were considered for validation. Then, the receiver operating characteristic curve (ROC) and decision curve analysis were used to assess the diagnostic value and clinical benefit of serum biomarkers alone, clinical variables alone or in combination, and the area under the curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were used to further assess whether the addition of biomarkers significantly improved the predictive ability of the model. RESULTS Orthogonal partial least squares-discriminant analysis (OPLS-DA) of serum BAs and UFAs separated the three cohorts including HC, T2DM patients with or without DR. The difference in serum BA and UFA profiles of T2DM patients with or without DR was mainly manifested in the three metabolites of taurolithocholic acid (TLCA), tauroursodeoxycholic acid (TUDCA) and arachidonic acid (AA). Together, they had an AUC of 0.785 (0.918 for validation cohort) for predicting DR in T2DM patients. After adjusting for numerous confounding factors, TLCA, TUDCA, and AA were independent predictors that differentiated T2DM with or without DR. The results of AUC, IDI, and NRI demonstrated that adding these three biomarkers to a model with clinical variables statistically increased their predictive value and were replicated in our independent validation cohort. CONCLUSION These findings highlight the association of three metabolites, TLCA, TUDCA and AA, with DR and may indicate their potential value in the pathogenesis of DR.
Collapse
Affiliation(s)
- Susu Feng
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lin Guo
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Sijing Wang
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lijuan Chen
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biomaterials, Berkeley-Nanjing Research Center, Nanjing, People's Republic of China
| | - Jianhua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yibing Lu
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Dafa Ding
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Wannowius M, Karakus E, Aktürk Z, Breuer J, Geyer J. Role of the Sodium-Dependent Organic Anion Transporter (SOAT/SLC10A6) in Physiology and Pathophysiology. Int J Mol Sci 2023; 24:9926. [PMID: 37373074 DOI: 10.3390/ijms24129926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The sodium-dependent organic anion transporter (SOAT, gene symbol SLC10A6) specifically transports 3'- and 17'-monosulfated steroid hormones, such as estrone sulfate and dehydroepiandrosterone sulfate, into specific target cells. These biologically inactive sulfo-conjugated steroids occur in high concentrations in the blood circulation and serve as precursors for the intracrine formation of active estrogens and androgens that contribute to the overall regulation of steroids in many peripheral tissues. Although SOAT expression has been detected in several hormone-responsive peripheral tissues, its quantitative contribution to steroid sulfate uptake in different organs is still not completely clear. Given this fact, the present review provides a comprehensive overview of the current knowledge about the SOAT by summarizing all experimental findings obtained since its first cloning in 2004 and by processing SOAT/SLC10A6-related data from genome-wide protein and mRNA expression databases. In conclusion, despite a significantly increased understanding of the function and physiological significance of the SOAT over the past 20 years, further studies are needed to finally establish it as a potential drug target for endocrine-based therapy of steroid-responsive diseases such as hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Marie Wannowius
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Zekeriya Aktürk
- General Practice, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Janina Breuer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| |
Collapse
|
4
|
Wannowius M, Karakus E, Geyer J. Functional Analysis of Rare Genetic Variants in the Negative Regulator of Intracellular Calcium Signaling RCAS/SLC10A7. Front Mol Biosci 2021; 8:741946. [PMID: 34671644 PMCID: PMC8521665 DOI: 10.3389/fmolb.2021.741946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 12/05/2022] Open
Abstract
The solute carrier family 10 member SLC10A7 is a negative regulator of intracellular calcium signaling (RCAS). In cell culture, SLC10A7 expression is negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. SLC10A7-deficient cells have significantly increased calcium influx after treatment with thapsigargin for depletion of ER calcium stores, whereas SLC10A7/RCAS overexpression limits calcium influx. Genetic variants in the human SLC10A7 gene are associated with skeletal dysplasia and amelogenesis imperfecta and reveal loss of function on cellular calcium influx. More recently, an additional disease-related genetic variant (P303L) as well as some novel genetic variants (V235F, T221M, I136M, L210F, P285L, and G146S) have been identified. In the present study, these variants were expressed in HEK293 cells to study their subcellular localization and their effect on cellular calcium influx. All variants were properly sorted to the ER compartment and closely co-localized with the STIM protein, a functional component of SOCE. The variants P303L and L210F showed significantly reduced effects on cellular calcium influx compared to the wild type but still maintained some degree of residual activity. This might explain the milder phenotype of patients bearing the P303L variant and might indicate disease potential for the newly identified L210F variant. In contrast, all other variants behaved like the wild type. In conclusion, the occurrence of variants in the SLC10A7 gene should be considered in patients with skeletal dysplasia and amelogenesis imperfecta. In addition to the already established variants, the present study identifies another potential disease-related SLC10A7/RCAS variant, namely, L210F, which seems to be most frequent in South Asian populations.
Collapse
Affiliation(s)
- Marie Wannowius
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Win A, Delgado A, Jadeja RN, Martin PM, Bartoli M, Thounaojam MC. Pharmacological and Metabolic Significance of Bile Acids in Retinal Diseases. Biomolecules 2021; 11:292. [PMID: 33669313 PMCID: PMC7920062 DOI: 10.3390/biom11020292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bile acids (BAs) are amphipathic sterols primarily synthesized from cholesterol in the liver and released in the intestinal lumen upon food intake. BAs play important roles in micellination of dietary lipids, stimulating bile flow, promoting biliary phospholipid secretion, and regulating cholesterol synthesis and elimination. Emerging evidence, however, suggests that, aside from their conventional biological function, BAs are also important signaling molecules and therapeutic tools. In the last decade, the therapeutic applications of BAs in the treatment of ocular diseases have gained great interest. Despite the identification of BA synthesis, metabolism, and recycling in ocular tissues, much remains unknown with regards to their biological significance in the eye. Additionally, as gut microbiota directly affects the quality of circulating BAs, their analysis could derive important information on changes occurring in this microenvironment. This review aims at providing an overview of BA metabolism and biological function with a focus on their potential therapeutic and diagnostic use for retinal diseases.
Collapse
Affiliation(s)
- Alice Win
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Amanda Delgado
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pamela M. Martin
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Menaka C. Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
7
|
Noppes S, Müller SF, Bennien J, Holtemeyer M, Palatini M, Leidolf R, Alber J, Geyer J. Homo- and heterodimerization is a common feature of the solute carrier family SLC10 members. Biol Chem 2020; 400:1371-1384. [PMID: 31256060 DOI: 10.1515/hsz-2019-0148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022]
Abstract
The solute carrier family SLC10 consists of seven members, including the bile acid transporters Na+/taurocholate co-transporting polypeptide (NTCP) and apical sodium-dependent bile acid transporter (ASBT), the steroid sulfate transporter SOAT as well as four orphan carriers (SLC10A3, SLC10A4, SLC10A5 and SLC10A7). Previously, homodimerization of NTCP, ASBT and SOAT was described and there is increasing evidence that carrier oligomerization is an important regulatory factor for protein sorting and transport function. In the present study, homo- and heterodimerization were systematically analyzed among all SLC10 carriers (except for SLC10A3) using the yeast-two-hybrid membrane protein system. Strong homodimerization occurred for NTCP/NTCP, ASBT/ASBT and SLC10A7/SLC10A7. Heterodimerization was observed for most of the SLC10 carrier combinations. Heterodimerization of NTCP was additionally investigated by co-localization of NTCP-GFP and NTCP-mScarlet with respective SLC10 carrier constructs. NTCP co-localized with SLC10A4, SLC10A5, SOAT and SLC10A7. This co-localization was most pronounced for SLC10A4 and was additionally confirmed by co-immunoprecipitation. Interestingly, SLC10 carrier co-expression decreased the taurocholate transport function of NTCP for most of the analyzed constructs, indicating that SLC10 carrier heterodimerization is of functional relevance. In conclusion, homo- and heterodimerization is a common feature of the SLC10 carriers. The relevance of this finding for regulation and transport function of the SLC10 carriers in vivo needs further investigation.
Collapse
Affiliation(s)
- Saskia Noppes
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Josefine Bennien
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Matthias Holtemeyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Massimo Palatini
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Regina Leidolf
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Jörg Alber
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| |
Collapse
|
8
|
Zhang Y, Hagenbuch B. Protein-protein interactions of drug uptake transporters that are important for liver and kidney. Biochem Pharmacol 2019; 168:384-391. [PMID: 31381872 DOI: 10.1016/j.bcp.2019.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Drug uptake transporters are membrane proteins responsible for the trans-membrane transport of endo- and xenobiotics, including numerous drugs. They are important for the uptake of drugs into target tissues or into organs for metabolism and excretion. Many drug uptake transporters have a broad spectrum of structural-independent substrates, which make them vulnerable to drug-drug interactions. Recent studies have shown more and more complex pharmacokinetics involving transporters, and regulatory agencies now require studies to be performed to measure the involvement of transporters in drug development. A better understanding of the factors affecting the expression of transporters is needed. Despite many efforts devoted to the functional characterization of different drug uptake transporters, transporter in vitro to in vivo extrapolations are far from predicting the behavior under physiological conditions. There is an increasing number of uptake transporters demonstrated to form protein-protein interactions or to oligomerize. This raises the possibility that these interactions between or among transporters could help explaining the gap between in vitro and in vivo measurement of drug transporters. In this review, we summarized protein-protein interactions of drug uptake transporters that are important for pharmacokinetics, especially those in the liver and the kidneys.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
9
|
Fietz D. Transporter for sulfated steroid hormones in the testis - expression pattern, biological significance and implications for fertility in men and rodents. J Steroid Biochem Mol Biol 2018; 179:8-19. [PMID: 29017936 DOI: 10.1016/j.jsbmb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
In various tissues, steroid hormones may be sulfated, glucuronidated or otherwise modified. For a long time, these hydrophilic molecules have been considered to be merely inactive metabolites for excretion via bile or urine. Nevertheless, different organs such as the placenta and breast tissue produce large amounts of sulfated steroids. After the discovery of the enzyme steroid sulfatase, which is able to re-activate sulfated steroids, these precursor molecules entered the focus of interest again as a local supply for steroid hormone synthesis with a prolonged half-life compared to their unconjugated counterparts. The first descriptions of this so-called sulfatase pathway in the placenta and breast tissue (with special regards to hormone-dependent breast cancer) were quickly followed by studies of steroid sulfate production and function in the testis. These hydrophilic molecules may not permeate the cell membrane by diffusion in the way that unbound steroids can, but need to be transported through the plasma membrane by transport systems. In the testis, a functional sulfatase pathway requires the expression of specific uptake carrier and efflux transporters in testicular cells, i.e. Sertoli, Leydig and germ cells. Main focus has to be placed on Sertoli cells, as these cells build up the blood-testis barrier. In this review, an overview of carrier expression pattern in the human as well as rodent testis is provided with special interest towards implications on fertility.
Collapse
Affiliation(s)
- D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
10
|
Pettersson H, Zarnegar B, Westin A, Persson V, Peuckert C, Jonsson J, Hallgren J, Kullander K. SLC10A4 regulates IgE-mediated mast cell degranulation in vitro and mast cell-mediated reactions in vivo. Sci Rep 2017; 7:1085. [PMID: 28439090 PMCID: PMC5430724 DOI: 10.1038/s41598-017-01121-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/22/2017] [Indexed: 11/24/2022] Open
Abstract
Mast cells act as sensors in innate immunity and as effector cells in adaptive immune reactions. Here we demonstrate that SLC10A4, also referred to as the vesicular aminergic-associated transporter, VAAT, modifies mast cell degranulation. Strikingly, Slc10a4 -/- bone marrow-derived mast cells (BMMCs) had a significant reduction in the release of granule-associated mediators in response to IgE/antigen-mediated activation, whereas the in vitro development of mast cells, the storage of the granule-associated enzyme mouse mast cell protease 6 (mMCP-6), and the release of prostaglandin D2 and IL-6 were normal. Slc10a4-deficient mice had a strongly reduced passive cutaneous anaphylaxis reaction and a less intense itching behaviour in response to the mast cell degranulator 48/80. Live imaging of the IgE/antigen-mediated activation showed decreased degranulation and that ATP was retained to a higher degree in mast cell granules lacking SLC10A4. Furthermore, ATP was reduced by two thirds in Slc10a4 -/- BMMCs supernatants in response to IgE/antigen. We speculate that SLC10A4 affects the amount of granule-associated ATP upon IgE/antigen-induced mast cell activation, which affect the release of granule-associated mast cell mediators. In summary, SLC10A4 acts as a regulator of degranulation in vitro and of mast cell-related reactions in vivo.
Collapse
Affiliation(s)
- Hanna Pettersson
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden
- Department of Organismal Biology, Uppsala University, Norbyv, 18A, 752 36, Uppsala, Sweden
| | - Behdad Zarnegar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden
| | - Annika Westin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden
| | - Viktor Persson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Klas Kullander
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
11
|
Abstract
Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
12
|
Melief EJ, Gibbs JT, Li X, Morgan RG, Keene CD, Montine TJ, Palmiter RD, Darvas M. Characterization of cognitive impairments and neurotransmitter changes in a novel transgenic mouse lacking Slc10a4. Neuroscience 2016; 324:399-406. [PMID: 27001174 DOI: 10.1016/j.neuroscience.2016.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
An orphan member of the solute carrier (SLC) family SLC10, SLC10A4 has been found to be enriched in midbrain and brainstem neurons and has been found to co-localize with and to affect dopamine (DA) homeostasis. We generated an SLC10A4 knockout mouse (Slc10a4(Δ/Δ)) using Cre-targeted recombination, and characterized behavioral measures of motor and cognitive function as well as DA and acetylcholine (ACh) levels in midbrain and brainstem. In agreement with previous studies, Slc10a4 mRNA was preferentially expressed in neurons in the brains of wild-type (Slc10a4(+/+)) mice and was enriched in dopaminergic and cholinergic regions. Slc10a4(Δ/Δ) mice had no impairment in motor function or novelty-induced exploratory behaviors but performed significantly worse in measures of spatial memory and cognitive flexibility. Slc10a4(Δ/Δ) mice also did not differ from Slc10a4(+/+) in measures of anxiety. High-performance liquid chromatography (HPLC) measures on tissue punches taken from the dorsal and ventral striatum reveal a decrease in DA content and a corresponding increase in the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), indicating an increase in DA turnover. Punches taken from the brainstem revealed a decrease in ACh as compared with Slc10a4(+/+) littermates. Together, these data indicate that loss of SLC10A4 protein results in neurotransmitter imbalance and cognitive impairment.
Collapse
Affiliation(s)
- E J Melief
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - J T Gibbs
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - X Li
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - R G Morgan
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - C D Keene
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - T J Montine
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - R D Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98104, United States; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98104, United States
| | - M Darvas
- Department of Pathology, University of Washington, Seattle, WA 98104, United States.
| |
Collapse
|
13
|
Schmidt S, Moncada M, Burger S, Geyer J. Expression, sorting and transport studies for the orphan carrier SLC10A4 in neuronal and non-neuronal cell lines and in Xenopus laevis oocytes. BMC Neurosci 2015; 16:35. [PMID: 26084360 PMCID: PMC4472396 DOI: 10.1186/s12868-015-0174-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background SLC10A4 belongs to the solute carrier family SLC10 whose founding members are the Na+/taurocholate co-transporting polypeptide (NTCP, SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT, SLC10A2). These carriers maintain the enterohepatic circulation of bile acids between the liver and the gut. SLC10A4 was identified as a novel member of the SLC10 carrier family with the highest phylogenetic relationship to NTCP. The SLC10A4 protein was detected in synaptic vesicles of cholinergic and monoaminergic neurons of the peripheral and central nervous system, suggesting a transport function for any kind of neurotransmitter. Therefore, in the present study, we performed systematic transport screenings for SLC10A4 and also aimed to identify the vesicular sorting domain of the SLC10A4 protein. Results We detected a vesicle-like expression pattern of the SLC10A4 protein in the neuronal cell lines SH-SY5Y and CAD. Differentiation of these cells to the neuronal phenotype altered neither SLC10A4 gene expression nor its vesicular expression pattern. Functional transport studies with different neurotransmitters, bile acids and steroid sulfates were performed in SLC10A4-transfected HEK293 cells, SLC10A4-transfected CAD cells and in Xenopus laevis oocytes. For these studies, transport by the dopamine transporter DAT, the serotonin transporter SERT, the choline transporter CHT1, the vesicular monoamine transporter VMAT2, the organic cation transporter Oct1, and NTCP were used as positive control. SLC10A4 failed to show transport activity for dopamine, serotonin, norepinephrine, histamine, acetylcholine, choline, acetate, aspartate, glutamate, gamma-aminobutyric acid, pregnenolone sulfate, dehydroepiandrosterone sulfate, estrone-3-sulfate, and adenosine triphosphate, at least in the transport assays used. When the C-terminus of SLC10A4 was replaced by the homologous sequence of NTCP, the SLC10A4-NTCP chimeric protein revealed clear plasma membrane expression in CAD and HEK293 cells. But this chimera also did not show any transport activity, even when the N-terminal domain of SLC10A4 was deleted by mutagenesis. Conclusions Although different kinds of assays were used to screen for transport function, SLC10A4 failed to show transport activity for a series of neurotransmitters and neuromodulators, indicating that SLC10A4 does not seem to represent a typical neurotransmitter transporter such as DAT, SERT, CHT1 or VMAT2.
Collapse
Affiliation(s)
- Stephanie Schmidt
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Marcela Moncada
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Simone Burger
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
14
|
Larhammar M, Patra K, Blunder M, Emilsson L, Peuckert C, Arvidsson E, Rönnlund D, Preobraschenski J, Birgner C, Limbach C, Widengren J, Blom H, Jahn R, Wallén-Mackenzie Å, Kullander K. SLC10A4 is a vesicular amine-associated transporter modulating dopamine homeostasis. Biol Psychiatry 2015; 77:526-36. [PMID: 25176177 DOI: 10.1016/j.biopsych.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND The neuromodulatory transmitters, biogenic amines, have profound effects on multiple neurons and are essential for normal behavior and mental health. Here we report that the orphan transporter SLC10A4, which in the brain is exclusively expressed in presynaptic vesicles of monoaminergic and cholinergic neurons, has a regulatory role in dopamine homeostasis. METHODS We used a combination of molecular and behavioral analyses, pharmacology, and in vivo amperometry to assess the role of SLC10A4 in dopamine-regulated behaviors. RESULTS We show that SLC10A4 is localized on the same synaptic vesicles as either vesicular acetylcholine transporter or vesicular monoamine transporter 2. We did not find evidence for direct transport of dopamine by SLC10A4; however, synaptic vesicle preparations lacking SLC10A4 showed decreased dopamine vesicular uptake efficiency. Furthermore, we observed an increased acidification in synaptic vesicles isolated from mice overexpressing SLC10A4. Loss of SLC10A4 in mice resulted in reduced striatal serotonin, noradrenaline, and dopamine concentrations and a significantly higher dopamine turnover ratio. Absence of SLC10A4 led to slower dopamine clearance rates in vivo, which resulted in accumulation of extracellular dopamine. Finally, whereas SLC10A4 null mutant mice were slightly hypoactive, they displayed hypersensitivity to administration of amphetamine and tranylcypromine. CONCLUSIONS Our results demonstrate that SLC10A4 is a vesicular monoaminergic and cholinergic associated transporter that is important for dopamine homeostasis and neuromodulation in vivo. The discovery of SLC10A4 and its role in dopaminergic signaling reveals a novel mechanism for neuromodulation and represents an unexplored target for the treatment of neurological and mental disorders.
Collapse
Affiliation(s)
| | | | - Martina Blunder
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lina Emilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Emma Arvidsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniel Rönnlund
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Jerker Widengren
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hans Blom
- Department of Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden..
| |
Collapse
|
15
|
Patra K, Lyons DJ, Bauer P, Hilscher MM, Sharma S, Leão RN, Kullander K. A role for solute carrier family 10 member 4, or vesicular aminergic-associated transporter, in structural remodelling and transmitter release at the mouse neuromuscular junction. Eur J Neurosci 2014; 41:316-27. [DOI: 10.1111/ejn.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022]
Affiliation(s)
| | - David J. Lyons
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Pavol Bauer
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Markus M. Hilscher
- Department of Neuroscience; Uppsala University; Uppsala Sweden
- The Beijer Laboratory for Gene and Neurosciences; Uppsala Sweden
- Brain Institute; Federal University of Rio Grande do Norte; Natal Brazil
| | - Swati Sharma
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Richardson N. Leão
- Department of Neuroscience; Uppsala University; Uppsala Sweden
- The Beijer Laboratory for Gene and Neurosciences; Uppsala Sweden
- Brain Institute; Federal University of Rio Grande do Norte; Natal Brazil
| | - Klas Kullander
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
16
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: transporters. Br J Pharmacol 2013; 170:1706-96. [PMID: 24528242 PMCID: PMC3892292 DOI: 10.1111/bph.12450] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
17
|
The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med 2013; 34:252-69. [PMID: 23506869 DOI: 10.1016/j.mam.2012.07.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term "sodium bile salt cotransporting family" was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. Explicitly, SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family.
Collapse
|
18
|
Borges K. Slc10A4 - what do we know about the function of this "secret ligand carrier" protein? Exp Neurol 2013; 248:258-61. [PMID: 23810836 DOI: 10.1016/j.expneurol.2013.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 12/27/2022]
Abstract
This commentary discusses the possible functions of a relatively newly described solute carrier protein, Slc10a4, in regards to a recent article by Zelano et al. (2013) published in the January issue of Experimental Neurology, 239, 73-81. Slc10a4 belongs to the sodium-bile acid cotransporter family (Slc10), but does not show plasma membrane transport activity of bile acids and related molecules. It is co-localized with synaptic vesicle transporters for acetylcholine and dopamine. In Slc10a4 lacking mice, Zelano et al. found increased excitability in hippocampal slices and in vivo responses to pilocarpine, but not kainate. These findings are critically examined here. This author speculates on the possible function of Slc10a4, but remains partial about "specific effects of Slc10a4 in cholinergic systems". It is hoped that approaches targeting human SLC10A4 can be discovered for potential clinical use in neurological disorders, such as Alzheimer's and Parkinson's disease, schizophrenia and addiction. Conversely, some side effects are expected due to peripheral Slc10a4 localization in sympathetic and parasympathetic nerves, as well as mast cells.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia QLD 4072, Australia.
| |
Collapse
|
19
|
Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SLC10 family represents seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids. Although termed solute carriers (SLCs), only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na(+)-taurocholate cotransporting polypeptide (NTCP)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT)). The other members of the family are orphan carriers not all localized in the cell membrane. The name "bile acid transporter family" arose because the first two SLC10 members (NTCP and ASBT) are carriers for bile salts that establish their enterohepatic circulation. In recent years, information has been obtained on their 2D and 3D membrane topology, structure-transport relationships, and on the ligand and sodium-binding sites. For SLC10A2, the putative 3D morphology was deduced from the crystal structure of a bacterial SLC10A2 analog, ASBT(NM). This information was used in this chapter to calculate the putative 3D structure of NTCP. This review provides first an introduction to recent knowledge about bile acid synthesis and newly found bile acid hormonal functions, and then describes step-by-step each individual member of the family in terms of expression, localization, substrate pattern, as well as protein topology with emphasis on the three functional SLC10 carrier members.
Collapse
Affiliation(s)
- Barbara Döring
- SLC10 family research group, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center (BFS), Giessen, Germany
| | | | | | | |
Collapse
|
20
|
Abe T, Kanemitu Y, Nakasone M, Kawahata I, Yamakuni T, Nakajima A, Suzuki N, Nishikawa M, Hishinuma T, Tomioka Y. SLC10A4 is a protease-activated transporter that transports bile acids. J Biochem 2013; 154:93-101. [DOI: 10.1093/jb/mvt031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Zelano J, Mikulovic S, Patra K, Kühnemund M, Larhammar M, Emilsson L, Leao R, Kullander K. The synaptic protein encoded by the gene Slc10A4 suppresses epileptiform activity and regulates sensitivity to cholinergic chemoconvulsants. Exp Neurol 2013; 239:73-81. [DOI: 10.1016/j.expneurol.2012.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
|
22
|
Enhanced expression of organic anion transporting polypeptides (OATPs) in androgen receptor-positive prostate cancer cells: possible role of OATP1A2 in adaptive cell growth under androgen-depleted conditions. Biochem Pharmacol 2012; 84:1070-7. [PMID: 22864060 DOI: 10.1016/j.bcp.2012.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
The biological mechanisms underlying castration resistance of prostate cancer are not fully understood. In the present study, we examined the role of organic anion transporting polypeptides (OATPs) as importers of dehydroepiandrosterone sulfate (DHEAS) into cells to support growth under androgen-depleted conditions. Cell growth and mRNA expression of OATP genes were studied in human prostate cancer LNCaP and 22Rv1 cells under androgen-depleted conditions. The stimulatory effect of DHEAS on cell growth was investigated in LNCaP cells in which OATP1A2 had been silenced. Growth of both cell lines was stimulated by DHEAS and the effect was attenuated by STX64, an inhibitor of steroid sulfatase which can covert DHEAS to DHEA. OATP1A2 mRNA expression was increased most prominently among various genes tested in LNCaP cells grown in androgen-depleted medium. Similar results were obtained with 22Rv1 cells. Furthermore, the characteristics of [(3)H]DHEAS uptake by LNCaP cells were consistent with those of OATP-mediated transport. Knockdown of OATP1A2 in LNCaP cells resulted in loss of the DHEAS sensitivity of cell growth. Our results suggest that enhanced OATP1A2 expression is associated with adaptive cell growth of prostate cancer cells under androgen-depleted conditions. Thus, OATP1A2 may be a pharmacological target for prostate cancer treatment.
Collapse
|
23
|
The Candida albicans plasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis. Biochem J 2012; 444:497-502. [DOI: 10.1042/bj20112166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Candida albicans RCH1 (regulator of Ca2+ homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca2+ and tolerance to azoles and Li+, which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca2+ pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca2+ sensitivity, Ca2+ uptake and cytosolic Ca2+ level. The Ca2+ hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca2+/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca2+ homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.
Collapse
|
24
|
Homo- and hetero-dimeric architecture of the human liver Na+-dependent taurocholate co-transporting protein. Biochem J 2012; 441:1007-15. [DOI: 10.1042/bj20111234] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The NTCP (Na+–taurocholate co-transporting protein)/SLC10A [solute carrier family 10 (Na+/bile acid co-transporter family)] 1 is tightly controlled to ensure hepatic bile salt uptake while preventing toxic bile salt accumulation. Many transport proteins require oligomerization for their activity and regulation. This is not yet established for bile salt transporters. The present study was conducted to elucidate the oligomeric state of NTCP. Chemical cross-linking revealed the presence of NTCP dimers in rat liver membranes and U2OS cells stably expressing NTCP. Co-immunoprecipitation of tagged NTCP proteins revealed a physical interaction between subunits. The C-terminus of NTCP was not required for subunit interaction, but was essential for exit from the ER (endoplasmic reticulum). NTCP without its C-terminus (NTCP Y307X) retained full-length wtNTCP (wild-type NTCP) in the ER in a dominant fashion, suggesting that dimerization occurs early in the secretory pathway. FRET (fluorescence resonance energy transfer) using fluorescently labelled subunits further demonstrated that dimerization persists at the plasma membrane. NTCP belongs to the SLC10A protein family which consists of seven members. NTCP co-localized in U2OS cells with SLC10A4 and SLC10A6, but not with SLC10A3, SLC10A5 or SLC10A7. SLC10A4 and SLC10A6 co-immunoprecipitated with NTCP, demonstrating that heteromeric complexes can be formed between SLC10A family members in vitro. Expression of SLC10A4 and NTCP Y307X resulted in a reduction of NTCP abundance at the plasma membrane and NTCP-mediated taurocholate uptake, whereas expression of SLC10A6 or NTCP E257N, an inactive mutant, did not affect NTCP function. In conclusion, NTCP adopts a dimeric structure in which individual subunits are functional. Bile salt uptake is influenced by heterodimerization when this impairs NTCP plasma membrane trafficking.
Collapse
|
25
|
Co-expression studies of the orphan carrier protein Slc10a4 and the vesicular carriers VAChT and VMAT2 in the rat central and peripheral nervous system. Neuroscience 2011; 193:109-21. [DOI: 10.1016/j.neuroscience.2011.06.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/22/2022]
|
26
|
Visser WE, Wong WS, van Mullem AAA, Friesema ECH, Geyer J, Visser TJ. Study of the transport of thyroid hormone by transporters of the SLC10 family. Mol Cell Endocrinol 2010; 315:138-45. [PMID: 19682536 DOI: 10.1016/j.mce.2009.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/22/2009] [Accepted: 08/05/2009] [Indexed: 11/21/2022]
Abstract
Transport of (sulfated) iodothyronines across the plasma membrane is required for their intracellular metabolism. Rat Na(+)/taurocholate cotransporting polypeptide (Ntcp; Slc10a1) has been identified as an important transporter protein. We demonstrate that among the 7 members of the solute carrier family SLC10, only human SLC10A1 mediates sodium-dependent transport of the iodothyronine T4 and iodothyronine sulfates T3S and T4S. In contrast to SLC10A2-7, cells co-expressing SLC10A1 and the deiodinase D1 demonstrate a dramatic increase in T3S and T4S metabolism. The SLC10A1 substrates taurocholate, DHEAS and E3S inhibit T3S and T4S transport. Furthermore, co-transfection of SLC10A1 with CRYM, a well-known intracellular iodothyronine-binding protein, results in an enhanced intracellular accumulation of T3S and T4S, indicating that CRYM binds iodothyronine sulfates. The present findings indicate that the liver-specific transporter SLC10A1 transports (sulfated) iodothyronines, thereby increasing their intracellular availability. Therefore, SLC10A1 may fulfill a critical step in providing liver D1 with iodothyronine sulfates for rapid degradation.
Collapse
Affiliation(s)
- W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Cholinergic signal transduction in the mouse sphenopalatine ganglion. Brain Res 2008; 1241:42-55. [PMID: 18817758 DOI: 10.1016/j.brainres.2008.08.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 01/27/2023]
Abstract
The sphenopalatine ganglia (SPG) receive their preganglionic innervation from the ventro-lateral reticular formation and nuclei of the caudal pons, and are involved in parasympathetic control of cranial glandular and vascular components including the blood supply to specific brain areas. In 53% of all SPG neurons, a particular member (MOL2.3) of the odorant receptor superfamily is co-expressed with green fluorescent protein (GFP) in MOL2.3 transgenic mouse pups. Choline acetyltransferase and vesicular acetylcholine transporter (VAChT) could be demonstrated in 90% of the GFP-positive, and 60% of the GFP-negative cells, these cells thus representing cholinergic neurons. Some 50% of all SPG neurons were nitrergic at a high rate of VAChT co-expression, the majority of them being GFP-positive. Most SPG neurons received cholinergic innervation as demonstrated by perineuronal VAChT immunoreactive nerve terminals. To characterize cholinergic signal transduction in SPG neurons, calcium imaging experiments were performed in a SPG primary culture system containing GFP-positive and -negative neurons. Ganglionic neurons could repeatedly be activated by cholinergic stimulation in a dose-dependent manner, with calcium entering all cells from the extracellular compartment. Stimulation with specific agonists supported prevalence of nicotinic cholinergic receptors (nAChRs). Inhibition of cholinergically induced intracellular calcium signalling by various omega-conotoxins indicated functional expression of alpha 3 beta 4 and alpha 7 nAChR subtypes in murine SPG cells, which could be supported by RT-PCR analysis of the neonatal mouse SPG. With regard to secondary cholinergic activation, L- but not N-subtype voltage-gated calcium channels might represent a prime target. Nicotinic signal transduction did not prove to be different in GFP-positive as compared to-negative murine SPG neurons.
Collapse
|