1
|
Panes-Fernández J, Marileo AM, Espinoza-Rubilar N, Meza ME, Salgado-Martínez BA, Gaete-Riquelme K, Moraga-Cid G, Castro PA, Burgos CF, Fuentealba J, Yévenes GE. The Alkaloid Gelsemine Reduces Aβ Peptide Toxicity by Targeting Transglutaminase Type 2 Enzyme. PLANTS (BASEL, SWITZERLAND) 2025; 14:1556. [PMID: 40431119 PMCID: PMC12114793 DOI: 10.3390/plants14101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Gelsemine, a naturally occurring indole alkaloid derived from plants of the Gelsemium species of the Gelsemiaceae family, has been extensively investigated for its neuroprotective and anti-inflammatory properties. Recent studies have demonstrated that gelsemine exerts neuroprotective effects against beta-amyloid (Aβ) oligomers, a key neurotoxic peptide implicated in the pathogenesis of Alzheimer's disease (AD). However, despite these beneficial effects, the precise molecular targets underlying gelsemine's neuroprotective actions in AD remain unidentified. Here, we employed a combination of bioinformatic, biochemical, and functional assays in neuronal models to investigate the mechanism of gelsemine's action in AD cellular models. Our findings indicate that gelsemine inhibits the activity of transglutaminase 2 (TG2), an enzyme involved in protein cross-linking with emerging roles in Aβ aggregation and neurotoxicity. Molecular modeling and biochemical analyses reveal that gelsemine interacts with the TG2 catalytic site, leading to its inhibition. Furthermore, gelsemine modulates the TG2-mediated Aβ aggregation process, thereby attenuating Aβ-induced neurotoxicity and preserving neuronal function. These findings establish TG2 as a previously unrecognized molecular target of gelsemine and underscore the potential of Gelsemium-derived alkaloids as neuroprotective agents. The modulation of TG2 activity by natural alkaloids may provide a novel therapeutic approach for mitigating Aβ toxicity and preserving neuronal function in AD.
Collapse
Affiliation(s)
- Jessica Panes-Fernández
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Ana M. Marileo
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| | - Nicole Espinoza-Rubilar
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Macarena E. Meza
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Bernardita A. Salgado-Martínez
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| | - Krishna Gaete-Riquelme
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (G.M.-C.); (P.A.C.); (C.F.B.)
| | - Patricio A. Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (G.M.-C.); (P.A.C.); (C.F.B.)
| | - Carlos F. Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (G.M.-C.); (P.A.C.); (C.F.B.)
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Gonzalo E. Yévenes
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| |
Collapse
|
2
|
Lejri I, Grimm A, Trempat P, Boujedaini N, Eckert A. Gelsemium low doses protect against serum deprivation-induced stress on mitochondria in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118714. [PMID: 39181289 DOI: 10.1016/j.jep.2024.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.
Collapse
Affiliation(s)
- Imane Lejri
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | - Amandine Grimm
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | | | | | - Anne Eckert
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| |
Collapse
|
3
|
Marileo AM, Gavilán J, San Martín VP, Lara CO, Sazo A, Muñoz-Montesino C, Castro PA, Burgos CF, Leiva-Salcedo E, Aguayo LG, Moraga-Cid G, Fuentealba J, Yévenes GE. Modulation of GABA A receptors and of GABAergic synapses by the natural alkaloid gelsemine. Front Mol Neurosci 2023; 15:1083189. [PMID: 36733271 PMCID: PMC9887029 DOI: 10.3389/fnmol.2022.1083189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.
Collapse
Affiliation(s)
- Ana M. Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Javiera Gavilán
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Cesar O. Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Elías Leiva-Salcedo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis G. Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile,*Correspondence: Gonzalo E. Yévenes, ✉
| |
Collapse
|
4
|
Zuo MT, Wang ZY, Yang K, Li YJ, Huang CY, Liu YC, Yu H, Zhao XJ, Liu ZY. Characterization of absorbed and produced constituents in goat plasma urine and faeces from the herbal medicine Gelsemium elegans by using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112617. [PMID: 31988014 DOI: 10.1016/j.jep.2020.112617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicine contains hundreds of natural products, and studying their absorption, metabolism, distribution, and elimination presents great challenges. Gelsemium elegans (G. elegans) is a flowering plants in the Loganiaceae family. The plant is known to be toxic and has been used for many years as a traditional Chinese herbal medicine for the treatment of rheumatoid arthritis, neuropathic pain, spasticity, skin ulcers and cancer. It was also used as veterinary drugs for deworming, promoting animal growth, and pesticides. At present, studies on the metabolism of G. elegans have primarily focused on only a few single available reference ingredients, such as koumine, gelsemine and gelsedine. MATERIAL AND METHODS The goal of this work is to elucidate the overall metabolism of whole G. elegans powder in goats using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS). RESULTS Analyses of plasma, urine and fecal samples identified or tentatively characterized a total of 44 absorbed natural products and 27 related produced metabolites. Gelsedine-type, sarpagine-type and gelsemine-type alkaloids were the compounds with the highest metabolite formation. In the present study, most natural products identified in G. elegans were metabolized through glucuronidation and oxidation. Hydrogenation, dehydrogenation and demethylation also occurred. CONCLUSION To our knowledge, this is the first report of the metabolite profiling of the G. elegans crude extract in goats, which is of great significance for a safer and more rational application of this herbal medicine.
Collapse
Affiliation(s)
- Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zi-Yuan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Kun Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Yu-Juan Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Chong-Ying Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Yan-Chun Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xue-Jiao Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
5
|
Yang S, Liu Y, Sun F, Zhang J, Jin Y, Li Y, Zhou J, Li Y, Zhu K. Gelsedine-type alkaloids: Discovery of natural neurotoxins presented in toxic honey. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120999. [PMID: 31430640 DOI: 10.1016/j.jhazmat.2019.120999] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The fascinating collection and evaluation of natural products with enormous structural and chemical diversity can contribute to ensure human health and inspire potential drug discovery. We reported the identification of 14-(R)-hydroxy-gelsenicine (HGE), a new component from poisonous honey, which has recently caused multiple serious intoxications and deaths up on consumption. The prevalence, toxicity, toxicokinetics and metabolic profile of HGE were evaluated through in vitro and in vivo analyses. HGE is a very toxic substance and shows significant gender difference with LD50 of 0.125 mg kg-1 and 0.295 mg kg-1 for the female and male mice, respectively. Toxicokinetics test indicates that HGE has good bioavailability in rats, and is metabolized extensively, in which hydroxylation, reduction, N-demethyl ether and glucuronication are the major metabolic pathways. Additionally, HGE shows specific neurotoxicity by enhancing the binding of γ-aminobutyric acid (GABA) to its receptors. We found that flumazenil, a selective antagonist of GABA receptor, could effectively increase the survival of the tested animals, which provides a potential therapy for future clinical applications.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, PR China.
| | - Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Feifei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jinzhen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, PR China
| | - Yue Jin
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, PR China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong, 264005, PR China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, PR China.
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, PR China.
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
6
|
L’Annunziata MF. Flow-cell radionuclide analysis. HANDBOOK OF RADIOACTIVITY ANALYSIS: VOLUME 2 2020:729-820. [DOI: 10.1016/b978-0-12-814395-7.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Gelsemine and koumine, principal active ingredients of Gelsemium, exhibit mechanical antiallodynia via spinal glycine receptor activation-induced allopregnanolone biosynthesis. Biochem Pharmacol 2019; 161:136-148. [PMID: 30668937 DOI: 10.1016/j.bcp.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
Gelsemine, the principal active alkaloid from Gelsemium sempervirens Ait., and koumine, the most dominant alkaloids from Gelsemium elegans Benth., produced antinociception in a variety of rodent models of painful hypersensitivity. The present study explored the molecular mechanisms underlying gelsemine- and koumine-induced mechanical antiallodynia in neuropathic pain. The radioligand binding and displacement assays indicated that gelsemine and koumine, like glycine, were reversible and orthosteric agonists of glycine receptors with full efficacy and probably acted on same binding site as the glycine receptor antagonist strychnine. Treatment with gelsemine, koumine and glycine in primary cultures of spinal neurons (but not microglia or astrocytes) concentration dependently increased 3α-hydroxysteroid oxidoreductase (3α-HSOR) mRNA expression, which was inhibited by pretreatment with strychnine but not the glial inhibitor minocycline. Intrathecal injection of gelsemine, koumine and glycine stimulated 3α-HSOR mRNA expression in the spinal cords of neuropathic rats and produced mechanical antiallodynia. Their spinal mechanical antiallodynia was completely blocked by strychnine, the selective 3α-HSOR inhibitor medroxyprogesterone acetate (MPA), 3α-HSOR gene silencer siRNA/3α-HSOR and specific GABAA receptor antagonist isoallopregnanolone, but not minocycline. All the results taken together uncovered that gelsemine and koumine are orthosteric agonists of glycine receptors, and produce mechanical antiallodynia through neuronal glycine receptor/3α-HSOR/allopregnanolone/GABAA receptor pathway.
Collapse
|
8
|
Chow TYA, Ng CHV, Tse ML. Clinical manifestations and causes of gelsemium poisoning in Hong Kong from 2005 to 2017: Review of 33 cases. HONG KONG J EMERG ME 2018. [DOI: 10.1177/1024907918808156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Gelsemium elegans is an extremely toxic plant, but gelsemium poisoning is seldom reported in the English literature. Objectives: To evaluate the clinical manifestations and causes of gelsemium poisoning in Hong Kong. Methods: A retrospective review of gelsemium poisoning recorded by the Hong Kong Poison Information Centre from 2005 to 2017. Results: In total, 33 cases (55% female, median age 44 (interquartile range: 30–56)) were identified in 14 incidences. Consumption of contaminated Ficus hirta (五指毛桃) soup is the commonest cause (52%). Other causes include misidentification of herbs (12%), consumption of parasitic plant Cassytha filiformis (無根藤) (15%) and suicidal ingestion of Gelsemium elegans (斷腸草) (3%). Most patients (94%) had mild to moderate toxicity, with one fatal case and one severe case presented with coma and respiratory depression. All patients complained of dizziness (100%), followed by visual blurring (34%) and nausea (28%). More than half (53%) had ocular manifestations (e.g. visual blurring, ptosis, nystagmus, diplopia) which are not commonly reported in other herbal poisoning. The time of symptom onset was early (median: 50 min (interquartile range: 30–60)) and all occurred within 2 h after oral intake. Most patients (94%) recovered uneventfully with conservative treatment. Conclusion: Most gelsemium poisoning in Hong Kong was due to contamination or misidentification. Early-onset dizziness (<2 h) with ocular symptoms after herbs consumption highly suggests Gelsemium poisoning. Good supportive care, particularly respiratory support, is the mainstay of management. Early recognition and the corresponding preventive measures would be useful.
Collapse
Affiliation(s)
- Tin Yat Anthony Chow
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Chun Ho Vember Ng
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Man Li Tse
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| |
Collapse
|
9
|
Jin J, Li H, Zhao G, Jiang S. Lycopsamine Exerts Protective Effects and Improves Functional Outcome After Spinal Cord Injury in Rats by Suppressing Cell Death. Med Sci Monit 2018; 24:7444-7450. [PMID: 30335732 PMCID: PMC6202880 DOI: 10.12659/msm.912978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Spinal cord injury (SCI) is an injury-triggered event that is associated with permanent neurologic deficit. The deficit instigated by SCI leads to medical co-morbidity, not only affecting sensory and motor capabilities, but also having an impact on the physiological and economic condition of the patient. Against this backdrop, the present study was carried out to investigate the effect of lycopsamine, a plant-derived alkaloid in SCI rats. Material/Methods The traumatic SCI injury in rats was created using a force-calibrated weight-drop device. The Basso-Beattie-Bresnahan (BBB) locomotor rating scale was used to investigate the functional consequences of SCI. DAPI (4′,6-diamidino-2-phenylindole) and Tunnel staining were used to detect apoptosis. Western blot and qRT-PCR was used to examine the protein and gene expressions, respectively. Results The results revealed that lycopsamine significantly (p<0.01) improved locomotory function in SCI rats. Lycopsamine also significantly (p<0.01) decreased the lesion area of the SCI rats. Investigation of the effect of lycopsamine on cell death following SCI revealed that lycopsamine reduces apoptotic cell death following SCI. The lycopsamine-induced reduction in apoptosis was allied with downregulation of calpain, cleaved caspase 3 and 9, and Bax. However, the expression of BCl-2 was significantly upregulated. Furthermore, lycopsamine significantly (p<0.01) upregulated the expression of interleukin-10 (IL-10) and decreased the expression of tumor necrosis factor-α (TNF-α). Conclusions Lycopsamine exerts protective effects in PCI rats by improving functional recovery and suppressing apoptosis.
Collapse
Affiliation(s)
- Jing Jin
- Department of Rehabilitation Medicine, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Hao Li
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Gaonian Zhao
- Department of Rehabilitation Medicine, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Su Jiang
- Department of Rehabilitation Medicine, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| |
Collapse
|
10
|
Vitet L, Patte-Mensah C, Boujedaini N, Mensah-Nyagan AG, Meyer L. Beneficial effects of Gelsemium-based treatment against paclitaxel-induced painful symptoms. Neurol Sci 2018; 39:2183-2196. [DOI: 10.1007/s10072-018-3575-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/14/2018] [Indexed: 12/01/2022]
|
11
|
Bellavite P, Bonafini C, Marzotto M. Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues. J Ayurveda Integr Med 2018; 9:69-74. [PMID: 29428604 PMCID: PMC5884012 DOI: 10.1016/j.jaim.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its action mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract showed a modulation of gene expression of human neurocytes. These studies were criticized in a few commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allopregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a focus on the issues of high dilution pharmacology, are discussed and clarified.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| |
Collapse
|
12
|
Chen CJ, Zhong ZF, Xin ZM, Hong LH, Su YP, Yu CX. Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents. J Nat Med 2017; 71:397-408. [DOI: 10.1007/s11418-017-1070-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
|
13
|
Lara CO, Murath P, Muñoz B, Marileo AM, Martín LS, San Martín VP, Burgos CF, Mariqueo TA, Aguayo LG, Fuentealba J, Godoy P, Guzman L, Yévenes GE. Functional modulation of glycine receptors by the alkaloid gelsemine. Br J Pharmacol 2016; 173:2263-77. [PMID: 27128379 DOI: 10.1111/bph.13507] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Gelsemine is one of the principal alkaloids produced by the Gelsemium genus of plants belonging to the Loganiaceae family. The extracts of these plants have been used for many years, for a variety of medicinal purposes. Coincidentally, recent studies have shown that gelsemine exerts anxiolytic and analgesic effects on behavioural models. Several lines of evidence have suggested that these beneficial actions were dependent on glycine receptors, which are inhibitory neurotransmitter-gated ion channels of the CNS. However, it is currently unknown whether gelsemine can directly modulate the function of glycine receptors. EXPERIMENTAL APPROACH We examined the functional effects of gelsemine on glycine receptors expressed in transfected HEK293 cells and in cultured spinal neurons by electrophysiological techniques. KEY RESULTS Gelsemine directly modulated recombinant and native glycine receptors and exerted conformation-specific and subunit-selective effects. Gelsemine modulation was voltage-independent and was associated with differential changes in the apparent affinity for glycine and in the open probability of the ion channel. In addition, the alkaloid preferentially targeted glycine receptors in spinal neurons and showed only minor effects on GABAA and AMPA receptors. Furthermore, gelsemine significantly diminished the frequency of glycinergic and glutamatergic synaptic events without altering the amplitude. CONCLUSIONS AND IMPLICATIONS Our results provide a pharmacological basis to explain, at least in part, the glycine receptor-dependent, beneficial and toxic effects of gelsemine in animals and humans. In addition, the pharmacological profile of gelsemine may open new approaches to the development of subunit-selective modulators of glycine receptors.
Collapse
Affiliation(s)
- Cesar O Lara
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Pablo Murath
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Braulio Muñoz
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Ana M Marileo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Loreto San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Victoria P San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | | | - Luis G Aguayo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Leonardo Guzman
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Chile
| |
Collapse
|
14
|
Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. HOMEOPATHY 2015; 104:139-60. [DOI: 10.1016/j.homp.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
15
|
Palit P, Mukherjee D, Mandal SC. Reconstituted mother tinctures of Gelsemium sempervirens L. improve memory and cognitive impairment in mice scopolamine-induced dementia model. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:274-284. [PMID: 25459447 DOI: 10.1016/j.jep.2014.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gelsemium sempervirens (L.) J.St.-Hil is a herb used for the treatment of various neuroses in both homeopathic and Ayurvedic systems. The present study examines whether Gelsemium reconstituted tincture can protect against scopolamine induced cognitive discrepancies in amnesic mouse model. In order to investigate the protective mechanism of Gelsemium against dementia, in vitro acetyl cholinesterase and β-secretase enzyme inhibition and estimation of glutathione level in mouse brain were carried out. MATERIALS AND METHODS The inhibition study on acetyl cholinesterase and β-secretase enzyme was conducted on brain homogenate supernatant spectrophotometrically using specific substrate. Cognitive enhancement activity was assessed by elevated plus maze and passive avoidance study in scopolamine induced dementia mouse model. Glutathione, an anti-oxidant, was measured spectrophotometrically from scopolamine induced amnesic mice brain supernatant using 5,5'-dithiobis 2-nitrobenzoic acid in the presence and absence of Gelsemium tincture. RESULTS Significant inhibition was found with Gelsemium on AChE and β-secretase enzyme with an IC50 of 9.25 and 16.25 µg/ml, respectively, followed by increasing glutathione levels in comparison to the untreated dementia group. The effect of Gelsemium of scopolamine-induced cognitive deficits was determined by measuring the behavioral parameters and the antioxidant status of the brain after scopolamine (1mg/kg i.p.) injected amnesic mice. Gelsemium significantly demonstrated in vivo anti-dementia activity (60% protection) and increased exploratory behavior. CONCLUSION Our investigations indicated that alkaloid, iridoids and coumarin enriched reconstituted Gelsemium tincture extract displays promising cognitive enhancement in adult mice after short-term oral treatment. Hence, Gelsemium can be a promising anti-dementia agent, mediating the protection against amnesia, attention disorders and learning dysfunctions through dual inhibition of both acetyl cholinesterases (no false positive effect was shown), β-secretase and antioxidant activity.
Collapse
Affiliation(s)
- Partha Palit
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Division of Pharmacognosy and Phytochemistry, Bidhan Nagar, Durgapur 713206, India.
| | - Dhrubojyoti Mukherjee
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Division of Pharmacognosy and Phytochemistry, Bidhan Nagar, Durgapur 713206, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Research Laboratory, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
16
|
Chirumbolo S. On Gelsemium and Complementary and Alternative Medicine (CAM) in Anxiety and Experimental Neurology. Neurol Ther 2014; 4:1-10. [PMID: 26847671 PMCID: PMC4470975 DOI: 10.1007/s40120-014-0025-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 11/29/2022] Open
Abstract
A recent discussion expanded the debate about the experimental research on Gelsemium in anxiety. Herbal medicine is widely used in anxiety and mood disorders, often with contradictory evidence, although some authors are yet prompted to promote their full introduction in pharmacology as a promising therapy. Complementary and alternative medicine (CAM) in anxiety is particularly appreciated by individual healthcare, but deserves further investigation, as many critical issues have been recently raised. Comments about the ability of negligible doses of Gelsemium hydroalcoholic extracts to affect gene expression were recently reported.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Medicine, Univerity of Verona, LURM Est Policlinico GB Rossi, Piazzale AL Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
17
|
Zhang JY, Wang YX. Gelsemium analgesia and the spinal glycine receptor/allopregnanolone pathway. Fitoterapia 2014; 100:35-43. [PMID: 25447163 DOI: 10.1016/j.fitote.2014.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 12/21/2022]
Abstract
Gelsemium, a small genus of flowering plant from the family Loganiaceae, comprises five species including the popular Gelsemium sempervirens Ait. and Gelsemium elegans Benth., which are indigenous to North America and China/East Asia, respectively. Approximately 120 alkaloids have been isolated and identified from Gelsemium, with the predominant indole alkaloids including gelsemine, koumine, gelsemicine, gelsenicine, gelsedine, sempervirine, koumidine, koumicine and humantenine. Gelsemine is the principal active alkaloid in G. sempervirens Ait., and koumine and gelsemine are the most and second-most dominant alkaloids in G. elegans Benth. Gelsemium extract and its active alkaloids serve a variety of biological functions, including neurobiological, immunosuppressive and antitumor effects, and have traditionally been used to treat pain, neuralgia, anxiety, insomnia, asthma, respiratory ailments and cancers. This review focuses on animal-based studies of Gelsemium as a pain treatment and its mechanism of action. In contrast to morphine, when administered intrathecally and systemically, koumine, gelsemine and gelsenicine have marked antinociception in inflammatory, neuropathic and bone cancer pains without inducing antinociceptive tolerance. Gelsemium and its active alkaloids may produce antinociception by activating the spinal α3 glycine/allopregnanolone pathway. The results of this review support the clinical use of Gelsemium and suggest that its active alkaloids may be developed to treat intractable and other types of pain, preferably after chemical modification. However, Gelsemium is a known toxic plant, and its toxicity limits its appropriate dosage and clinical use. To avoid or decrease the side/toxic effects of Gelsemium, an individual monomer of highly potent alkaloids must be selected, or alkaloids that exhibit greater α3 glycine receptor selectivity may be discovered or modified.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, No 6 Biomedicine Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, No 6 Biomedicine Building, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
18
|
Vallée M. Structure-activity relationship studies on neuroactive steroids in memory, alcohol and stress-related functions: a crucial benefit from endogenous level analysis. Psychopharmacology (Berl) 2014; 231:3243-55. [PMID: 24781520 DOI: 10.1007/s00213-014-3593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
RATIONALE New research findings in the field of neuroactive steroids strongly suggest that to understand their role in physiopathology, it is essential to accurately measure their tissue levels. Through his broad chemical expertise and extensive knowledge of steroids, Dr. Robert H. Purdy pioneered structure-activity relationship studies on these compounds and developed innovative detection assays that are essential to assess their function in biological tissues. OBJECTIVE The goal of the present paper is to point out the specific contributions of Dr. Purdy and his collaborators to the current knowledge on the role of neuroactive steroids in the modulation of memory and alcohol- and stress-related effects with particular emphasis on the detection assays he developed to assess their endogenous levels. Reviewed here are the major results as well as the original and valuable methodological strategies issued by the long-term collaboration between Dr Purdy and many scientists worldwide on the investigation of the structure-activity relationship of neuroactive steroids. RESULTS Altogether, the data presented herein put forward the original notion that knowledge of the chemical structure of steroids is essential for their detection and the understanding of their role in physiological and pathological conditions, including the stress response. CONCLUSIONS The current challenge is to identify and quantify using appropriate methods neuroactive steroids in the context of both animal and clinical studies in order to reveal how their levels change under physiological and disease states. Dr. Purdy passed away in September 2012, but scientists all over the world will always be grateful for his pioneering work on steroid chemistry and for his great enthusiasm in research.
Collapse
Affiliation(s)
- Monique Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, 33077, France,
| |
Collapse
|
19
|
Marzotto M, Olioso D, Brizzi M, Tononi P, Cristofoletti M, Bellavite P. Extreme sensitivity of gene expression in human SH-SY5Y neurocytes to ultra-low doses of Gelsemium sempervirens. Altern Ther Health Med 2014; 14:104. [PMID: 24642002 PMCID: PMC3999908 DOI: 10.1186/1472-6882-14-104] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 03/13/2014] [Indexed: 12/28/2022]
Abstract
Background Gelsemium sempervirens L. (Gelsemium s.) is a traditional medicinal plant, employed as an anxiolytic at ultra-low doses and animal models recently confirmed this activity. However the mechanisms by which it might operate on the nervous system are largely unknown. This work investigates the gene expression of a human neurocyte cell line treated with increasing dilutions of Gelsemium s. extract. Methods Starting from the crude extract, six 100 × (centesimal, c) dilutions of Gelsemium s. (2c, 3c, 4c, 5c, 9c and 30c) were prepared according to the French homeopathic pharmacopoeia. Human SH-SY5Y neuroblastoma cells were exposed for 24 h to test dilutions, and their transcriptome compared by microarray to that of cells treated with control vehicle solutions. Results Exposure to the Gelsemium s. 2c dilution (the highest dose employed, corresponding to a gelsemine concentration of 6.5 × 10-9 M) significantly changed the expression of 56 genes, of which 49 were down-regulated and 7 were overexpressed. Several of the down-regulated genes belonged to G-protein coupled receptor signaling pathways, calcium homeostasis, inflammatory response and neuropeptide receptors. Fisher exact test, applied to the group of 49 genes down-regulated by Gelsemium s. 2c, showed that the direction of effects was significantly maintained across the treatment with high homeopathic dilutions, even though the size of the differences was distributed in a small range. Conclusions The study shows that Gelsemium s., a medicinal plant used in traditional remedies and homeopathy, modulates a series of genes involved in neuronal function. A small, but statistically significant, response was detected even to very low doses/high dilutions (up to 30c), indicating that the human neurocyte genome is extremely sensitive to this regulation.
Collapse
|
20
|
Bellavite P, Marzotto M, Olioso D, Moratti E, Conforti A. High-dilution effects revisited. 2. Pharmacodynamic mechanisms. HOMEOPATHY 2014; 103:22-43. [DOI: 10.1016/j.homp.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
|
21
|
Pharmacological effect of gelsemine on anxiety-like behavior in rat. Behav Brain Res 2013; 253:90-4. [DOI: 10.1016/j.bbr.2013.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/05/2013] [Accepted: 07/06/2013] [Indexed: 01/19/2023]
|
22
|
Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 2013; 113:70-8. [PMID: 23948490 DOI: 10.1016/j.pneurobio.2013.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023]
Abstract
Because the treatment and management of neuropathic pain are extremely complicated, the characterization of novel analgesics and neuroprotectors with safe toxicological profiles is a crucial need to develop efficient therapies. Several investigations revealed that the natural neurosteroid allopregnanolone (AP) exerts analgesic, neuroprotective, antidepressant and anxiolytic effects. These effects result from AP ability to modulate GABA(A), glycine, L- and T-type calcium channels. It has been shown that AP treatment induced beneficial actions in humans and animal models with no toxic side effects. In particular, a multi-parametric analysis revealed that AP efficiently counteracted chemotherapy-evoked neuropathic pain in rats. It has also been demonstrated that the modulation of AP-producing enzyme, 3α-hydroxysteroid oxido-reductase (3α-HSOR), in the spinal cord regulates thermal and mechanical pain thresholds of peripheral nerve injured neuropathic rats. The painful symptoms were exacerbated by intrathecal injections of provera (pharmacological inhibitor of 3α-HSOR) which decreased AP production in the spinal cord. By contrast, the enhancement of AP concentration in the intrathecal space induced analgesia and suppression of neuropathic symptoms. Moreover, in vivo siRNA-knockdown of 3α-HSOR expression in healthy rat dorsal root ganglia increased thermal and mechanical pain perceptions while AP evoked a potent antinociceptive action. In humans, blood levels of AP were inversely associated with low back and chest pain. Furthermore, oral administration of AP analogs induced antinociception. Altogether, these data indicate that AP, which possesses a high therapeutic potential and a good toxicological profile, may be used to develop effective and safe strategies against chronic neuropathic pain.
Collapse
Affiliation(s)
- C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - A G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|
23
|
Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain 2013; 154:2452-2462. [PMID: 23886522 DOI: 10.1016/j.pain.2013.07.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/14/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022]
Abstract
The present study examined the antinociceptive effects of gelsemine, the principal alkaloid in Gelsemium sempervirens Ait. A single intrathecal injection of gelsemine produced potent and specific antinociception in formalin-induced tonic pain, bone cancer-induced mechanical allodynia, and spinal nerve ligation-induced painful neuropathy. The antinociception was dose-dependent, with maximal inhibition of 50% to 60% and ED50 values of 0.5 to 0.6 μg. Multiple daily intrathecal injections of gelsemine for 7 days induced no tolerance to antinociception in the rat model of bone cancer pain. Spinal gelsemine was not effective in altering contralateral paw withdrawal thresholds, and had only a slight inhibitory effect on formalin-induced acute nociception. The specific antinociception of gelsemine in chronic pain was blocked dose-dependently by the glycine receptor (GlyR) antagonist strychnine with an apparent ID50 value of 3.8 μg. Gelsemine concentration-dependently displaced H(3)-strychnine binding to the membrane fraction of rat spinal cord homogenates, with a 100% displacement and a Ki of 21.9μM. Gene ablation of the GlyR α3 subunit (α3 GlyR) but not α1 GlyR, by a 7-day intrathecal injection of small interfering RNA (siRNA) targeting α3 GlyR or α1 GlyR, nearly completely prevented gelsemine-induced antinociception in neuropathic pain. Our results demonstrate that gelsemine produces potent and specific antinociception in chronic pain states without induction of apparent tolerance. The results also suggest that gelsemine produces antinociception by activation of spinal α3 glycine receptors, and support the notion that spinal α3 glycine receptors are a potential therapeutic target molecule for the management of chronic pain.
Collapse
|
24
|
The active alkaloids of Gelsemium elegans Benth. are potent anxiolytics. Psychopharmacology (Berl) 2013; 225:839-51. [PMID: 23052566 DOI: 10.1007/s00213-012-2867-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/30/2012] [Indexed: 01/23/2023]
Abstract
RATIONALE An increasing number of herbal products has been introduced to treat anxiety and depression. Gelsemium elegans Benth (G. elegans) is a well-known herbal plant in Asia. Four major alkaloids (gelsemine, koumine, gelsevirine, and gelsenicine) have been isolated from G. elegans. Recently, interest has arisen to investigate the pharmaceutical potential of G. elegans alkaloids in the context of neuropsychopharmacology. OBJECTIVES We investigated whether G. elegans alkaloids are capable of producing anxiolytic and antidepressant effects in mouse models. In particular, we examined whether the anxiolytic action of G. elegans alkaloids is due to the agonist effects of glycine receptor in the brain. METHODS Two mouse models (elevated plus-maze and light-dark transition model) were used to examine potential anxiolytic effects. Forced swim test and tail suspension test were used to test the antidepressive action of G. elegans alkaloids. Moreover, we also explored the anxiolytic mechanisms of G. elegans alkaloids by intracerebroventricular administration of strychnine, an antagonist of glycine receptor, in the elevated plus-maze. RESULTS Gelsemine, koumine, and gelsevirine, but not gelsenicine, exhibited potent anxiolytic effects in the two anxiety models. None of the four G. elegans alkaloids exerted antidepressant effects in the two depression models. None of G. elegans alkaloids impaired spontaneous motor activities. The intracerebroventricular administration of strychnine significantly antagonized the anxiolytic effects of gelsemine, koumine, and gelsevirine administrated subcutaneously. CONCLUSIONS Gelsemine, koumine, and gelsevirine could be developed as the treatment of anxiety-related disorders in human patients. Their anxiolytic mechanism may be involved in the agonist action of glycine receptor in the brain.
Collapse
|
25
|
|
26
|
Marijnen P. Existe-t-il une recherche dans le domaine du médicament homéopathique ? ACTUALITES PHARMACEUTIQUES 2012. [DOI: 10.1016/s0515-3700(12)71168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Testing homeopathy in mouse emotional response models: pooled data analysis of two series of studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:954374. [PMID: 22548123 PMCID: PMC3324905 DOI: 10.1155/2012/954374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/29/2012] [Indexed: 01/26/2023]
Abstract
Two previous investigations were performed to assess the activity of Gelsemium sempervirens (Gelsemium s.) in mice, using emotional response models. These two series are pooled and analysed here. Gelsemium s. in various homeopathic centesimal dilutions/dynamizations (4C, 5C, 7C, 9C, and 30C), a placebo (solvent vehicle), and the reference drugs diazepam (1 mg/kg body weight) or buspirone (5 mg/kg body weight) were delivered intraperitoneally to groups of albino CD1 mice, and their effects on animal behaviour were assessed by the light-dark (LD) choice test and the open-field (OF) exploration test. Up to 14 separate replications were carried out in fully blind and randomised conditions. Pooled analysis demonstrated highly significant effects of Gelsemium s. 5C, 7C, and 30C on the OF parameter “time spent in central area” and of Gelsemium s. 5C, 9C, and 30C on the LD parameters “time spent in lit area” and “number of light-dark transitions,” without any sedative action or adverse effects on locomotion. This pooled data analysis confirms and reinforces the evidence that Gelsemium s. regulates emotional responses and behaviour of laboratory mice in a nonlinear fashion with dilution/dynamization.
Collapse
|
28
|
Effects of Ignatia amara in mouse behavioural models. HOMEOPATHY 2012; 101:57-67. [DOI: 10.1016/j.homp.2011.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 01/25/2023]
|
29
|
|
30
|
Chirumbolo S. Plant-derived extracts in the neuroscience of anxiety on animal models: biases and comments. Int J Neurosci 2011; 122:177-88. [PMID: 22050267 DOI: 10.3109/00207454.2011.635829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generalized anxiety disorders probably represent one of the world's biggest mental health problems. A large number of studies have also shown that anxiety disorders and depression are often associated with quality of life impairments. As anxiety represents a big concern in public health, a substantial literature supports clinically important associations between psychiatric illness and chronic medical conditions. Actually, most research focuses on depression, finding that depression can adversely affect self-care and increase the risk of incident medical illness, complications, and mortality. Anxiety disorders are less well studied, but robust epidemiological and clinical evidences show that they play an equally important role. Recent reported articles have raised a debate about the effectiveness of some plant-derived extracts in anxiety-like models in mice. Biases about several aspects related with experimental setting, animal selection, environments, operators and investigators, selection and performance of behavioral tests, controls, results managing, and statistics are here discussed.
Collapse
|
31
|
Paris A, Schmidlin S, Mouret S, Hodaj E, Marijnen P, Boujedaini N, Polosan M, Cracowski JL. Effect ofGelsemium5CH and 15CH on anticipatory anxiety: a phase III, single-centre, randomized, placebo-controlled study. Fundam Clin Pharmacol 2011; 26:751-60. [DOI: 10.1111/j.1472-8206.2011.00993.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Stang EM, White MC. Molecular complexity via C-H activation: a dehydrogenative Diels-Alder reaction. J Am Chem Soc 2011; 133:14892-5. [PMID: 21842902 PMCID: PMC3292869 DOI: 10.1021/ja2059704] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, C-H oxidation reactions install oxidized functionality onto a preformed molecular skeleton, resulting in a local molecular change. The use of C-H activation chemistry to construct complex molecular scaffolds is a new area with tremendous potential in synthesis. We report a Pd(II)/bis-sulfoxide-catalyzed dehydrogenative Diels-Alder reaction that converts simple terminal olefins into complex cycloadducts in a single operation.
Collapse
Affiliation(s)
- Erik M Stang
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | | |
Collapse
|
33
|
Bellavite P. Gelsemium sempervirens and Animal Behavioral Models. Front Neurol 2011; 2:56. [PMID: 21941520 PMCID: PMC3170886 DOI: 10.3389/fneur.2011.00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/16/2011] [Indexed: 01/28/2023] Open
Affiliation(s)
- Paolo Bellavite
- Department of Pathology and Diagnostics, University of Verona Verona, Italy
| |
Collapse
|
34
|
Venard C, Boujedaini N, Mensah-Nyagan AG, Patte-Mensah C. Comparative Analysis of Gelsemine and Gelsemium sempervirens Activity on Neurosteroid Allopregnanolone Formation in the Spinal Cord and Limbic System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:407617. [PMID: 19628662 PMCID: PMC3136435 DOI: 10.1093/ecam/nep083] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/15/2009] [Indexed: 12/15/2022]
Abstract
Centesimal dilutions (5, 9 and 15 cH) of Gelsemium sempervirens are claimed to be capable of exerting anxiolytic and analgesic effects. However, basic results supporting this assertion are rare, and the mechanism of action of G. sempervirens is completely unknown. To clarify the point, we performed a comparative analysis of the effects of dilutions 5, 9 and 15 cH of G. sempervirens or gelsemine (the major active principle of G. sempervirens) on allopregnanolone (3α,5α-THP) production in the rat limbic system (hippocampus and amygdala or H-A) and spinal cord (SC). Indeed, H-A and SC are two pivotal structures controlling, respectively, anxiety and pain that are also modulated by the neurosteroid 3α,5α-THP. At the dilution 5 cH, both G. sempervirens and gelsemine stimulated [3H]progesterone conversion into [3H]3α,5α-THP by H-A and SC slices, and the stimulatory effect was fully (100%) reproducible in all assays. The dilution 9 cH of G. sempervirens or gelsemine also stimulated 3α,5α-THP formation in H-A and SC but the reproducibility rate decreased to 75%. At 15 cH of G. sempervirens or gelsemine, no effect was observed on 3α,5α-THP neosynthesis in H-A and SC slices. The stimulatory action of G. sempervirens and gelsemine (5 cH) on 3α,5α-THP production was blocked by strychnine, the selective antagonist of glycine receptors. Altogether, these results, which constitute the first basic demonstration of cellular effects of G. sempervirens, also offer interesting possibilities for the improvement of G. sempervirens-based therapeutic strategies.
Collapse
Affiliation(s)
- Christine Venard
- Equipe "Stéroïdes, Neuromodulateurs et Neuropathologies", EA-4438, Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
35
|
Chirumbolo S. Gelsemine and Gelsemium sempervirens L. Extracts in Animal Behavioral Test: Comments and Related Biases. Front Neurol 2011; 2:31. [PMID: 21647210 PMCID: PMC3098419 DOI: 10.3389/fneur.2011.00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/05/2011] [Indexed: 12/12/2022] Open
|
36
|
Bellavite P, Magnani P, Zanolin E, Conforti A. Homeopathic Doses of Gelsemium sempervirens Improve the Behavior of Mice in Response to Novel Environments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:362517. [PMID: 19752165 PMCID: PMC3135388 DOI: 10.1093/ecam/nep139] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 08/17/2009] [Indexed: 11/12/2022]
Abstract
Gelsemium sempervirens is used in homeopathy for treating patients with anxiety related symptoms, however there have been few experimental studies evaluating its pharmacological activity. We have investigated the effects of homeopathic doses of G. sempervirens on mice, using validated behavioral models. Centesimal (CH) dilutions/dynamizations of G. sempervirens, the reference drug diazepam (1 mg/kg body weight) or a placebo (solvent vehicle) were intraperitoneally delivered to groups of mice of CD1 strain during 8 days, then the effects were assessed by the Light-Dark (LD) choice test and by the Open-Field (OF) exploration test, in a fully blind manner. In the LD test, the mean time spent in the illuminated area by control and placebo-treated animals was 15.98%, for mice treated with diazepam it increased to 19.91% (P = .047), while with G. sempervirens 5 CH it was 18.11% (P = .341, non-significant). The number of transitions between the two compartments increased with diazepam from 6.19 to 9.64 (P < .001) but not with G. Sempervirens. In the OF test, G. sempervirens 5 CH significantly increased the time spent and the distance traveled in the central zone (P = .009 and P = .003, resp.), while diazepam had no effect on these OF test parameters. In a subsequent series of experiments, G. sempervirens 7 and 30 CH also significantly improved the behavioral responses of mice in the OF test (P < .01 for all tested variables). Neither dilutions of G. sempervirens affected the total distance traveled, indicating that the behavioral effect was not due to unspecific changes in locomotor activity. In conclusion, homeopathic doses of G. sempervirens influence the emotional responses of mice to novel environments, suggesting an improvement in exploratory behavior and a diminution of thigmotaxis or neophobia.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Morphological Biomedical Sciences (Chemistry and Microscopy Section), University of Verona, Verona 37134, Italy
| | | | | | | |
Collapse
|
37
|
Turkmen S, Backstrom T, Wahlstrom G, Andreen L, Johansson IM. Tolerance to allopregnanolone with focus on the GABA-A receptor. Br J Pharmacol 2011; 162:311-327. [PMID: 20883478 PMCID: PMC3031054 DOI: 10.1111/j.1476-5381.2010.01059.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/05/2010] [Accepted: 09/15/2010] [Indexed: 11/29/2022] Open
Abstract
Many studies have suggested a relationship between stress, sex steroids, and negative mental and mood changes in humans. The progesterone metabolite allopregnanolone is a potent endogenous ligand of the γ-amino butyric acid -A (GABA-A) receptor, and the most discussed neuroactive steroid. Variations in the levels of neuroactive steroids that influence the activity of the GABA-A receptor cause a vulnerability to mental and emotional pathology. There are physiological conditions in which allopregnanolone production increases acutely (e.g. stress) or chronically (e.g. menstrual cycle, pregnancy), thus exposing the GABA-A receptor to high and continuous allopregnanolone concentrations. In such conditions, tolerance to allopregnanolone may develop. We have shown that both acute and chronic tolerances can develop to the effects of allopregnanolone. Following the development of acute allopregnanolone tolerance, there is a decrease in the abundance of the GABA-A receptor α4 subunit and the expression of the α4 subunit mRNA in the ventral-posteriomedial nucleus of the thalamus. Little is known about the mechanism behind allopregnanolone tolerance and its effects on assembly of the GABA-A receptor composition. The exact mechanism of the allopregnanolone tolerance phenomena remains unclear. The purpose of this review is to summarize certain aspects of current knowledge concerning allopregnanolone tolerance and changes in the GABA-A receptors.
Collapse
Affiliation(s)
- Sahruh Turkmen
- Department of Obstetrics & Gynaecology, Sundsvall County Hospital, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Schaeffer V, Meyer L, Patte-mensah C, Eckert A, Mensah-nyagan AG. Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons. Glia 2010; 58:169-80. [DOI: 10.1002/glia.20910] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Magnani P, Conforti A, Zanolin E, Marzotto M, Bellavite P. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology (Berl) 2010; 210:533-45. [PMID: 20401745 PMCID: PMC2877813 DOI: 10.1007/s00213-010-1855-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
Abstract
INTRODUCTION This study was designed to investigate the putative anxiolytic-like activity of ultra-low doses of Gelsemium sempervirens (G. sempervirens), produced according to the homeopathic pharmacopeia. METHODS Five different centesimal (C) dilutions of G. sempervirens (4C, 5C, 7C, 9C and 30C), the drug buspirone (5 mg/kg) and solvent vehicle were delivered intraperitoneally to groups of ICR-CD1 mice over a period of 9 days. The behavioral effects were assessed in the open-field (OF) and light-dark (LD) tests in blind and randomized fashion. RESULTS Most G. sempervirens dilutions did not affect the total distance traveled in the OF (only the 5C had an almost significant stimulatory effect on this parameter), indicating that the medicine caused no sedation effects or unspecific changes in locomotor activity. In the same test, buspirone induced a slight but statistically significant decrease in locomotion. G. sempervirens showed little stimulatory activity on the time spent and distance traveled in the central zone of the OF, but this effect was not statistically significant. In the LD test, G. sempervirens increased the % time spent in the light compartment, an indicator of anxiolytic-like activity, with a statistically significant effect using the 5C, 9C and 30C dilutions. These effects were comparable to those of buspirone. The number of transitions between the compartments of the LD test markedly increased with G. sempervirens 5C, 9C and 30C dilutions. CONCLUSION The overall pattern of results provides evidence that G. sempervirens acts on the emotional reactivity of mice, and that its anxiolytic-like effects are apparent, with a non-linear relationship, even at high dilutions.
Collapse
Affiliation(s)
- Paolo Magnani
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| | - Anita Conforti
- Department of Medicine and Public Health, University of Verona, Verona, Italy
| | - Elisabetta Zanolin
- Department of Medicine and Public Health, University of Verona, Verona, Italy
| | - Marta Marzotto
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| | - Paolo Bellavite
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| |
Collapse
|
40
|
Chesnoy-Marchais D. Progesterone and allopregnanolone enhance the miniature synaptic release of glycine in the rat hypoglossal nucleus. Eur J Neurosci 2009; 30:2100-11. [PMID: 19930400 DOI: 10.1111/j.1460-9568.2009.07013.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well known that progesterone is synthesised and metabolised within the nervous system, and that one of its metabolites, allopregnanolone, potentiates the activity of GABA receptor anionic channels and modulates GABAergic neurotransmission. Progesterone is now under clinical trial for its neuroprotective properties, but its possible effects on neurotransmission have not yet been fully explored. The present study investigated acute effects of progesterone on the other major type of synaptic inhibition, glycinergic neurotransmission. Spontaneous glycinergic miniature currents were recorded in hypoglossal motoneurons, using the whole-cell patch-clamp technique in rat brainstem slices. A 20-min superfusion with progesterone (1 mum) triggered an increase in the frequency of glycinergic miniatures, whereas no effect of progesterone was observed after block with finasteride (5 mum) of 5alpha -reductase, the first enzymatic step leading from progesterone to allopregnanolone. The effect of progesterone could be mimicked by superfusion with allopregnanolone (0.3 mum), whereas no effect was induced by epiallopregnanolone. Thus, progesterone can increase the synaptic miniature release of glycine and this effect appears to be indirect, resulting from its metabolism into 5alpha-reduced derivatives, in particular into allopregnanolone. A low concentration of an exogenous GABA(A) agonist can also increase the frequency of inhibitory miniature currents in hypoglossal motoneurons. Thus, the effects of progesterone and allopregnanolone on glycine release can be at least partly explained by the potentiation of the activity of depolarizing presynaptic GABA receptor channels. The increase in the tonic synaptic release of a major inhibitory neurotransmitter should reduce the excitability of the neurons and contribute to their protection against excitotoxicity.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- UMR 788 INSERM-University Paris-Sud 11 Steroids, neuroprotection and neuroregeneration, Bâtiment Grégory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cedex, France.
| |
Collapse
|
41
|
Bellavite P, Magnani P, Marzotto M, Conforti A. Assays of homeopathic remedies in rodent behavioural and psychopathological models. HOMEOPATHY 2009; 98:208-27. [PMID: 19945676 DOI: 10.1016/j.homp.2009.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/07/2009] [Accepted: 09/14/2009] [Indexed: 11/26/2022]
Abstract
The first part of this paper reviews the effects of homeopathic remedies on several models of anxiety-like behaviours developed and described in rodents. The existing literature in this field comprises some fifteen exploratory studies, often published in non-indexed and non-peer-reviewed journals. Only a few results have been confirmed by multiple laboratories, and concern Ignatia, Gelsemium, Chamomilla (in homeopathic dilutions/potencies). Nevertheless, there are some interesting results pointing to the possible efficacy of other remedies, and confirming a statistically significant effect of high dilutions of neurotrophic molecules and antibodies. In the second part of this paper we report some recent results obtained in our laboratory, testing Aconitum, Nux vomica, Belladonna, Argentum nitricum, Tabacum (all 5CH potency) and Gelsemium (5, 7, 9 and 30CH potencies) on mice using ethological models of behaviour. The test was performed using coded drugs and controls in double blind (operations and calculations). After an initial screening that showed all the tested remedies (except for Belladonna) to have some effects on the behavioural parameters (light-dark test and open-field test), but with high experimental variability, we focused our study on Gelsemium, and carried out two complete series of experiments. The results showed that Gelsemium had several effects on the exploratory behaviour of mice, which in some models were highly statistically significant (p < 0.001), in all the dilutions/dynamizations used, but with complex differences according to the experimental conditions and test performed. Finally, some methodological issues of animal research in this field of homeopathy are discussed. The "Gelsemium model" - encompassing experimental studies in vitro and in vivo from different laboratories and with different methods, including significant effects of its major active principle gelsemine - may play a pivotal rule for investigations on other homeopathic remedies.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Morphological Biomedical Sciences, University of Verona, Italy.
| | | | | | | |
Collapse
|