1
|
Griesius S, Waldron S, Kamenish KA, Cherbanich N, Wilkinson LS, Thomas KL, Hall J, Mellor JR, Dwyer DM, Robinson ESJ. A mild impairment in reversal learning in a bowl-digging substrate deterministic task but not other cognitive tests in the Dlg2+/- rat model of genetic risk for psychiatric disorder. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12865. [PMID: 37705179 PMCID: PMC10733576 DOI: 10.1111/gbb.12865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.
Collapse
Affiliation(s)
- Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Sophie Waldron
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
| | - Katie A. Kamenish
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Nick Cherbanich
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Schools of Medicine and Genetics and Genomics, Schools of Medicine and PsychologyCardiffUK
| | - Kerrie L. Thomas
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of Medicine and PsychologyCardiffUK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Schools of Medicine and Genetics and Genomics, Schools of Medicine and PsychologyCardiffUK
- Department of Medicine and PsychologyCardiffUK
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Dominic M. Dwyer
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
| | - Emma S. J. Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| |
Collapse
|
2
|
Rho-Kinase/ROCK Phosphorylates PSD-93 Downstream of NMDARs to Orchestrate Synaptic Plasticity. Int J Mol Sci 2022; 24:ijms24010404. [PMID: 36613848 PMCID: PMC9820267 DOI: 10.3390/ijms24010404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR)-mediated structural plasticity of dendritic spines plays an important role in synaptic transmission in the brain during learning and memory formation. The Rho family of small GTPase RhoA and its downstream effector Rho-kinase/ROCK are considered as one of the major regulators of synaptic plasticity and dendritic spine formation, including long-term potentiation (LTP). However, the mechanism by which Rho-kinase regulates synaptic plasticity is not yet fully understood. Here, we found that Rho-kinase directly phosphorylated discs large MAGUK scaffold protein 2 (DLG2/PSD-93), a major postsynaptic scaffold protein that connects postsynaptic proteins with NMDARs; an ionotropic glutamate receptor, which plays a critical role in synaptic plasticity. Stimulation of striatal slices with an NMDAR agonist induced Rho-kinase-mediated phosphorylation of PSD-93 at Thr612. We also identified PSD-93-interacting proteins, including DLG4 (PSD-95), NMDARs, synaptic Ras GTPase-activating protein 1 (SynGAP1), ADAM metallopeptidase domain 22 (ADAM22), and leucine-rich glioma-inactivated 1 (LGI1), by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among them, Rho-kinase increased the binding of PSD-93 to PSD-95 and NMDARs. Furthermore, we found that chemical-LTP induced by glycine, which activates NMDARs, increased PSD-93 phosphorylation at Thr612, spine size, and PSD-93 colocalization with PSD-95, while these events were blocked by pretreatment with a Rho-kinase inhibitor. These results indicate that Rho-kinase phosphorylates PSD-93 downstream of NMDARs, and suggest that Rho-kinase mediated phosphorylation of PSD-93 increases the association with PSD-95 and NMDARs to regulate structural synaptic plasticity.
Collapse
|
3
|
Griesius S, O'Donnell C, Waldron S, Thomas KL, Dwyer DM, Wilkinson LS, Hall J, Robinson ESJ, Mellor JR. Reduced expression of the psychiatric risk gene DLG2 (PSD93) impairs hippocampal synaptic integration and plasticity. Neuropsychopharmacology 2022; 47:1367-1378. [PMID: 35115661 PMCID: PMC9117295 DOI: 10.1038/s41386-022-01277-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/15/2022]
Abstract
Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Cian O'Donnell
- Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Sophie Waldron
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
| | - Dominic M Dwyer
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Emma S J Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Chromatin accessibility mapping of the striatum identifies tyrosine kinase FYN as a therapeutic target for heroin use disorder. Nat Commun 2020; 11:4634. [PMID: 32929078 PMCID: PMC7490718 DOI: 10.1038/s41467-020-18114-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
The current opioid epidemic necessitates a better understanding of human addiction neurobiology to develop efficacious treatment approaches. Here, we perform genome-wide assessment of chromatin accessibility of the human striatum in heroin users and matched controls. Our study reveals distinct neuronal and non-neuronal epigenetic signatures, and identifies a locus in the proximity of the gene encoding tyrosine kinase FYN as the most affected region in neurons. FYN expression, kinase activity and the phosphorylation of its target Tau are increased by heroin use in the post-mortem human striatum, as well as in rats trained to self-administer heroin and primary striatal neurons treated with chronic morphine in vitro. Pharmacological or genetic manipulation of FYN activity significantly attenuates heroin self-administration and responding for drug-paired cues in rodents. Our findings suggest that striatal FYN is an important driver of heroin-related neurodegenerative-like pathology and drug-taking behavior, making FYN a promising therapeutic target for heroin use disorder. Epigenetic mechanisms have emerged as contributors to the molecular impairments caused by exposure to environmental factors such as abused substances. Here the authors perform epigenetic profiling of the striatum and identify the tyrosine kinase FYN is an important driver of neurodegenerative-like pathology and drug-taking behaviour.
Collapse
|
5
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
6
|
Jee YH, Won S, Lui JC, Jennings M, Whalen P, Yue S, Temnycky AG, Barnes KM, Cheetham T, Boden MG, Radovick S, Quinton R, Leschek EW, Aguilera G, Yanovski JA, Seminara SB, Crowley WF, Delaney A, Roche KW, Baron J. DLG2 variants in patients with pubertal disorders. Genet Med 2020; 22:1329-1337. [PMID: 32341572 PMCID: PMC7510947 DOI: 10.1038/s41436-020-0803-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Impaired function of gonadotropin-releasing hormone (GnRH) neurons can cause a phenotypic spectrum ranging from delayed puberty to isolated hypogonadotropic hypogonadism (IHH). We sought to identify a new genetic etiology for these conditions. METHODS Exome sequencing was performed in an extended family with autosomal dominant, markedly delayed puberty. The effects of the variant were studied in a GnRH neuronal cell line. Variants in the same gene were sought in a large cohort of individuals with IHH. RESULTS We identified a rare missense variant (F900V) in DLG2 (which encodes PSD-93) that cosegregated with the delayed puberty. The variant decreased GnRH expression in vitro. PSD-93 is an anchoring protein of NMDA receptors, a type of glutamate receptor that has been implicated in the control of puberty in laboratory animals. The F900V variant impaired the interaction between PSD-93 and a known binding partner, Fyn, which phosphorylates NMDA receptors. Variants in DLG2 that also decreased GnRH expression were identified in three unrelated families with IHH. CONCLUSION The findings indicate that variants in DLG2/PSD-93 cause autosomal dominant delayed puberty and may also contribute to IHH. The findings also suggest that the pathogenesis involves impaired NMDA receptor signaling and consequently decreased GnRH secretion.
Collapse
Affiliation(s)
- Youn Hee Jee
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julian C Lui
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Jennings
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yue
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Adrian G Temnycky
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Barnes
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tim Cheetham
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle upon Tyne, United Kingdom
| | - Matthew G Boden
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sally Radovick
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Richard Quinton
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle upon Tyne, United Kingdom
| | - Ellen W Leschek
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Greti Aguilera
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jack A Yanovski
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - William F Crowley
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Angela Delaney
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Baron
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
MicroRNA-152-3p protects neurons from oxygen-glucose-deprivation/reoxygenation-induced injury through upregulation of Nrf2/ARE antioxidant signaling by targeting PSD-93. Biochem Biophys Res Commun 2019; 517:69-76. [DOI: 10.1016/j.bbrc.2019.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022]
|
8
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
An opposing function of paralogs in balancing developmental synapse maturation. PLoS Biol 2018; 16:e2006838. [PMID: 30586380 PMCID: PMC6324823 DOI: 10.1371/journal.pbio.2006838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
The disc-large (DLG)-membrane-associated guanylate kinase (MAGUK) family of proteins forms a central signaling hub of the glutamate receptor complex. Among this family, some proteins regulate developmental maturation of glutamatergic synapses, a process vulnerable to aberrations, which may lead to neurodevelopmental disorders. As is typical for paralogs, the DLG-MAGUK proteins postsynaptic density (PSD)-95 and PSD-93 share similar functional domains and were previously thought to regulate glutamatergic synapses similarly. Here, we show that they play opposing roles in glutamatergic synapse maturation. Specifically, PSD-95 promoted, whereas PSD-93 inhibited maturation of immature α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor (AMPAR)-silent synapses in mouse cortex during development. Furthermore, through experience-dependent regulation of its protein levels, PSD-93 directly inhibited PSD-95's promoting effect on silent synapse maturation in the visual cortex. The concerted function of these two paralogs governed the critical period of juvenile ocular dominance plasticity (jODP), and fine-tuned visual perception during development. In contrast to the silent synapse-based mechanism of adjusting visual perception, visual acuity improved by different mechanisms. Thus, by controlling the pace of silent synapse maturation, the opposing but properly balanced actions of PSD-93 and PSD-95 are essential for fine-tuning cortical networks for receptive field integration during developmental critical periods, and imply aberrations in either direction of this process as potential causes for neurodevelopmental disorders.
Collapse
|
10
|
Soler J, Fañanás L, Parellada M, Krebs MO, Rouleau GA, Fatjó-Vilas M. Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. J Psychiatry Neurosci 2018; 43:223-244. [PMID: 29947605 PMCID: PMC6019351 DOI: 10.1503/jpn.170066] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/18/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Scaffolding proteins represent an evolutionary solution to controlling the specificity of information transfer in intracellular networks. They are highly concentrated in complexes located in specific subcellular locations. One of these complexes is the postsynaptic density of the excitatory synapses. There, scaffolding proteins regulate various processes related to synaptic plasticity, such as glutamate receptor trafficking and signalling, and dendritic structure and function. Most scaffolding proteins can be grouped into 4 main families: discs large (DLG), discs-large-associated protein (DLGAP), Shank and Homer. Owing to the importance of scaffolding proteins in postsynaptic density architecture, it is not surprising that variants in the genes that code for these proteins have been associated with neuropsychiatric diagnoses, including schizophrenia and autism-spectrum disorders. Such evidence, together with the clinical, neurobiological and genetic overlap described between schizophrenia and autism-spectrum disorders, suggest that alteration of scaffolding protein dynamics could be part of the pathophysiology of both. However, despite the potential importance of scaffolding proteins in these psychiatric conditions, no systematic review has integrated the genetic and molecular data from studies conducted in the last decade. This review has the following goals: to systematically analyze the literature in which common and/or rare genetic variants (single nucleotide polymorphisms, single nucleotide variants and copy number variants) in the scaffolding family genes are associated with the risk for either schizophrenia or autism-spectrum disorders; to explore the implications of the reported genetic variants for gene expression and/or protein function; and to discuss the relationship of these genetic variants to the shared genetic, clinical and cognitive traits of schizophrenia and autism-spectrum disorders.
Collapse
Affiliation(s)
- Jordi Soler
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Lourdes Fañanás
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Mara Parellada
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Marie-Odile Krebs
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Guy A Rouleau
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Mar Fatjó-Vilas
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| |
Collapse
|
11
|
Ali S, Hoven A, Dress RJ, Schaal H, Alferink J, Scheu S. Identification of a novel Dlg2 isoform differentially expressed in IFNβ-producing plasmacytoid dendritic cells. BMC Genomics 2018; 19:194. [PMID: 29703139 PMCID: PMC6389146 DOI: 10.1186/s12864-018-4573-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background The murine discs large homolog 2 (DLG2; post synaptic density 93 (PSD-93); Chapsyn-110) is a member of the membrane-associated guanylate kinase (MAGUK) protein family involved in receptor assembly and associated with signaling enzymes on cell membranes. In neurons, DLG2 protein isoforms derived from alternatively spliced transcripts have been described to bind to NMDA (N-methyl-aspartate) receptors and K channels and to mediate clustering of these channels in the postsynaptic membrane. In myeloid cells of the immune system, such as dendritic cells (DCs), a lack of data exists on the expression or function of DLG2. In cDNA microarray transcriptome analyses, we found Dlg2 highly expressed in a subpopulation of plasmacytoid DCs (pDCs) stimulated to produce type I interferons (IFNs) such as IFNβ. Results Using RACE- and RT-PCR as well as immunoprecipitation followed by Western blotting we characterised the differential expression of the Dlg2 splice variants in IFNβ-producing pDCs. Besides Dlg2ɣ this cell population expressed a novel short Dlg2η transcript we termed Dlg2η3. Our expression data were integrated into information from genome databases to obtain a novel and comprehensive overview of the mouse Dlg2 gene architecture. To elucidate the intracellular localisation pattern of protein isoforms, ectopical expression analysis of fluorescently tagged DLG2 splice variants was performed. Here we found an enrichment of the larger isoform DLG2α1 at the plasma membrane while the newly identified shorter (DLG2η) isoform as well as DLG2ɣ were equally distributed throughout the cytoplasm. Additionally, DLG2η was also found in the nucleus. Analysis of Dlg2-knockout mice previously generated by deleting exon 9 surprisingly revealed that the protein for the novel DLG2η isoform was still expressed in the brain and in bone marrow-derived pDCs from mice carrying the homozygous deletion (Dlg2ΔE9/ΔE9). Conclusion We describe a novel splice variant of the mouse Dlg2 gene termed Dlg2η and define the differential expression pattern of DLG2 isoforms in IFNβ-producing pDCs. The presence of DLG2η protein in the CNS of Dlg2ΔE9/ΔE9 mice might influence the phenotype of these mice and has to be taken into account in the interpretation of results regarding the functional role of DLG2 in neuronal postsynaptic membranes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4573-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Alexander Hoven
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Regine J Dress
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,BMFZ (Biologisch-Medizinisches Forschungszentrum), Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany.,Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Sun Y, Chen Y, Zhan L, Zhang L, Hu J, Gao Z. The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors. Rev Neurosci 2018; 27:283-9. [PMID: 26540220 DOI: 10.1515/revneuro-2015-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/17/2015] [Indexed: 11/15/2022]
Abstract
Protein tyrosine phosphorylation is one of the primary modes of regulation of N-methyl-d-aspartate (NMDA) receptors. The non-receptor tyrosine kinases are one of the two types of protein tyrosine kinases that are involved in this process. The overactivation of NMDA receptors is a primary reason for neuron death following cerebral ischemia. Many studies have illustrated the important role of non-receptor tyrosine kinases in ischemia insults. This review introduces the roles of Src, Fyn, focal adhesion kinase, and proline-rich tyrosine kinase 2 in the excitotoxicity induced by the overactivation of NMDA receptors following cerebral ischemia.
Collapse
|
13
|
Mao LM, Geosling R, Penman B, Wang JQ. Local substrates of non-receptor tyrosine kinases at synaptic sites in neurons. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2017; 69:657-665. [PMID: 29063113 PMCID: PMC5672811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several non-receptor tyrosine kinase (nRTK) members are expressed in neurons of mammalian brains. Among these neuron-enriched nRTKs, two Src family kinase members (Src and Fyn) are particularly abundant at synaptic sites and have been most extensively studied for their roles in the regulation of synaptic activity and plasticity. Increasing evidence shows that the synaptic subpool of nRTKs interacts with a number of local substrates, including glutamate receptors (both ionotropic and metabotropic glutamate receptors), postsynaptic scaffold proteins, presynaptic proteins, and synapse-enriched enzymes. By phosphorylating specific tyrosine residues in the intracellular domains of these synaptic proteins either constitutively or in an activity-dependent manner, nRTKs regulate these substrates in trafficking, surface expression, and function. Given the high sensitivity of nRTKs to changing synaptic input, nRTKs are considered to act as a critical regulator in the determination of the strength and efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ryan Geosling
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Brian Penman
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
14
|
Li S, Cai J, Feng ZB, Jin ZR, Liu BH, Zhao HY, Jing HB, Wei TJ, Yang GN, Liu LY, Cui YJ, Xing GG. BDNF Contributes to Spinal Long-Term Potentiation and Mechanical Hypersensitivity Via Fyn-Mediated Phosphorylation of NMDA Receptor GluN2B Subunit at Tyrosine 1472 in Rats Following Spinal Nerve Ligation. Neurochem Res 2017; 42:2712-2729. [PMID: 28497343 DOI: 10.1007/s11064-017-2274-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/01/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
|
15
|
Phamluong K, Darcq E, Wu S, Sakhai SA, Ron D. Fyn Signaling Is Compartmentalized to Dopamine D1 Receptor Expressing Neurons in the Dorsal Medial Striatum. Front Mol Neurosci 2017; 10:273. [PMID: 28912680 PMCID: PMC5583218 DOI: 10.3389/fnmol.2017.00273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/11/2017] [Indexed: 01/24/2023] Open
Abstract
The tyrosine kinase Fyn plays an important role in synaptic plasticity, learning, and memory. Here we report that Fyn is activated in response to 15 min D1 receptor (D1R) but not D2 receptor (D2R) stimulation specifically in the dorsomedial striatum (DMS) of mice but not in the other substriatal regions, the dorsolateral striatum (DLS), and the nucleus accumbens (NAc). Once activated Fyn phosphorylates its substrate GluN2B, and we show that GluN2B is phosphorylated only in the DMS but not in the other striatal regions. Striatal neurons are divided into D1R expressing medium spiny neurons (MSNs) and D2R expressing MSNs. Thus, to explore the cell-type specificity of this signaling pathway in the DMS, we developed a Cre-dependent Flip Excision (FLEX) approach to knockdown Fyn in D1R MSNs or D2R MSNs, and proved that the D1R-dependent Fyn activation is localized to DMS D1R MSNs. Importantly, we provide evidence to suggest that the differential association of Fyn and GluN2B with the scaffolding RACK1 is due to the differential localization of Fyn in lipid rafts.Our data further suggest that the differential cholesterol content in the three striatal regions may determine the region specificity of this signaling pathway. Together, our data show that the D1R-dependent Fyn/GluN2B pathway is selectively activated in D1R expressing MSNs in the DMS, and that the brain region specificity of pathway depends on the molecular and cellular compartmentalization of Fyn and GluN2B.
Collapse
Affiliation(s)
- Khanhky Phamluong
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Emmanuel Darcq
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Su Wu
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Samuel A Sakhai
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Dorit Ron
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| |
Collapse
|
16
|
Hennig KM, Fass DM, Zhao WN, Sheridan SD, Fu T, Erdin S, Stortchevoi A, Lucente D, Cody JD, Sweetser D, Gusella JF, Talkowski ME, Haggarty SJ. WNT/β-Catenin Pathway and Epigenetic Mechanisms Regulate the Pitt-Hopkins Syndrome and Schizophrenia Risk Gene TCF4. MOLECULAR NEUROPSYCHIATRY 2017; 3:53-71. [PMID: 28879201 DOI: 10.1159/000475666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Genetic variation within the transcription factor TCF4 locus can cause the intellectual disability and developmental disorder Pitt-Hopkins syndrome (PTHS), whereas single-nucleotide polymorphisms within noncoding regions are associated with schizophrenia. These genetic findings position TCF4 as a link between transcription and cognition; however, the neurobiology of TCF4 remains poorly understood. Here, we quantitated multiple distinct TCF4 transcript levels in human induced pluripotent stem cell-derived neural progenitors and differentiated neurons, and PTHS patient fibroblasts. We identify two classes of pharmacological treatments that regulate TCF4 expression: WNT pathway activation and inhibition of class I histone deacetylases. In PTHS fibroblasts, both of these perturbations upregulate a subset of TCF4 transcripts. Finally, using chromatin immunoprecipitation sequencing in conjunction with genome-wide transcriptome analysis, we identified TCF4 target genes that may mediate the effect of TCF4 loss on neuroplasticity. Our studies identify new pharmacological assays, tools, and targets for the development of therapeutics for cognitive disorders.
Collapse
Affiliation(s)
- Krista M Hennig
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven D Sheridan
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Ting Fu
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jannine D Cody
- Chromosome 18 Clinical Research Center, Department of Pediatrics, University of Texas Health Sciences Center, San Antonio, Texas, USA.,The Chromosome 18 Registry and Research Society, San Antonio, Texas, USA
| | - David Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Divisions of Pediatric Hematology/Oncology and Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E Talkowski
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington's disease model. Nat Commun 2017; 8:15592. [PMID: 28555636 PMCID: PMC5459995 DOI: 10.1038/ncomms15592] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
The structure and function of spines and excitatory synapses are under the dynamic control of multiple signalling networks. Although tyrosine phosphorylation is involved, its regulation and importance are not well understood. Here we study the role of Pyk2, a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the hippocampus. Hippocampal-related learning and CA1 long-term potentiation are severely impaired in Pyk2-deficient mice and are associated with alterations in NMDA receptors, PSD-95 and dendritic spines. In cultured hippocampal neurons, Pyk2 has autophosphorylation-dependent and -independent roles in determining PSD-95 enrichment and spines density. Pyk2 levels are decreased in the hippocampus of individuals with Huntington and in the R6/1 mouse model of the disease. Normalizing Pyk2 levels in the hippocampus of R6/1 mice rescues memory deficits, spines pathology and PSD-95 localization. Our results reveal a role for Pyk2 in spine structure and synaptic function, and suggest that its deficit contributes to Huntington's disease cognitive impairments.
Collapse
|
18
|
Sun Y, Zhan L, Cheng X, Zhang L, Hu J, Gao Z. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System. Cell Mol Neurobiol 2017; 37:389-403. [PMID: 27255970 PMCID: PMC11482088 DOI: 10.1007/s10571-016-0388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/25/2022]
Abstract
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Liying Zhan
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
| | - Xiaokun Cheng
- North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, 050015, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jie Hu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
19
|
Chen SP, Fuh JL, Chung MY, Lin YC, Liao YC, Wang YF, Hsu CL, Yang UC, Lin MW, Chiou JJ, Wang PJ, Chen PK, Fan PC, Wu JY, Chen YT, Kao LS, Shen-Jang Fann C, Wang SJ. Genome-wide association study identifies novel susceptibility loci for migraine in Han Chinese resided in Taiwan. Cephalalgia 2017; 38:466-475. [PMID: 28952330 DOI: 10.1177/0333102417695105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Susceptibility genes for migraine, despite it being a highly prevalent and disabling neurological disorder, have not been analyzed in Asians by genome-wide association study (GWAS). Methods We conducted a two-stage case-control GWAS to identify susceptibility genes for migraine without aura in Han Chinese residing in Taiwan. In the discovery stage, we genotyped 1005 clinic-based Taiwanese migraine patients and 1053 population-based sex-matched controls using Axiom Genome-Wide CHB Array. In the replication stage, we genotyped 27 single-nucleotide polymorphisms with p < 10-4 in 1120 clinic-based migraine patients and 604 sex-matched normal controls by using Sequenom. Variants at LRP1, TRPM8, and PRDM, which have been replicated in Caucasians, were also genotyped. Results We identified a novel susceptibility locus (rs655484 in DLG2) that reached GWAS significance level for migraine risk in Han Chinese ( p = 1.45 × 10-12, odds ratio [OR] = 2.42), and also another locus (rs3781545in GFRA1) with suggestive significance ( p = 1.27 × 10-7, OR = 1.38). In addition, we observed positive association signals with a similar trend to the associations identified in Caucasian GWASs for rs10166942 in TRPM8 (OR = 1.33, 95% confidence interval [CI] = 1.14-1.54, Ppermutation = 9.99 × 10-5; risk allele: T) and rs1172113 in LRP1 (OR = 1.23, 95% CI = 1.04-1.45, Ppermutation = 2.9 × 10-2; risk allele: T). Conclusion The present study is the first migraine GWAS conducted in Han-Chinese and Asians. The newly identified susceptibility genes have potential implications in migraine pathogenesis. DLG2 is involved in glutamatergic neurotransmission, and GFRA1 encodes GDNF receptors that are abundant in CGRP-containing trigeminal neurons. Furthermore, positive association signals for TRPM8 and LRP1 suggest the possibility for common genetic contributions across ethnicities.
Collapse
Affiliation(s)
- Shih-Pin Chen
- 1 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,2 Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,3 Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jong-Ling Fuh
- 1 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,2 Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ming-Yi Chung
- 4 Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,5 Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Chao Lin
- 6 Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Yi-Chu Liao
- 1 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,2 Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yen-Feng Wang
- 1 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,2 Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Lin Hsu
- 6 Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Ueng-Cheng Yang
- 7 Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Wei Lin
- 8 Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Jie Chiou
- 7 Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Po-Jen Wang
- 9 Living Water Neurological Clinic, Tainan, Taiwan
| | - Ping-Kun Chen
- 10 Department of Neurology, Lin-Shin Hospital, Taichung, Taiwan
| | - Pi-Chuan Fan
- 11 Departments of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jer-Yuan Wu
- 6 Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | | | - Lung-Sen Kao
- 4 Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Shuu-Jiun Wang
- 1 Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,2 Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,12 Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Morisot N, Ron D. Alcohol-dependent molecular adaptations of the NMDA receptor system. GENES, BRAIN, AND BEHAVIOR 2017; 16:139-148. [PMID: 27906494 PMCID: PMC5444330 DOI: 10.1111/gbb.12363] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Phenotypes such as motivation to consume alcohol, goal-directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N-methyl-d-aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin-dependent protein kinase II (CamKII), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above-mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol-dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
Collapse
Affiliation(s)
- N. Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D. Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
22
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
23
|
PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia. Neurobiol Dis 2014; 68:104-11. [DOI: 10.1016/j.nbd.2014.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
|
24
|
Darcq E, Hamida SB, Wu S, Phamluong K, Kharazia V, Xu J, Lombroso P, Ron D. Inhibition of striatal-enriched tyrosine phosphatase 61 in the dorsomedial striatum is sufficient to increased ethanol consumption. J Neurochem 2014; 129:1024-34. [PMID: 24588427 DOI: 10.1111/jnc.12701] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
The STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61 ) inhibits the activity of the tyrosine kinase Fyn and dephosphorylates the GluN2B subunit of the NMDA receptor, whereas the protein kinase A phosphorylation of STEP61 inhibits the activity of the phosphatase (Pharmacol. Rev., 64, , p. 65). Previously, we found that ethanol activates Fyn in the dorsomedial striatum (DMS) leading to GluN2B phosphorylation, which, in turn, underlies the development of ethanol intake (J. Neurosci., 30, , p. 10187). Here, we tested the hypothesis that inhibition of STEP61 by ethanol is upstream of Fyn/GluN2B. We show that exposure of mice to ethanol increased STEP61 phosphorylation in the DMS, which was maintained after withdrawal and was not observed in other striatal regions. Specific knockdown of STEP61 in the DMS of mice enhanced ethanol-mediated Fyn activation and GluN2B phosphorylation, and increased ethanol intake without altering the level of water, saccharine, quinine consumption or spontaneous locomotor activity. Together, our data suggest that blockade of STEP61 activity in response to ethanol is sufficient for the activation of the Fyn/GluN2B pathway in the DMS. Being upstream of Fyn and GluN2B, inactive STEP61 in the DMS primes the induction of ethanol intake. We show that ethanol-mediated inhibition of STEP61 in the DMS leads to Fyn activation and GluN2B phosphorylation. (a) Under basal conditions, active STEP61 inhibits Fyn activity and dephosphorylates GluN2B. (b) Ethanol leads to the phosphorylation of STEP61 on a specific inhibitory site. The inhibition of STEP61 activity contributes to the activation of Fyn in response to ethanol, which, in turn, phosphorylates GluN2B. These molecular adaptations in the DMS promote ethanol drinking.
Collapse
Affiliation(s)
- Emmanuel Darcq
- The Gallo Research Center, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu Y, Yang X, Suo Z, Xu Y, Hu X. Fyn kinase-regulated NMDA receptor- and AMPA receptor-dependent pain sensitization in spinal dorsal horn of mice. Eur J Pain 2014; 18:1120-8. [DOI: 10.1002/j.1532-2149.2014.00455.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Y.N. Liu
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
- College of Chemistry and Chemical Engineering; Lanzhou University; Gansu China
| | - X. Yang
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| | - Z.W. Suo
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| | - Y.M. Xu
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| | - X.D. Hu
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| |
Collapse
|
26
|
Park Y, Luo T, Zhang F, Liu C, Bramlett HM, Dietrich WD, Hu B. Downregulation of Src-kinase and glutamate-receptor phosphorylation after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33:1642-9. [PMID: 23838828 PMCID: PMC3790935 DOI: 10.1038/jcbfm.2013.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/15/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
Abstract
Phosphorylation of N-methyl-D-aspartate (NMDA) receptors is a major regulatory mechanism underlying synaptic plasticity. However, changes in NMDA receptors and phosphorylation after traumatic brain injury (TBI) remain incompletely understood. Using an animal TBI model, we observed that the protein level of NMDA receptor subunit NR2B was downregulated in synaptosomal fractions obtained from the ipsilateral neocortical injury region, whereas the levels of NR2A, NR1, and PSD93 were not significantly altered at 4 and 24 hours after TBI. Further investigation showed that tyrosine phosphorylations of NR2B Y1472 and PSD93 Y340 in synaptosomal fractions were significantly decreased relative to their total protein level after TBI. Correspondingly, phosphorylation of the Src-kinase-inhibitory site Y527 was increased, whereas phosphorylation of the activation site Y416 was decreased, indicating that the activity of Src kinase is significantly inhibited after TBI. In comparison, other Src family kinase substrates of NMDA receptor, NR2A Y1246, NR2A Y1325, and NR2B Y1070 were not obviously affected after TBI. The results suggest that TBI downregulates the Src-kinase-mediated phosphorylation of NR2 and PSD93 to destabilize the synaptic localization of NMDA receptors. Therefore, post-TBI loss of NMDA receptors may contribute to the depression of synaptic activity after TBI.
Collapse
Affiliation(s)
- Yujung Park
- Neurochemistry Laboratory of Brain Injury, Department of Anesthesiology, and Shock Trauma & Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
MAGUKs are proteins that act as key scaffolds in surface complexes containing receptors, adhesion proteins, and various signaling molecules. These complexes evolved prior to the appearance of multicellular animals and play key roles in cell-cell intercommunication. A major example of this is the neuronal synapse, which contains several presynaptic and postsynaptic MAGUKs including PSD-95, SAP102, SAP97, PSD-93, CASK, and MAGIs. Here, they play roles in both synaptic development and in later synaptic plasticity events. During development, MAGUKs help to organize the postsynaptic density via associations with other scaffolding proteins, such as Shank, and the actin cytoskeleton. They affect the clustering of glutamate receptors and other receptors, and these associations change with development. MAGUKs are involved in long-term potentiation and depression (e.g., via their phosphorylation by kinases and phosphorylation of other proteins associated with MAGUKs). Importantly, synapse development and function are dependent on the kind of MAGUK present. For example, SAP102 shows high mobility and is present in early synaptic development. Later, much of SAP102 is replaced by PSD-95, a more stable synaptic MAGUK; this is associated with changes in glutamate receptor types that are characteristic of synaptic maturation.
Collapse
Affiliation(s)
- Chan-Ying Zheng
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| | - Gail K. Seabold
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| | - Martin Horak
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| | - Ronald S. Petralia
- National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA
| |
Collapse
|
29
|
Yang HB, Yang X, Cao J, Li S, Liu YN, Suo ZW, Cui HB, Guo Z, Hu XD. cAMP-dependent protein kinase activated Fyn in spinal dorsal horn to regulate NMDA receptor function during inflammatory pain. J Neurochem 2010; 116:93-104. [DOI: 10.1111/j.1471-4159.2010.07088.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Liu XJ, Salter MW. Glutamate receptor phosphorylation and trafficking in pain plasticity in spinal cord dorsal horn. Eur J Neurosci 2010; 32:278-89. [PMID: 20629726 DOI: 10.1111/j.1460-9568.2010.07351.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Considerable evidence suggests that both ionotropic and metabotropic glutamate receptors are involved in pain hypersensitivity. However, glutamate receptor-based therapies are limited by side-effects because the activities of glutamate receptors are essential for many important physiological functions. Here, we review recent key findings in molecular and cellular mechanisms of glutamate receptor regulation and their roles in triggering and sustaining pain hypersensitivity. Targeting these molecular mechanisms could form the basis for new therapeutic strategies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xue Jun Liu
- Program in Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
31
|
Chen W, Zhang G, Marvizón JCG. NMDA receptors in primary afferents require phosphorylation by Src family kinases to induce substance P release in the rat spinal cord. Neuroscience 2010; 166:924-34. [PMID: 20074620 DOI: 10.1016/j.neuroscience.2010.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 01/06/2010] [Indexed: 01/11/2023]
Abstract
The function of N-methyl-d-aspartate (NMDA) receptors in primary afferents remains controversial, in particular regarding their ability to evoke substance P release in the spinal cord. The objective of this study was, first, to confirm that substance P release evoked by NMDA is mediated by NMDA receptors in primary afferent terminals. Second, we investigated whether these NMDA receptors are inactivated in some conditions, which would explain why their effect on substance P release was not observed in some studies. Substance P release was induced in spinal cord slices and measured as neurokinin 1 (NK1) receptor internalization in lamina I neurons. NMDA (combined with d-serine) induced NK1 receptor internalization with a half of the effective concentration (EC50) of 258 nM. NMDA-induced NK1 receptor internalization was abolished by the NK1 receptor antagonist L-703,606, confirming that is was caused by substance P release, by NMDA receptor antagonists (MK1801 and ifenprodil), showing that it was mediated by NMDA receptors containing the NR2B subunit, and by preincubating the slices with capsaicin, showing that the substance P release was from primary afferents. However, it was not affected by lidocaine and omega-conotoxin MVIIA, which block Na+ channels and voltage-dependent Ca2+ channels, respectively. Therefore, NMDA-induced substance P release does not require firing of primary afferents or the opening of Ca2+ channels, which is consistent with the idea that NMDA receptors induce substance P directly by letting Ca2+ into primary afferent terminals. Importantly, NMDA-induced substance P release was eliminated by preincubating the slices for 1 h with the Src family kinase inhibitors PP1 and dasatinib, and was substantially increased by the protein tyrosine phosphatase inhibitor BVT948. In contrast, PP1 did not affect NK1 receptor internalization induced by capsaicin. These results show that tyrosine-phosphorylation of these NMDA receptors is regulated by the opposite actions of Src family kinases and protein tyrosine phosphatases, and is required to induce substance P release.
Collapse
Affiliation(s)
- W Chen
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
32
|
Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 PMCID: PMC2750819 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2429] [Impact Index Per Article: 151.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Alban Latremoliere
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | | |
Collapse
|
33
|
Cuscó I, Medrano A, Gener B, Vilardell M, Gallastegui F, Villa O, González E, Rodríguez-Santiago B, Vilella E, Del Campo M, Pérez-Jurado LA. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum Mol Genet 2009; 18:1795-804. [PMID: 19246517 PMCID: PMC2671988 DOI: 10.1093/hmg/ddp092] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.
Collapse
Affiliation(s)
- Ivon Cuscó
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Andrés Medrano
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Blanca Gener
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- Unidad de Genética Clínica, Hospital de Cruces, Barakaldo, Bizkaia, Spain
| | - Mireia Vilardell
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Fátima Gallastegui
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Olaya Villa
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva González
- Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
| | - Benjamín Rodríguez-Santiago
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Elisabet Vilella
- Hospital Psiquiatric Universitari Institut Pere Mata, Reus, Spain
| | - Miguel Del Campo
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
- Programa de Medicina Molecular i Genètica, Hospital Vall d’Hebron, Barcelona 08039, Spain
| | - Luis A. Pérez-Jurado
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
- Programa de Medicina Molecular i Genètica, Hospital Vall d’Hebron, Barcelona 08039, Spain
| |
Collapse
|