1
|
Kodirov SA, Plakhova VB, Hamill OP, Krylov BV. Long-term spontaneous membrane currents in DRG neurons. J Recept Signal Transduct Res 2025:1-8. [PMID: 40186880 DOI: 10.1080/10799893.2025.2477925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
We have experimented with freshly isolated single DRG neurons from neonatal (P0-5) rats to study currents mediated by voltage dependent Na+ (Nav) channels. All experiments were performed using the whole-cell mode of patch-clamp electrophysiology and following the standard steps of this technique. However, in a subgroup of neurons, spontaneous events resembling neurotransmitter release were observed under conditions optimized for whole-cell patch-clamp recordings of INa. All events have a fast rise phase (similar to responses of receptor channels), but decay in a heterogeneous manner. The waveform of the event closely matches that of the response of the purinergic receptor P2X type to ATP. This new activity in neurons was observed at -60 mV and was facilitated during relatively strong hyperpolarization. Although spontaneous fluctuations, termed membrane potential instabilities, are described in DRG neurons, the observed inward currents at more hyperpolarized states are distinct and novel. The spontaneous heterogeneous activities could be relevant to the elucidation of pain mechanisms by distinct pharmacological tools.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- I. P. Pavlov Department of Physiology, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint Petersburg, Russia
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Vera B Plakhova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Owen P Hamill
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX, USA
| | - Boris V Krylov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Song Y, Gao L. Spinal Nerve Axotomy: Effects on I h In Vivo and HCNs in DRG Neurons. Int J Mol Sci 2024; 25:12889. [PMID: 39684600 DOI: 10.3390/ijms252312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (Ih) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with Ih is lacking. In this study, Ih was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA). Compared to normal rats, SNA unexpectedly inhibited the activity of Ih channels on A-fiber DRG neurons: (a) the Ih current magnitude, density, and conductance were consistently diminished; and (b) the Ih activation velocity was slowed and the voltage for Ih activation was hyperpolarized. The half-activation voltage (V0.5) exhibited a negative shift, and the time constant for Ih activation was prolonged across all test potentials, indicating the reduced availability of Ih after SNA. To further investigate the mechanisms of SNA on Ih, the underlying HCN channels and the correlated mRNA were quantified and compared. The mRNA expression level of HCN1-4 was uniformly enhanced after SNA, which might have contributed to the increased cytoplasmic HCN1 intensity observed in both medium- and large-sized DRG neurons. This finding contradicted the functional reduction of Ih after SNA. Surprisingly, the HCN labeling pattern was altered after SNA: the labeling area of HCN1 and HCN2 at the membranous ring region of the axotomized large neurons became significantly thinner or absent. We concluded that the diminished ring immunoreactivity for HCN1 and HCN2 correlated with a reduced availability of Ih channels, elucidating the observed decrease in Ih in axotomized A-fiber neurons.
Collapse
Affiliation(s)
- Yuanlong Song
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
| | - Linlin Gao
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
| |
Collapse
|
3
|
Thio BJ, Titus ND, Pelot NA, Grill WM. Reverse-engineered models reveal differential membrane properties of autonomic and cutaneous unmyelinated fibers. PLoS Comput Biol 2024; 20:e1012475. [PMID: 39374306 PMCID: PMC11486378 DOI: 10.1371/journal.pcbi.1012475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Abstract
Unmyelinated C-fibers constitute the vast majority of axons in peripheral nerves and play key roles in homeostasis and signaling pain. However, little is known about their ion channel expression, which controls their firing properties. Also, because of their small diameters (~ 1 μm), it has not been possible to characterize their membrane properties using voltage clamp. We developed a novel library of isoform-specific ion channel models to serve as the basis functions of our C-fiber models. We then developed a particle swarm optimization (PSO) framework that used the isoform-specific ion channel models to reverse engineer C-fiber membrane properties from measured autonomic and cutaneous C-fiber conduction responses. Our C-fiber models reproduced experimental conduction velocity, chronaxie, action potential duration, intracellular threshold, and paired pulse recovery cycle. The models also matched experimental activity-dependent slowing, a property not included in model optimization. We found that simple conduction responses, characterizing the action potential, were controlled by similar membrane properties in both the autonomic and cutaneous C-fiber models, but complicated conduction response, characterizing the afterpotenials, were controlled by differential membrane properties. The unmyelinated C-fiber models constitute important tools to study autonomic signaling, assess the mechanisms of pain, and design bioelectronic devices. Additionally, the novel reverse engineering approach can be applied to generate models of other neurons where voltage clamp data are not available.
Collapse
Affiliation(s)
- Brandon J. Thio
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nathan D. Titus
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nicole A. Pelot
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Warren M. Grill
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurobiology, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurosurgery, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Han X, Pinto LG, Vilar B, McNaughton PA. Opioid-Induced Hyperalgesia and Tolerance Are Driven by HCN Ion Channels. J Neurosci 2024; 44:e1368232023. [PMID: 38124021 PMCID: PMC11059424 DOI: 10.1523/jneurosci.1368-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active μ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.
Collapse
Affiliation(s)
- Xue Han
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Larissa Garcia Pinto
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Bruno Vilar
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
5
|
Vasylyev DV, Liu S, Waxman SG. I h current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain. J Physiol 2023; 601:5341-5366. [PMID: 37846879 PMCID: PMC10843455 DOI: 10.1113/jp284999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
We show here that hyperpolarization-activated current (Ih ) unexpectedly acts to inhibit the activity of dorsal root ganglion (DRG) neurons expressing WT Nav1.7, the largest inward current and primary driver of DRG neuronal firing, and hyperexcitable DRG neurons expressing a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain. In this study we created a kinetic model of Ih and used it, in combination with dynamic-clamp, to study Ih function in DRG neurons. We show, for the first time, that Ih increases rheobase and reduces the firing probability in small DRG neurons, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . Our results show that Ih , due to slow gating, is not deactivated during action potentials (APs) and has a striking damping action, which reverses from depolarizing to hyperpolarizing, close to the threshold for AP generation. Moreover, we show that Ih reverses the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. In the aggregate, our results show that Ih unexpectedly has strikingly different effects in DRG neurons as compared to previously- and well-studied cardiac cells. Within DRG neurons where Nav1.7 is present, Ih reduces depolarizing sodium current inflow due to enhancement of Nav1.7 channel fast inactivation and creates additional damping action by reversal of Ih direction from depolarizing to hyperpolarizing close to the threshold for AP generation. These actions of Ih limit the firing of DRG neurons expressing WT Nav1.7 and reverse the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. KEY POINTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the molecular determinants of hyperpolarization-activated current (Ih ) have been characterized as a 'pain pacemaker', and thus considered to be a potential molecular target for pain therapeutics. Dorsal root ganglion (DRG) neurons express Nav1.7, a channel that is not present in central neurons or cardiac tissue. Gain-of-function mutations (GOF) of Nav1.7 identified in inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, produce DRG neuron hyperexcitability, which in turn produces severe pain. We found that Ih increases rheobase and reduces firing probability in small DRG neurons expressing WT Nav1.7, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . We also demonstrate that Ih reverses the hyperexcitability of DRG neurons expressing a GOF Nav1.7 mutation (L858H) that causes IEM. Our results show that, in contrast to cardiac cells and CNS neurons, Ih acts to stabilize DRG neuron excitability and prevents excessive firing.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
6
|
Tibbs GR, Uprety R, Warren JD, Beyer NP, Joyce RL, Ferrer MA, Mellado W, Wong VSC, Goldberg DC, Cohen MW, Costa CJ, Li Z, Zhang G, Dephoure NE, Barman DN, Sun D, Ingólfsson HI, Sauve AA, Willis DE, Goldstein PA. An anchor-tether 'hindered' HCN1 inhibitor is antihyperalgesic in a rat spared nerve injury neuropathic pain model. Br J Anaesth 2023; 131:745-763. [PMID: 37567808 PMCID: PMC10541997 DOI: 10.1016/j.bja.2023.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Neuropathic pain impairs quality of life, is widely prevalent, and incurs significant costs. Current pharmacological therapies have poor/no efficacy and significant adverse effects; safe and effective alternatives are needed. Hyperpolarisation-activated cyclic nucleotide-regulated (HCN) channels are causally implicated in some forms of peripherally mediated neuropathic pain. Whilst 2,6-substituted phenols, such as 2,6-di-tert-butylphenol (26DTB-P), selectively inhibit HCN1 gating and are antihyperalgesic, the development of therapeutically tolerable, HCN-selective antihyperalgesics based on their inverse agonist activity requires that such drugs spare the cardiac isoforms and do not cross the blood-brain barrier. METHODS In silico molecular dynamics simulation, in vitro electrophysiology, and in vivo rat spared nerve injury methods were used to test whether 'hindered' variants of 26DTB-P (wherein a hydrophilic 'anchor' is attached in the para-position of 26DTB-P via an acyl chain 'tether') had the desired properties. RESULTS Molecular dynamics simulation showed that membrane penetration of hindered 26DTB-Ps is controlled by a tethered diol anchor without elimination of head group rotational freedom. In vitro and in vivo analysis showed that BP4L-18:1:1, a variant wherein a diol anchor is attached to 26DTB-P via an 18-carbon tether, is an HCN1 inverse agonist and an orally available antihyperalgesic. With a CNS multiparameter optimisation score of 2.25, a >100-fold lower drug load in the brain vs blood, and an absence of adverse cardiovascular or CNS effects, BP4L-18:1:1 was shown to be poorly CNS penetrant and cardiac sparing. CONCLUSIONS These findings provide a proof-of-concept demonstration that anchor-tethered drugs are a new chemotype for treatment of disorders involving membrane targets.
Collapse
Affiliation(s)
- Gareth R Tibbs
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rajendra Uprety
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nicole P Beyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rebecca L Joyce
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew A Ferrer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Noah E Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dipti N Barman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Delin Sun
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Foxworthy GE, Fridman GY. The Significance of Concentration-dependent Components in Computational Models of C-Fibers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083017 DOI: 10.1109/embc40787.2023.10341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Computational models of neurons are valuable tools that allow researchers to form and evaluate hypotheses and minimize high-cost animal work. We soon plan to use computational modeling to explore the response of different sensory fiber types to long duration external stimulation to try to selectively block nociceptive C-fibers. In this work, we modified an existing C-fiber-specific axon model to additionally include concentration-dependent conductance changes, the contribution of longitudinal current flow to changes in local concentrations, and longitudinal currents generated by concentration gradients along the axon. Then, we examined the impact of these additional elements on the modeled action potential properties, activity-dependent latency increases, and concentration changes due to external stimulation. We found that these additional model elements did not significantly affect the action potential properties or activity-dependent behavior, but they did have a significant impact on the modeled response to external long duration stimulation.Clinical Relevance- This presents a computational model that can be used to help investigate and develop electrical stimulation therapies for pathological pain.
Collapse
|
8
|
Kodirov SA. Whole-cell patch-clamp recording and parameters. Biophys Rev 2023; 15:257-288. [PMID: 37124922 PMCID: PMC10133435 DOI: 10.1007/s12551-023-01055-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The patch-clamp technique represents an electrophysiology type of method. This is one of several insightful approaches with five major configurations, namely a loose patch, cell-attached (also known as on-cell), whole-cell, inside-out, and outside-out modes. The patch-clamp method is more advanced compared to classical electrophysiology since it elucidates single-channel activation in a tiny portion of the membrane in addition to action potential (AP), junction potential (JP), endplate potential (EP), electrical coupling between two adjacent cells via Gap junction hemi-channels, excitatory/inhibitory postsynaptic potentials, and resting membrane potential (RMP). In fact, a malfunction of only one channel or even one component will alter AP amplitude or duration in vitro. If parameters are inferred appropriately and recordings are performed properly, the patch-clamp trace readouts and results are robust. The main hallmarks of currents via voltage-dependent calcium (Cav), hyperpolarization-activated cyclic nucleotide gated non-selective cation (HCN), inwardly rectifying potassium (Kir), voltage-dependent potassium (Kv), and voltage-dependent sodium (Nav) channels are similar and tractable among cells even when they are derived from evolutionary distinct organs and species. However, the size of the membrane area, where the functional subunits reside, and current magnitudes vary among cells of the same type. Therefore, dividing current magnitudes by cell capacitance- current density enables the estimate of functional and active channels relative to recorded cytoplasmic membrane area. Since the patch-clamp recordings can be performed in both current- and voltage-clamp modes, the action potential or spike durations can be adequately elucidated. Sometimes, optical methods are preferred to patch-clamp electrophysiology, but the obtained signals and traces are not robust. Finally, not only an alternans of AP durations, but also that of 'action potential shape' is observed with electrophysiology.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- Almazov Federal Medical Research Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
9
|
Britton OJ, Rodriguez B. A population of in silico models identifies the interplay between Nav 1.8 conductance and potassium currents as key in regulating human dorsal root ganglion neuron excitability. F1000Res 2022; 11:104. [PMID: 39290372 PMCID: PMC11406138 DOI: 10.12688/f1000research.74551.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 09/19/2024] Open
Abstract
Background: The Nav 1.8 sodium channel has a key role in generating repetitive action potentials in nociceptive human dorsal root ganglion neurons. Nav 1.8 is differentiated from other voltage-gated sodium channels by its unusually slow inactivation kinetics and depolarised voltage-dependence of activation. These features are particularly pronounced in the human Nav 1.8 channel and allow the channel to remain active during repolarisation. Gain-of-function mutations in Nav 1.8 have been linked to neuropathic pain and selective blockers of Nav 1.8 have been developed as potential new analgesics. However, it is not well understood how modulating the Nav 1.8 conductance alters neuronal excitability and how this depends on the balance of other ion channels expressed by nociceptive neurons. Methods: To investigate this, we developed a novel computational model of the human dorsal root ganglion neuron and used it to construct a population of models that mimicked inter-neuronal heterogeneity in ionic conductances and action potential morphology Results: By simulating changes to the Nav 1.8 conductance in the population of models, we found that moderately increasing the Nav 1.8 conductance led to increased firing rate, as expected, but increasing Nav 1.8 conductance beyond an inflection point caused firing rate to decrease. We found that the delayed rectifier and M-type potassium conductances were also critical for determining neuronal excitability. In particular, altering the delayed rectifier potassium conductance shifted the position of the Nav 1.8 inflection point and therefore the relationship between Nav 1.8 conductance and firing rate. Conclusions: Our results suggest that the effects of modulating Nav 1.8 in a nociceptive neuron can depend significantly on other conductances, particularly potassium conductances.
Collapse
Affiliation(s)
- Oliver J Britton
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| |
Collapse
|
10
|
Jansen LAR, Forster LA, Smith XL, Rubaharan M, Murphy AZ, Baro DJ. Changes in peripheral HCN2 channels during persistent inflammation. Channels (Austin) 2021; 15:165-179. [PMID: 33423595 PMCID: PMC7808421 DOI: 10.1080/19336950.2020.1870086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/01/2023] Open
Abstract
Nociceptor sensitization following nerve injury or inflammation leads to chronic pain. An increase in the nociceptor hyperpolarization-activated current, Ih, is observed in many models of pathological pain. Pharmacological blockade of Ih prevents the mechanical and thermal hypersensitivity that occurs during pathological pain. Alterations in the Hyperpolarization-activated Cyclic Nucleotide-gated ion channel 2 (HCN2) mediate Ih-dependent thermal and mechanical hyperalgesia. Limited knowledge exists regarding the nature of these changes during chronic inflammatory pain. Modifications in HCN2 expression and post-translational SUMOylation have been observed in the Complete Freund's Adjuvant (CFA) model of chronic inflammatory pain. Intra-plantar injection of CFA into the rat hindpaw induces unilateral hyperalgesia that is sustained for up to 14 days following injection. The hindpaw is innervated by primary afferents in lumbar DRG, L4-6. Adjustments in HCN2 expression and SUMOylation have been well-documented for L5 DRG during the first 7 days of CFA-induced inflammation. Here, we examine bilateral L4 and L6 DRG at day 1 and day 3 post-CFA. Using L4 and L6 DRG cryosections, HCN2 expression and SUMOylation were measured with immunohistochemistry and proximity ligation assays, respectively. Our findings indicate that intra-plantar injection of CFA elicited a bilateral increase in HCN2 expression in L4 and L6 DRG at day 1, but not day 3, and enhanced HCN2 SUMOylation in ipsilateral L6 DRG at day 1 and day 3. Changes in HCN2 expression and SUMOylation were transient over this time course. Our study suggests that HCN2 is regulated by multiple mechanisms during CFA-induced inflammation.
Collapse
Affiliation(s)
- L-A. R. Jansen
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - L. A. Forster
- Department of Biology, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - X. L. Smith
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - M. Rubaharan
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - A. Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - D. J. Baro
- Department of Biology, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
11
|
Lee FK, Lee JC, Shui B, Reining S, Jibilian M, Small DM, Jones JS, Allan-Rahill NH, Lamont MR, Rizzo MA, Tajada S, Navedo MF, Santana LF, Nishimura N, Kotlikoff MI. Genetically engineered mice for combinatorial cardiovascular optobiology. eLife 2021; 10:67858. [PMID: 34711305 PMCID: PMC8555989 DOI: 10.7554/elife.67858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
Optogenetic effectors and sensors provide a novel real-time window into complex physiological processes, enabling determination of molecular signaling processes within functioning cellular networks. However, the combination of these optical tools in mice is made practical by construction of genetic lines that are optically compatible and genetically tractable. We present a new toolbox of 21 mouse lines with lineage-specific expression of optogenetic effectors and sensors for direct biallelic combination, avoiding the multiallelic requirement of Cre recombinase -mediated DNA recombination, focusing on models relevant for cardiovascular biology. Optogenetic effectors (11 lines) or Ca2+ sensors (10 lines) were selectively expressed in cardiac pacemaker cells, cardiomyocytes, vascular endothelial and smooth muscle cells, alveolar epithelial cells, lymphocytes, glia, and other cell types. Optogenetic effector and sensor function was demonstrated in numerous tissues. Arterial/arteriolar tone was modulated by optical activation of the second messengers InsP3 (optoα1AR) and cAMP (optoß2AR), or Ca2+-permeant membrane channels (CatCh2) in smooth muscle (Acta2) and endothelium (Cdh5). Cardiac activation was separately controlled through activation of nodal/conducting cells or cardiac myocytes. We demonstrate combined effector and sensor function in biallelic mouse crosses: optical cardiac pacing and simultaneous cardiomyocyte Ca2+ imaging in Hcn4BAC-CatCh2/Myh6-GCaMP8 crosses. These experiments highlight the potential of these mice to explore cellular signaling in vivo, in complex tissue networks.
Collapse
Affiliation(s)
- Frank K Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Jane C Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Bo Shui
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Shaun Reining
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Megan Jibilian
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - David M Small
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Jason S Jones
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | | | - Michael Re Lamont
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Megan A Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Sendoa Tajada
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Luis Fernando Santana
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| |
Collapse
|
12
|
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic α-conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA B receptors and reduce neuroexcitability. Br J Pharmacol 2021; 179:179-198. [PMID: 34599513 DOI: 10.1111/bph.15690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of GIRK channels via G protein-coupled GABAB receptors has been shown to attenuate nociceptive transmission. The analgesic α-conotoxin Vc1.1 activates GABAB receptors resulting in inhibition of Cav 2.2 and Cav 2.3 channels in mammalian primary afferent neurons. Here, we investigated the effects of analgesic α-conotoxins on recombinant and native GIRK-mediated K+ currents and on neuronal excitability. EXPERIMENTAL APPROACH The effects of analgesic α-conotoxins, Vc1.1, RgIA, and PeIA, were investigated on inwardly-rectifying K+ currents in HEK293T cells recombinantly co-expressing either heteromeric human GIRK1/2 or homomeric GIRK2 subunits, with GABAB receptors. The effects of α-conotoxin Vc1.1 and baclofen were studied on GIRK-mediated K+ currents and the passive and active electrical properties of adult mouse dorsal root ganglion neurons. KEY RESULTS Analgesic α-conotoxins Vc1.1, RgIA, and PeIA potentiate inwardly-rectifying K+ currents in HEK293T cells recombinantly expressing human GIRK1/2 channels and GABAB receptors. GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen occurs via a pertussis toxin-sensitive G protein and is inhibited by the selective GABAB receptor antagonist CGP 55845. In adult mouse dorsal root ganglion neurons, GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell membrane potential and reduces excitability. CONCLUSIONS AND IMPLICATIONS This is the first report of GIRK channel potentiation via allosteric α-conotoxin Vc1.1-GABAB receptor agonism, leading to decreased neuronal excitability. Such action potentially contributes to the analgesic effects of Vc1.1 and baclofen observed in vivo.
Collapse
Affiliation(s)
- Anuja R Bony
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
13
|
Hulme AJ, McArthur JR, Maksour S, Miellet S, Ooi L, Adams DJ, Finol-Urdaneta RK, Dottori M. Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons. Front Cell Neurosci 2020; 14:600895. [PMID: 33362470 PMCID: PMC7761588 DOI: 10.3389/fncel.2020.600895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
14
|
Forster LA, Jansen LAR, Rubaharan M, Murphy AZ, Baro DJ. Alterations in SUMOylation of the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 during persistent inflammation. Eur J Pain 2020; 24:1517-1536. [PMID: 32446289 PMCID: PMC7496191 DOI: 10.1002/ejp.1606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Background Unilateral injection of Complete Freund's Adjuvant (CFA) into the intra‐plantar surface of the rodent hindpaw elicits chronic inflammation and hyperalgesia in the ipsilateral hindlimb. Mechanisms contributing to this hyperalgesia may act over multiple time courses and can include changes in ion channel expression and post‐translational SUMOylation. Hyperpolarization‐activated, cyclic nucleotide‐gated (HCN) channels mediate the hyperpolarization‐activated current, Ih. An HCN2‐mediated increase in C‐nociceptor Ih contributes to mechanical hyperalgesia in the CFA model of inflammatory pain. Changes in HCN2 post‐translational SUMOylation and protein expression have not been systematically documented for a given dorsal root ganglia (DRG) throughout the time course of inflammation. Methods This study examined HCN2 protein expression and post‐translational SUMOylation in a rat model of CFA‐induced hindpaw inflammation. L5 DRG cryosections were used in immunohistochemistry experiments and proximity ligation assays to investigate HCN2 expression and SUMOylation, respectively, on days 1 and 3 post‐CFA. Results Unilateral CFA injection elicited a significant bilateral increase in HCN2 staining intensity in small diameter DRG neurons on day 1 post‐CFA, and a significant bilateral increase in the number of small neurons expressing HCN2 but not staining intensity on day 3 post‐CFA. HCN2 channels were hyper‐SUMOylated in small diameter neurons of ipsilateral relative to contralateral DRG on days 1 and 3 post‐CFA. Conclusions Unilateral CFA injection elicits unilateral mechanical hyperalgesia, a bilateral increase in HCN2 expression and a unilateral increase in post‐translational SUMOylation. This suggests that enhanced HCN2 expression in L5 DRG is not sufficient for mechanical hyperalgesia in the early stages of inflammation and that hyper‐SUMOylation of HCN2 channels may also be necessary. Significance Nociceptor HCN2 channels mediate an increase in Ih that is necessary for mechanical hyperalgesia in a CFA model of chronic pain, but the mechanisms producing the increase in nociceptor Ih have not been resolved. The data presented here suggest that the increase in Ih during the early stages of inflammation may be mediated by an increase in HCN2 protein expression and post‐translational SUMOylation.
Collapse
Affiliation(s)
- Lori A Forster
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
15
|
Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors. Brain Sci 2020; 10:brainsci10060344. [PMID: 32503260 PMCID: PMC7348931 DOI: 10.3390/brainsci10060344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/09/2023] Open
Abstract
Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.
Collapse
|
16
|
Lainez S, Tsantoulas C, Biel M, McNaughton PA. HCN3 ion channels: roles in sensory neuronal excitability and pain. J Physiol 2019; 597:4661-4675. [PMID: 31290157 DOI: 10.1113/jp278211] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2019] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS HCN ion channels conducting the Ih current control the frequency of firing in peripheral sensory neurons signalling pain. Previous studies have demonstrated a major role for the HCN2 subunit in chronic pain but the potential involvement of HCN3 in pain has not been investigated. HCN3 was found to be widely expressed in all classes of sensory neurons (small, medium, large) where it contributes to Ih . HCN3 deletion increased the firing rate of medium but not small, sensory neurons. Pain sensitivity both acutely and following neuropathic injury was largely unaffected by HCN3 deletion, with the exception of a small decrease of mechanical hyperalgesia in response to a pinprick. We conclude that HCN3 plays little role in either acute or chronic pain sensation. ABSTRACT HCN ion channels govern the firing rate of action potentials in the pacemaker region of the heart and in pain-sensitive (nociceptive) nerve fibres. Intracellular cAMP promotes activation of the HCN4 and HCN2 isoforms, whereas HCN1 and HCN3 are relatively insensitive to cAMP. HCN2 modulates action potential firing rate in nociceptive neurons and plays a critical role in all modes of inflammatory and neuropathic pain, although the role of HCN3 in nociceptive excitability and pain is less studied. Using antibody staining, we found that HCN3 is expressed in all classes of somatosensory neurons. In small nociceptive neurons, genetic deletion of HCN2 abolished the voltage shift of the Ih current carried by HCN isoforms following cAMP elevation, whereas the voltage shift was retained following deletion of HCN3, consistent with the sensitivity of HCN2 but not HCN3 to cAMP. Deletion of HCN3 had little effect on the evoked firing frequency in small neurons but enhanced the firing of medium-sized neurons, showing that HCN3 makes a significant contribution to the input resistance only in medium-sized neurons. Genetic deletion of HCN3 had no effect on acute thresholds to heat or mechanical stimuli in vivo and did not affect inflammatory pain measured with the formalin test. Nerve-injured HCN3 knockout mice exhibited similar levels of mechanical allodynia and thermal hyperalgesia to wild-type mice but reduced mechanical hyperalgesia in response to a pinprick. These results show that HCN3 makes some contribution to excitability, particularly in medium-sized neurons, although it has no major influence on acute or neuropathic pain processing.
Collapse
Affiliation(s)
- Sergio Lainez
- Wolfson Centre for Age-Related Research, King's College London, Guy's Campus, London, UK
| | | | - Martin Biel
- Center for Integrated Protein Science (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Research, King's College London, Guy's Campus, London, UK
| |
Collapse
|
17
|
Yang L, Ding W, You Z, Yang J, Shen S, Doheny JT, Chen L, Li R, Mao J. Alleviation of trigeminal neuropathic pain by electroacupuncture: the role of hyperpolarization-activated cyclic nucleotide-gated channel protein expression in the Gasserian ganglion. Acupunct Med 2019; 37:192-198. [PMID: 30977667 DOI: 10.1177/0964528419841614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The aim of this study was to examine the effect of electroacupuncture (EA) on trigeminal neuropathic pain in rats and explore the potential mechanism underlying the putative therapeutic effect of EA. METHODS Trigeminal neuropathic pain behavior was induced in rats by unilateral chronic constriction injury of the distal infraorbital nerve (dIoN-CCI). EA was administered at ST2 (Sibai) and Jiachengjiang. A total of 60 Sprague Dawley rats were divided into the following four groups (n = 15 per group) to examine the behavioral outcomes after surgery and/or EA treatment: sham (no ligation); dIoN-CCI (received isoflurane only, without EA treatment); dIoN-CCI+EA-7d (received EA treatment for 7 days); and dIoN-CCI+EA-14d (received EA treatment for 14 days). Both evoked and spontaneous nociceptive behaviors were measured. Of these, 12 rats (n = 4 from sham, dIoN-CCI, and dIoN-CCI+EA-14d groups, respectively) were used to analyze protein expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel in the Gasserian ganglion (GG) by immunohistochemistry. RESULTS dIoN-CCI rats exhibited mechanical allodynia and increased face-grooming activity that lasted at least 35 days. EA treatment reduced mechanical allodynia and face-grooming in dIoN-CCI rats. Overall, 14 days of EA treatment produced a prolonged anti-nociceptive effect as compared to 7-day EA treatment. The counts of HCN1 and HCN2 immunopositive puncta were increased in the ipsilateral GG in dIoN-CCI rats and were reduced by 14 days of EA treatment. DISCUSSION EA treatment relieved trigeminal neuropathic pain in dIoN-CCI rats, and this effect was dependent on the duration of EA treatment. The downregulation of HCN expression may contribute to the anti-nociceptive effect of EA in this rat model of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Liuyue Yang
- 1 School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weihua Ding
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zerong You
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinsheng Yang
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason T Doheny
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucy Chen
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruhui Li
- 1 School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianren Mao
- 2 MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Dexmedetomidine relieves neuropathic pain by inhibiting hyperpolarization-activated cyclic nucleotide-gated currents in dorsal root ganglia neurons. Neuroreport 2019; 29:1001-1006. [PMID: 29912028 DOI: 10.1097/wnr.0000000000001068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study was designed to examine the effect and mechanism of dexmedetomidine (Dex) on neuropathic pain (NP). The NP model was established by performing chronic sciatic nerve constriction injury (CCI). Seven days after CCI surgery, the rats were injected intraperitoneally with Dex, ZD7288 (an HCN channel inhibitor), and saline, respectively. The paw withdrawal threshold to mechanical stimulation and the thermal withdrawal latency tests were performed. After administration, the L4, L5 dorsal root ganglia (DRG) neurons of rats were isolated. In addition, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels subtype plasmids were transfected into human embryonic kidney (HEK)293 cells. Whole-cell clamp recordings were used to examine the properties of HCN currents (Ih) expressed in HEK293 cells and DRG neurons. After surgery, the paw withdrawal threshold to mechanical stimulation and thermal withdrawal latency were reduced, the HCN currents (Ih) amplitude of DRG neurons was increased, and the semiactivated voltage (V1/2) value was decreased in CCI rats (P<0.05). CCI rats treated with Dex or ZD7288 had reduced mechanical and thermal hyperalgesia. The Ih amplitude was lower and the V1/2 value was increased in DRG neurons in CCI rats treated with Dex or ZD7288 (P<0.05). In addition, Dex inhibited HCN1 and HCN2 currents in HEK293 cells; caused a decrease in maximal currents, an increase in the inhibition rate of Ih, and a negative shift in V1/2 (P<0.05). Taken together, our finding suggested that Dex alleviates NP and the effect is likely because of the inhibition of HCN currents.
Collapse
|
19
|
Zhang H, Kashihara T, Nakada T, Tanaka S, Ishida K, Fuseya S, Kawagishi H, Kiyosawa K, Kawamata M, Yamada M. Prostanoid EP4 Receptor-Mediated Augmentation of I h Currents in A β Dorsal Root Ganglion Neurons Underlies Neuropathic Pain. J Pharmacol Exp Ther 2019; 368:50-58. [PMID: 30409832 DOI: 10.1124/jpet.118.252767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022] Open
Abstract
An injury of the somatosensory system causes neuropathic pain, which is usually refractory to conventional analgesics, thus warranting the development of novel drugs against this kind of pain. The mechanism of neuropathic pain in rats that had undergone left L5 spinal nerve transection was analyzed. Ten days after surgery, these rats acquired neuropathic pain. The patch-clamp technique was used on the isolated bilateral L5 dorsal root ganglion neurons. The current-clamped neurons on the ipsilateral side exhibited significantly higher excitability than those on the contralateral side. However, only neurons with diameters of 40-50 μm on the ipsilateral side exhibited significantly larger voltage sags in response to hyperpolarizing current pulses than those on the contralateral side. Under the voltage clamp, only these neurons on the ipsilateral side showed a significantly larger density of an inward current at < -80 mV [hyperpolarization-activated nonselective cation (I h) current] with a rightward-shifted activation curve than that on the contralateral side. Ivabradine-an I h current inhibitor-inhibited I h currents in these neurons on both sides in a similar concentration-dependent manner, with an IC50 value of ∼3 μM. Moreover, the oral administration of ivabradine significantly alleviated the neuropathic pain on the ipsilateral side. An inhibitor of adenylyl cyclase or an antagonist of prostanoid EP4 receptors (CJ-023423) inhibited ipsilateral, but not contralateral I h, currents in these neurons. Furthermore, the intrathecal administration of CJ-023423 significantly attenuated neuropathic pain on the ipsilateral side. Thus, ivabradine and/or CJ-023423 may be a lead compound for the development of novel therapeutics against neuropathic pain.
Collapse
Affiliation(s)
- Hao Zhang
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Toshihide Kashihara
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tsutomu Nakada
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Satoshi Tanaka
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kumiko Ishida
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Satoshi Fuseya
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hiroyuki Kawagishi
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kenkichi Kiyosawa
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mikito Kawamata
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mitsuhiko Yamada
- Departments of Molecular Pharmacology (H.Z., T.K., T.N., H.K., K.K., M.Y.) and Anesthesiology and Resuscitology (H.Z., S.T., K.I., S.F., K.K., M.K.), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
20
|
Mandge D, Manchanda R. A biophysically detailed computational model of urinary bladder small DRG neuron soma. PLoS Comput Biol 2018; 14:e1006293. [PMID: 30020934 PMCID: PMC6066259 DOI: 10.1371/journal.pcbi.1006293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/30/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Bladder small DRG neurons, which are putative nociceptors pivotal to urinary bladder function, express more than a dozen different ionic membrane mechanisms: ion channels, pumps and exchangers. Small-conductance Ca2+-activated K+ (SKCa) channels which were earlier thought to be gated solely by intracellular Ca2+ concentration ([Ca]i) have recently been shown to exhibit inward rectification with respect to membrane potential. The effect of SKCa inward rectification on the excitability of these neurons is unknown. Furthermore, studies on the role of KCa channels in repetitive firing and their contributions to different types of afterhyperpolarization (AHP) in these neurons are lacking. In order to study these phenomena, we first constructed and validated a biophysically detailed single compartment model of bladder small DRG neuron soma constrained by physiological data. The model includes twenty-two major known membrane mechanisms along with intracellular Ca2+ dynamics comprising Ca2+ diffusion, cytoplasmic buffering, and endoplasmic reticulum (ER) and mitochondrial mechanisms. Using modelling studies, we show that inward rectification of SKCa is an important parameter regulating neuronal repetitive firing and that its absence reduces action potential (AP) firing frequency. We also show that SKCa is more potent in reducing AP spiking than the large-conductance KCa channel (BKCa) in these neurons. Moreover, BKCa was found to contribute to the fast AHP (fAHP) and SKCa to the medium-duration (mAHP) and slow AHP (sAHP). We also report that the slow inactivating A-type K+ channel (slow KA) current in these neurons is composed of 2 components: an initial fast inactivating (time constant ∼ 25-100 ms) and a slow inactivating (time constant ∼ 200-800 ms) current. We discuss the implications of our findings, and how our detailed model can help further our understanding of the role of C-fibre afferents in the physiology of urinary bladder as well as in certain disorders.
Collapse
Affiliation(s)
- Darshan Mandge
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Rohit Manchanda
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
21
|
Ding W, You Z, Shen S, Yang J, Lim G, Doheny JT, Zhu S, Zhang Y, Chen L, Mao J. Increased HCN Channel Activity in the Gasserian Ganglion Contributes to Trigeminal Neuropathic Pain. THE JOURNAL OF PAIN 2018; 19:626-634. [PMID: 29366880 PMCID: PMC5972061 DOI: 10.1016/j.jpain.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
Orofacial neuropathic pain caused by trigeminal nerve injury is a debilitating condition with limited therapeutic options. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are involved in the development and maintenance of chronic pain. However, the effect of HCN channel activity in the Gasserian ganglion on trigeminal neuropathic pain has not been examined. We evaluated nociceptive behaviors after microinjection of the HCN channel blockers ZD7288 or ivabradine into the Gasserian ganglion in rats with trigeminal nerve injury. Both blockers dose-dependently ameliorated evoked and spontaneous nociceptive behavior in rats with trigeminal neuropathic pain. Moreover, the clinically available HCN channel blocker ivabradine showed a prolonged antinociceptive effect. In the Gasserian ganglion, HCN1 and HCN2 are major HCN isoforms. After trigeminal nerve injury, the counts of HCN1 as well as HCN2 immuno-positive punctae were increased in the ipsilateral Gasserian ganglions. These results indicate that the increased HCN channel activity in the Gasserian ganglion directly contributes to neuropathic pain resulting from trigeminal nerve injury. PERSPECTIVE Trigeminal nerve damage-induced orofacial pain is severe and more resistant to standard pharmacological treatment than other types of neuropathic pain. Our study suggests that targeting HCN channel activities in the Gasserian ganglion may provide an alternative treatment of trigeminal neuropathy including trigeminal neuralgia.
Collapse
Affiliation(s)
- Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grewo Lim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason T Doheny
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shengmei Zhu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yi Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
22
|
Tsantoulas C, Laínez S, Wong S, Mehta I, Vilar B, McNaughton PA. Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci Transl Med 2018; 9:eaam6072. [PMID: 28954930 DOI: 10.1126/scitranslmed.aam6072] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/22/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023]
Abstract
Diabetic patients frequently suffer from continuous pain that is poorly treated by currently available analgesics. We used mouse models of type 1 and type 2 diabetes to investigate a possible role for the hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels as drivers of diabetic pain. Blocking or genetically deleting HCN2 channels in small nociceptive neurons suppressed diabetes-associated mechanical allodynia and prevented neuronal activation of second-order neurons in the spinal cord in mice. In addition, we found that intracellular cyclic adenosine monophosphate (cAMP), a positive HCN2 modulator, is increased in somatosensory neurons in an animal model of painful diabetes. We propose that the increased intracellular cAMP drives diabetes-associated pain by facilitating HCN2 activation and consequently promoting repetitive firing in primary nociceptive nerve fibers. Our results suggest that HCN2 may be an analgesic target in the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Christoforos Tsantoulas
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Sergio Laínez
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Sara Wong
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Ishita Mehta
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Bruno Vilar
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
23
|
Bohannon AS, Hablitz JJ. Developmental Changes in HCN Channel Modulation of Neocortical Layer 1 Interneurons. Front Cell Neurosci 2018; 12:20. [PMID: 29440994 PMCID: PMC5797556 DOI: 10.3389/fncel.2018.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/15/2018] [Indexed: 01/31/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) play a key role in modulating the integration of inputs to pyramidal neurons (PNs) and controlling cortical network activity. Hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels are known to alter the intrinsic and synaptic excitability of principal components (PCs) as well as select populations of GABAergic INs. However, the developmental profile and functional role of HCN channels in diverse L1 IN populations is not completely understood. In the present study, we used electrophysiological characterization, in conjunction with unbiased hierarchical cluster analysis, to examine developmental modulation of L1 INs by HCN channels in the rat medial agranular cortex (AGm). We identified three physiologically discrete IN populations which were classified as regular spiking (RS), burst accommodating (BA) and non-accommodating (NA). A distinct developmental pattern of excitability modulation by HCN channels was observed for each group. RS and NA cells displayed distinct morphologies with modulation of EPSPs increasing in RS cells and decreasing in NA cells across development. The results indicate a possible role of HCN channels in the formation and maintenance of cortical circuits through alteration of the excitability of distinct AGm L1 INs.
Collapse
Affiliation(s)
- Andrew S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Difference of acute dissociation and 1-day culture on the electrophysiological properties of rat dorsal root ganglion neurons. J Physiol Biochem 2018; 74:207-221. [DOI: 10.1007/s13105-017-0606-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/29/2017] [Indexed: 10/24/2022]
|
25
|
Stieglitz MS, Fenske S, Hammelmann V, Becirovic E, Schöttle V, Delorme JE, Schöll-Weidinger M, Mader R, Deussing J, Wolfer DP, Seeliger MW, Albrecht U, Wotjak CT, Biel M, Michalakis S, Wahl-Schott C. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice. Front Mol Neurosci 2018; 10:436. [PMID: 29375299 PMCID: PMC5767300 DOI: 10.3389/fnmol.2017.00436] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure.
Collapse
Affiliation(s)
- Marc S Stieglitz
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Stefanie Fenske
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Verena Hammelmann
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Verena Schöttle
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - James E Delorme
- Neurobiochemistry of Circadian Rhythms, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martha Schöll-Weidinger
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Robert Mader
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Jan Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - David P Wolfer
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mathias W Seeliger
- Ocular Neurodegeneration Research Group, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Urs Albrecht
- Neurobiochemistry of Circadian Rhythms, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Carsten T Wotjak
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | - Christian Wahl-Schott
- Center for Integrated Protein Science and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
26
|
Weerasinghe D, Menon P, Vucic S. Hyperpolarization-activated cyclic-nucleotide-gated channels potentially modulate axonal excitability at different thresholds. J Neurophysiol 2017; 118:3044-3050. [PMID: 28904107 DOI: 10.1152/jn.00576.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels mediate differences in sensory and motor axonal excitability at different thresholds in animal models. Importantly, HCN channels are responsible for voltage-gated inward rectifying (Ih) currents activated during hyperpolarization. The Ih currents exert a crucial role in determining the resting membrane potential and have been implicated in a variety of neurological disorders, including neuropathic pain. In humans, differences in biophysical properties of motor and sensory axons at different thresholds remain to be elucidated and could provide crucial pathophysiological insights in peripheral neurological diseases. Consequently, the aim of this study was to characterize sensory and motor axonal function at different threshold. Median nerve motor and sensory axonal excitability studies were undertaken in 15 healthy subjects (45 studies in total). Tracking targets were set to 20, 40, and 60% of maximum for sensory and motor axons. Hyperpolarizing threshold electrotonus (TEh) at 90-100 ms was significantly increased in lower threshold sensory axons times (F = 11.195, P < 0.001). In motor axons, the hyperpolarizing current/threshold (I/V) gradient was significantly increased in lower threshold axons (F = 3.191, P < 0.05). The minimum I/V gradient was increased in lower threshold motor and sensory axons. In conclusion, variation in the kinetics of HCN isoforms could account for the findings in motor and sensory axons. Importantly, assessing the function of HCN channels in sensory and motor axons of different thresholds may provide insights into the pathophysiological processes underlying peripheral neurological diseases in humans, particularly focusing on the role of HCN channels with the potential of identifying novel treatment targets.NEW & NOTEWORTHY Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which underlie inward rectifying currents (Ih), appear to mediate differences in sensory and motor axonal properties. Inward rectifying currents are increased in lower threshold motor and sensory axons, although different HCN channel isoforms appear to underlie these changes. While faster activating HCN channels seem to underlie Ih changes in sensory axons, slower activating HCN isoforms appear to be mediating the differences in Ih conductances in motor axons of different thresholds. The differences in HCN gating properties could explain the predilection for dysfunction of sensory and motor axons in specific neurological diseases.
Collapse
Affiliation(s)
| | - Parvathi Menon
- Department of Neurology, Westmead Hospital, Sydney, Australia; and.,Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Sydney, Australia; and .,Westmead Clinical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Liu DL, Wang X, Chu WG, Lu N, Han WJ, Du YK, Hu SJ, Bai ZT, Wu SX, Xie RG, Luo C. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( I h) in large-diameter dorsal root ganglion neurons. Mol Pain 2017; 13:1744806917707127. [PMID: 28587505 PMCID: PMC5466279 DOI: 10.1177/1744806917707127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cervical radiculopathic pain is a very common symptom that may occur with cervical
spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain
and is inadequately treated with current therapies. However, the precise mechanisms
underlying cervical radiculopathic pain-associated mechanical allodynia have remained
elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal
root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in
mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic
changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these
changes are yet to be known. With combination of patch-clamp recording,
immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon
chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root
ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability.
Quantitative analysis of hyperpolarization-activated cation current
(Ih) revealed that Ih was
greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic
pain rats. This increased Ih was supported by the enhanced
expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3
in large dorsal root ganglion neurons. Blockade of Ih with
selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated
with cervical radiculopathic pain. This study sheds new light on the functional plasticity
of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel
mechanism that could underlie the mechanical allodynia associated with cervical
radiculopathy.
Collapse
Affiliation(s)
- Da-Lu Liu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,2 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Guang Chu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Na Lu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,4 ART Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Wen-Juan Han
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Yi-Kang Du
- 5 The First Brigade, Fourth Military Medical University, Xi'an, China
| | - San-Jue Hu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- 3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Hyperpolarization-activated current I h in mouse trigeminal sensory neurons in a transgenic mouse model of familial hemiplegic migraine type-1. Neuroscience 2017; 351:47-64. [DOI: 10.1016/j.neuroscience.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
|
29
|
Sun W, Yang F, Wang Y, Fu H, Yang Y, Li CL, Wang XL, Lin Q, Chen J. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade. Neuropharmacology 2016; 113:217-230. [PMID: 27743933 DOI: 10.1016/j.neuropharm.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022]
Abstract
Under physiological state, small- and medium-sized dorsal root ganglia (DRG) neurons are believed to mediate nociceptive behavioral responses to painful stimuli. However, recently it has been found that a number of large-sized neurons are also involved in nociceptive transmission under neuropathic conditions. Nonetheless, the underlying mechanisms that large-sized DRG neurons mediate nociception are poorly understood. In the present study, the role of large-sized neurons in bee venom (BV)-induced mechanical allodynia and the underlying mechanisms were investigated. Behaviorally, it was found that mechanical allodynia was still evoked by BV injection in rats in which the transient receptor potential vanilloid 1-positive DRG neurons were chemically deleted. Electrophysiologically, in vitro patch clamp recordings of large-sized neurons showed hyperexcitability in these neurons. Interestingly, the firing pattern of these neurons was changed from phasic to tonic under BV-inflamed state. It has been suggested that hyperpolarization-activated cyclic nucleotide gated channels (HCN) expressed in large-sized DRG neurons contribute importantly to repeatedly firing. So we examined the roles of HCNs in BV-induced mechanical allodynia. Consistent with the overexpression of HCN1/2 detected by immunofluorescence, HCNs-mediated hyperpolarization activated cation current (Ih) was significantly increased in the BV treated samples. Pharmacological experiments demonstrated that the hyperexcitability and upregulation of Ih in large-sized neurons were mediated by cyclooxygenase-1 (COX-1)-prostaglandin E2 pathway. This is evident by the fact that the COX-1 inhibitor significantly attenuated the BV-induced mechanical allodynia. These results suggest that BV can excite the large-sized DRG neurons at least in part by increasing Ih through activation of COX-1.
Collapse
Affiliation(s)
- Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Qing Lin
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China; Beijing Institute for Brain Disorders, Beijing 100069, PR China.
| |
Collapse
|
30
|
HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain. Biochem J 2016; 473:2717-36. [DOI: 10.1042/bcj20160287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023]
Abstract
Nociception — the ability to detect painful stimuli — is an invaluable sense that warns against present or imminent damage. In patients with chronic pain, however, this warning signal persists in the absence of any genuine threat and affects all aspects of everyday life. Neuropathic pain, a form of chronic pain caused by damage to sensory nerves themselves, is dishearteningly refractory to drugs that may work in other types of pain and is a major unmet medical need begging for novel analgesics. Hyperpolarisation-activated cyclic nucleotide (HCN)-modulated ion channels are best known for their fundamental pacemaker role in the heart; here, we review data demonstrating that the HCN2 isoform acts in an analogous way as a ‘pacemaker for pain’, in that its activity in nociceptive neurons is critical for the maintenance of electrical activity and for the sensation of chronic pain in pathological pain states. Pharmacological block or genetic deletion of HCN2 in sensory neurons provides robust pain relief in a variety of animal models of inflammatory and neuropathic pain, without any effect on normal sensation of acute pain. We discuss the implications of these findings for our understanding of neuropathic pain pathogenesis, and we outline possible future opportunities for the development of efficacious and safe pharmacotherapies in a range of chronic pain syndromes.
Collapse
|
31
|
Tibbs GR, Posson DJ, Goldstein PA. Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends Pharmacol Sci 2016; 37:522-542. [DOI: 10.1016/j.tips.2016.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
32
|
Resta F, Masi A, Sili M, Laurino A, Moroni F, Mannaioni G. Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation. Neuropharmacology 2016; 108:136-43. [PMID: 27131920 DOI: 10.1016/j.neuropharm.2016.04.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have a key role in the control of cellular excitability. HCN2, a subgroup of the HCN family channels, are heavily expressed in small dorsal root ganglia (DRG) neurons and their activation seems to be important in the determination of pain intensity. Intracellular elevation of cAMP levels activates HCN-mediated current (Ih) and small DRG neurons excitability. GPR35, a Gi/o coupled receptor, is highly expressed in small DRG neurons, and we hypothesized that its activation, mediated by endogenous or exogenous ligands, could lead to pain control trough a reduction of Ih current. Patch clamp recordings were carried out in primary cultures of rat DRG neurons and the effects of GPR35 activation on Ih current and neuronal excitability were studied in control conditions and after adenylate cyclase activation with either forskolin or prostaglandin E2 (PGE2). We found that both kynurenic acid (KYNA) and zaprinast, the endogenous and synthetic GPR35 agonist respectively, were able to antagonize the forskolin-induced depolarization of resting membrane potential by reducing Ih-mediated depolarization. Similar results were obtained when PGE2 was used to activate adenylate cyclase and to increase Ih current and the overall neuronal excitability. Finally, we tested the analgesic effect of both GPR35 agonists in an in vivo model of PGE2-induced thermal hyperalgesia. In accord with the hypothesis, both KYNA and zaprinast showed a dose dependent analgesic effect. In conclusion, GPR35 activation leads to a reduced excitability of small DRG neurons in vitro and causes a dose-dependent analgesia in vivo. GPR35 agonists, by reducing adenylate cyclase activity and inhibiting Ih in DRG neurons may represent a promising new group of analgesic drugs.
Collapse
Affiliation(s)
- Francesco Resta
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; Azienda Ospedaliero-Universitaria Careggi, Toxicology Unit, Largo Brambilla 1, 50139, Florence, Italy.
| | - Maria Sili
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Annunziatina Laurino
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Flavio Moroni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; Azienda Ospedaliero-Universitaria Careggi, Toxicology Unit, Largo Brambilla 1, 50139, Florence, Italy.
| |
Collapse
|
33
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain. Sci Rep 2015; 5:16713. [PMID: 26577374 PMCID: PMC4649360 DOI: 10.1038/srep16713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy.
Collapse
|
35
|
Stemkowski PL, Noh MC, Chen Y, Smith PA. Increased excitability of medium-sized dorsal root ganglion neurons by prolonged interleukin-1β exposure is K(+) channel dependent and reversible. J Physiol 2015; 593:3739-55. [PMID: 26110238 PMCID: PMC4560594 DOI: 10.1113/jp270905] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/17/2015] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Neuropathic pain resulting from peripheral nerve injury is initiated and maintained by persistent ectopic activity in primary afferent neurons. Sciatic nerve injury increases the excitability of medium-sized dorsal root ganglion (DRG) neurons. Levels of the inflammatory cytokine interleukin 1β (IL-1β) increase and peak after 7 days. Five to six days of exposure of medium sized DRG neurons to 100 pm IL-1β promotes persistent increases in excitability which abate within 3-4 days of cytokine removal. This is associated with a profound attenuation of K(+) channel currents but only modest increases in function of cyclic nucleotide-sensitive hyperpolarization-activated channels (HCNs) and of voltage-gated Na(+) and Ca(2+) channel currents. It is unlikely, therefore, that direct interaction of IL-1β with DRG neurons is capable of initiating an enduring phenotypic shift in their electrophysiological properties that follows sciatic nerve injury. The findings also underline the importance of K(+) channel modulation in the actions of inflammatory mediators on peripheral neurons. ABSTRACT Chronic constriction injury of rat sciatic nerve promotes signs of neuropathic pain. This is associated with an increase in the level of interleukin 1β (IL-1β) in primary afferents that peaks at 7 days. This initial cytokine exposure has been proposed to trigger an enduring alteration in neuronal phenotype that underlies chronic hyper-excitability in sensory nerves, which initiates and maintains chronic neuropathic pain. We have shown previously that 5-6 days of exposure of rat dorsal root ganglia (DRGs) to 100 pm IL-1β increases the excitability of medium-sized neurons. We have now found using whole-cell recording that this increased excitability reverts to control levels within 3-4 days of cytokine removal. The effects of IL-1β were dominated by changes in K(+) currents. Thus, the amplitudes of A-current, delayed rectifier and Ca(2+) -sensitive K(+) currents were reduced by ∼68%, ∼64% and ∼36%, respectively. Effects of IL-1β on other cation currents were modest by comparison. There was thus a slight decrease in availability of high voltage-activated Ca(2+) channel current, a small increase in rates of activation of hyperpolarization-activated cyclic nucleotide-gated channel current (IH ), and a shift in the voltage dependence of activation of tetrodotoxin-sensitive sodium current (TTX-S INa ) to more negative potentials. It is unlikely, therefore, that direct interaction of IL-1β with DRG neurons initiates an enduring phenotypic shift in their electrophysiological properties following sciatic nerve injury. Persistent increases in primary afferent excitability following nerve injury may instead depend on altered K(+) channel function and on the continued presence of slightly elevated levels IL-1β and other cytokines.
Collapse
Affiliation(s)
- Patrick L Stemkowski
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada, T2N 4N1
| | - Myung-Chul Noh
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Yishen Chen
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Peter A Smith
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| |
Collapse
|
36
|
Djouhri L, Al Otaibi M, Kahlat K, Smith T, Sathish J, Weng X. Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience 2015; 301:121-33. [PMID: 26047727 DOI: 10.1016/j.neuroscience.2015.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. Here we used in vivo voltage-clamp and current-clamp recordings, in deeply anesthetized rats, to determine whether activation properties of Ih in these C-nociceptors also change following persistent (not acute) hindlimb inflammation induced by complete Freund's adjuvant (CFA). Recordings were made from lumbar (L4/L5) C-nociceptive DRG neurons. Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - M Al Otaibi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - K Kahlat
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - J Sathish
- Department of Molecular and Clinical Pharmacology;Sherrington Buildings, University of Liverpool, L69 3GE, UK
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of B Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
37
|
Smith T, Al Otaibi M, Sathish J, Djouhri L. Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats. Neuroscience 2015; 295:90-102. [DOI: 10.1016/j.neuroscience.2015.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/28/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
|
38
|
Cho Y, Kim Y, Moozhayil S, Yang E, Bae Y. The expression of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and HCN2 in the rat trigeminal ganglion, sensory root, and dental pulp. Neuroscience 2015; 291:15-25. [DOI: 10.1016/j.neuroscience.2015.01.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
39
|
Zhou C, Ke B, Zhao Y, Liang P, Liao D, Li T, Liu J, Chen X. Hyperpolarization-activated cyclic nucleotide-gated channels may contribute to regional anesthetic effects of lidocaine. Anesthesiology 2015; 122:606-618. [PMID: 25485469 DOI: 10.1097/aln.0000000000000557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Local anesthetics (e.g., lidocaine) have been found to inhibit hyperpolarization-activated cyclic nucleotide-gated (HCN) channels besides sodium channels. However, the exact role of HCN channels in regional anesthesia in vivo is still elusive. METHODS Sciatic nerve block and intrathecal anesthesia were performed using lidocaine in wild-type and HCN1 channel knockout (HCN1) mice. EC50 of lidocaine and durations of 1% lidocaine were determined. In electrophysiologic recordings, effects of lidocaine on HCN channel currents, voltage-gated sodium channel currents, and neural membrane properties were recorded on dorsal root ganglia neurons. RESULTS In both sciatic nerve block and intrathecal anesthesia, EC50 of lidocaine for tactile sensory blockade (2 g von Frey fiber) was significantly increased in HCN1 mice, whereas EC50 of lidocaine for pinprick blockade was unaffected. Durations of 1% lidocaine were significantly shorter in HCN1 mice for both sciatic nerve block and intrathecal anesthesia (n = 10). ZD7288 (HCN blocker) could significantly prolong durations of 1% lidocaine including pinprick blockade in sciatic nerve block (n = 10). Forskolin (raising cyclic adenosine monophosphate to enhance HCN2) could significantly shorten duration of pinprick blockade of 1% lidocaine in sciatic nerve block (n = 10). In electrophysiologic recordings, lidocaine could nonselectively inhibit HCN channel and sodium channel currents both in large and in small dorsal root ganglia neurons (n = 5 to 6). Meanwhile, lidocaine caused neural membrane hyperpolarization and increased input resistance of dorsal root ganglia neurons but not in large dorsal root ganglia neurons from HCN1 mice (n = 5-7). CONCLUSIONS These data indicate that HCN channels may contribute to regional anesthetic effects of lidocaine. By inhibiting HCN channels, lidocaine could alter membrane properties of neurons.
Collapse
Affiliation(s)
- Cheng Zhou
- From the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China (C.Z., B.K., D.L., T.L., J.L., X.C.); Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China (Y.Z., P.L., J.L.); and Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.C.)
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Herrmann S, Schnorr S, Ludwig A. HCN channels--modulators of cardiac and neuronal excitability. Int J Mol Sci 2015; 16:1429-47. [PMID: 25580535 PMCID: PMC4307311 DOI: 10.3390/ijms16011429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1-4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.
Collapse
Affiliation(s)
- Stefan Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Sabine Schnorr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
41
|
Abstract
Neuropathic pain often fails to respond to conventional pain management procedures. here we review the aetiology of neuropathic pain as would result from peripheral neuropathy or injury. We show that inflammatory mediators released from damaged nerves and tissue are responsible for triggering ectopic activity in primary afferents and that this, in turn, provokes increased spinal cord activity and the development of ‘central sensitization’. Although evidence is mounting to support the role of interleukin-1β, prostaglandins and other cytokines in the onset of neuropathic pain, the clinical efficacy of drugs which antagonize or prevent the actions of these mediators is yet to be determined. basic science findings do, however, support the use of pre-emptive analgesia during procedures which involve nerve manipulation and the use of anti-inflammatory steroids as soon as possible following traumatic nerve injury.
Collapse
|
42
|
Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. J Neurophysiol 2014; 111:1429-43. [DOI: 10.1152/jn.00763.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The link between sodium channel Nav1.7 and pain has been strengthened by identification of gain-of-function mutations in patients with inherited erythromelalgia (IEM), a genetic model of neuropathic pain in humans. A firm mechanistic link to nociceptor dysfunction has been precluded because assessments of the effect of the mutations on nociceptor function have thus far depended on electrophysiological recordings from dorsal root ganglia (DRG) neurons transfected with wild-type (WT) or mutant Nav1.7 channels, which do not permit accurate calibration of the level of Nav1.7 channel expression. Here, we report an analysis of the function of WT Nav1.7 and IEM L858H mutation within small DRG neurons using dynamic-clamp. We describe the functional relationship between current threshold for action potential generation and the level of WT Nav1.7 conductance in primary nociceptive neurons and demonstrate the basis for hyperexcitability at physiologically relevant levels of L858H channel conductance. We demonstrate that the L858H mutation, when modeled using dynamic-clamp at physiological levels within DRG neurons, produces a dramatically enhanced persistent current, resulting in 27-fold amplification of net sodium influx during subthreshold depolarizations and even greater amplification during interspike intervals, which provide a mechanistic basis for reduced current threshold and enhanced action potential firing probability. These results show, for the first time, a linear correlation between the level of Nav1.7 conductance and current threshold in DRG neurons. Our observations demonstrate changes in sodium influx that provide a mechanistic link between the altered biophysical properties of a mutant Nav1.7 channel and nociceptor hyperexcitability underlying the pain phenotype in IEM.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Chongyang Han
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
43
|
Shields SD. Conditional deletion of HCN2 from primary afferents uncovers the heterogeneity of inflammatory hypersensitivity. Pain 2014; 155:1051-1052. [PMID: 24602996 DOI: 10.1016/j.pain.2014.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Shannon D Shields
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA Rehabilitation Research Center, Veterans' Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
44
|
Ionic mechanisms in peripheral pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014. [PMID: 24560139 DOI: 10.1016/b978-0-12-397897-4.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Chronic pain constitutes an important and growing problem in society with large unmet needs with respect to treatment and clear implications for quality of life. Computational modeling is used to complement experimental studies to elucidate mechanisms involved in pain states. Models representing the peripheral nerve ending often address questions related to sensitization or reduction in pain detection threshold. In models of the axon or the cell body of the unmyelinated C-fiber, a large body of work concerns the role of particular sodium channels and mutations of these. Furthermore, in central structures: spinal cord or higher structures, sensitization often refers not only to enhanced synaptic efficacy but also to elevated intrinsic neuronal excitability. One of the recent developments in computational neuroscience is the emergence of computational neuropharmacology. In this area, computational modeling is used to study mechanisms of pathology with the objective of finding the means of restoring healthy function. This research has received increased attention from the pharmaceutical industry as ion channels have gained increased interest as drug targets. Computational modeling has several advantages, notably the ability to provide mechanistic links between molecular and cellular levels on the one hand and functions at the systems level on the other hand. These characteristics make computational modeling an additional tool to be used in the process of selecting pharmaceutical targets. Furthermore, large-scale simulations can provide a framework to systematically study the effects of several interacting disease parameters or effects from combinations of drugs.
Collapse
|
45
|
He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014; 112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022]
|
46
|
Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, Fransén E. Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors. J Neurophysiol 2013; 111:1721-35. [PMID: 24371290 DOI: 10.1152/jn.00777.2012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential initiation and conduction along peripheral axons is a dynamic process that displays pronounced activity dependence. In patients with neuropathic pain, differences in the modulation of axonal conduction velocity by activity suggest that this property may provide insight into some of the pathomechanisms. To date, direct recordings of axonal membrane potential have been hampered by the small diameter of the fibers. We have therefore adopted an alternative approach to examine the basis of activity-dependent changes in axonal conduction by constructing a comprehensive mathematical model of human cutaneous C-fibers. Our model reproduced axonal spike propagation at a velocity of 0.69 m/s commensurate with recordings from human C-nociceptors. Activity-dependent slowing (ADS) of axonal propagation velocity was adequately simulated by the model. Interestingly, the property most readily associated with ADS was an increase in the concentration of intra-axonal sodium. This affected the driving potential of sodium currents, thereby producing latency changes comparable to those observed for experimental ADS. The model also adequately reproduced post-action potential excitability changes (i.e., recovery cycles) observed in vivo. We performed a series of control experiments replicating blockade of particular ion channels as well as changing temperature and extracellular ion concentrations. In the absence of direct experimental approaches, the model allows specific hypotheses to be formulated regarding the mechanisms underlying activity-dependent changes in C-fiber conduction. Because ADS might functionally act as a negative feedback to limit trains of nociceptor activity, we envisage that identifying its mechanisms may also direct efforts aimed at alleviating neuronal hyperexcitability in pain patients.
Collapse
Affiliation(s)
- Jenny Tigerholm
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Ahn HS, Vasylyev DV, Estacion M, Macala LJ, Shah P, Faber CG, Merkies IS, Dib-Hajj SD, Waxman SG. Differential effect of D623N variant and wild-type Nav1.7 sodium channels on resting potential and interspike membrane potential of dorsal root ganglion neurons. Brain Res 2013; 1529:165-77. [DOI: 10.1016/j.brainres.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
|
48
|
Cheng Q, Zhou Y. Novel role of KT5720 on regulating hyperpolarization-activated cyclic nucleotide-gated channel activity and dorsal root ganglion neuron excitability. DNA Cell Biol 2013; 32:320-8. [PMID: 23713946 DOI: 10.1089/dna.2013.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in dorsal root ganglion (DRG) neurons, which are involved in diverse mechanisms that regulate DRG functions. Protein kinase A (PKA) is an essential kinase that plays a key role in almost all types of cells; it regulates the ion channel activity, the intracellular Ca(2+) concentration, as well as modulates cellular signals transduction. Nevertheless, the effect of PKA inhibition on the HCN channel activity in DRG neuron remains to be elucidated. Here we investigated the impact of PKA inhibition on the HCN channel activity and DRG neurons excitability. Our patch-clamp experiments both under whole-cell and single-channel conditions demonstrated that PKA inhibition with KT5720, a cell membrane permeable PKA-specific inhibitor, significantly attenuated HCN channel currents. Current clamp recording on freshly isolated DRG neurons showed KT5720 reduced overshoot amplitude and enhanced the threshold of the action potential. Moreover, our live-cell Ca(2+) imaging experiments illustrated KT5720 markedly reduced the intracellular Ca(2+) level. Collectively, this is the first report that addresses KT5720 attenuates the HCN channel activity and intracellular Ca(2+), thus reducing DRG neurons excitability. Therefore, our data strongly suggest that PKA is a potential target for curing HCN and DRG neuron relevant diseases.
Collapse
Affiliation(s)
- Qiuping Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | |
Collapse
|
49
|
Tibbs GR, Rowley TJ, Sanford RL, Herold KF, Proekt A, Hemmings HC, Andersen OS, Goldstein PA, Flood PD. HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain. J Pharmacol Exp Ther 2013; 345:363-73. [PMID: 23549867 PMCID: PMC3657108 DOI: 10.1124/jpet.113.203620] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/01/2013] [Indexed: 01/08/2023] Open
Abstract
Chronic pain after peripheral nerve injury is associated with afferent hyperexcitability and upregulation of hyperpolarization-activated, cyclic nucleotide-regulated (HCN)-mediated IH pacemaker currents in sensory neurons. HCN channels thus constitute an attractive target for treating chronic pain. HCN channels are ubiquitously expressed; analgesics targeting HCN1-rich cells in the peripheral nervous system must spare the cardiac pacemaker current (carried mostly by HCN2 and HCN4) and the central nervous system (where all four isoforms are expressed). The alkylphenol general anesthetic propofol (2,6-di-iso-propylphenol) selectively inhibits HCN1 channels versus HCN2-HCN4 and exhibits a modest pharmacokinetic preference for the periphery. Consequently, we hypothesized that propofol, and congeners, should be antihyperalgesic. Alkyl-substituted propofol analogs have different rank-order potencies with respect to HCN1 inhibition, GABA(A) receptor (GABA(A)-R) potentiation, and general anesthesia. Thus, 2,6- and 2,4-di-tertbutylphenol (2,6- and 2,4-DTBP, respectively) are more potent HCN1 antagonists than propofol, whereas 2,6- and 2,4-di-sec-butylphenol (2,6- and 2,4-DSBP, respectively) are less potent. In contrast, DSBPs, but not DTBPs, enhance GABA(A)-R function and are general anesthetics. 2,6-DTBP retained propofol's selectivity for HCN1 over HCN2-HCN4. In a peripheral nerve ligation model of neuropathic pain, 2,6-DTBP and subhypnotic propofol are antihyperalgesic. The findings are consistent with these alkylphenols exerting analgesia via non-GABA(A)-R targets and suggest that antagonism of central HCN1 channels may be of limited importance to general anesthesia. Alkylphenols are hydrophobic, and thus potential modifiers of lipid bilayers, but their effects on HCN channels are due to direct drug-channel interactions because they have little bilayer-modifying effect at therapeutic concentrations. The alkylphenol antihyperalgesic target may be HCN1 channels in the damaged peripheral nervous system.
Collapse
Affiliation(s)
- Gareth R Tibbs
- Department of Anesthesiology, College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hatch RJ, Jennings EA, Ivanusic JJ. Peripheral hyperpolarization-activated cyclic nucleotide-gated channels contribute to inflammation-induced hypersensitivity of the rat temporomandibular joint. Eur J Pain 2012; 17:972-82. [PMID: 23255289 DOI: 10.1002/j.1532-2149.2012.00261.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels conduct an inward cation current (Ih ) that contributes to the maintenance of neuronal membrane potential and have been implicated in a number of animal models of neuropathic and inflammatory pain. In the current study, we investigated HCN channel involvement in inflammatory pain of the temporomandibular joint (TMJ). METHODS The contribution of HCN channels to inflammation (complete Freund's adjuvant; CFA)-induced mechanical hypersensitivity of the rat TMJ was tested with injections of the HCN channel blocker ZD7288. Retrograde labelling and immunohistochemistry was used to explore HCN channel expression in sensory neurons that innervate the TMJ. RESULTS Injection of CFA into the TMJ (n = 7) resulted in a significantly increased mechanical sensitivity relative to vehicle injection (n = 7) (p < 0.05). The mechanical hypersensitivity generated by CFA injection was blocked by co-injection of ZD7288 with the CFA (n = 7). Retrograde labelling and immunohistochemistry experiments revealed expression predominantly of HCN1 and HCN2 channel subunits in trigeminal ganglion neurons that innervate the TMJ (n = 3). No change in the proportion or intensity of HCN channel expression was found in inflamed (n = 6) versus control (n = 5) animals at the time point tested. CONCLUSIONS Our findings suggest a role for peripheral HCN channels in inflammation-induced pain of the TMJ. Peripheral application of a HCN channel blocker could provide therapeutic benefit for inflammatory TMJ pain and avoid side effects associated with activation of HCN channels in the central nervous system.
Collapse
Affiliation(s)
- R J Hatch
- Department of Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| | | | | |
Collapse
|