1
|
Peng Q, Zeng W. The protective role of endothelial GLUT1 in ischemic stroke. Brain Behav 2024; 14:e3536. [PMID: 38747733 PMCID: PMC11095318 DOI: 10.1002/brb3.3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE To provide thorough insight on the protective role of endothelial glucose transporter 1 (GLUT1) in ischemic stroke. METHODS We comprehensively review the role of endothelial GLUT1 in ischemic stroke by narrating the findings concerning biological characteristics of GLUT1 in brain in depth, summarizing the changes of endothelial GLUT1 expression and activity during ischemic stroke, discussing how GLUT1 achieves its neuroprotective effect via maintaining endothelial function, and identifying some outstanding blind spots in current studies. RESULTS Endothelial GLUT1 maintains persistent high glucose and energy requirements of the brain by transporting glucose through the blood-brain barrier, which preserves endothelial function and is beneficial to stroke prognosis. CONCLUSION This review underscores the potential involvement of GLUT1 trafficking, activity modulation, and degradation, and we look forward to more clinical and animal studies to illuminate these mechanisms.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Critical Care Medicine, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology)Ministry of EducationWuhanChina
| | - Weiqi Zeng
- Department of NeurologyThe First People's Hospital of FoshanFoshanChina
| |
Collapse
|
2
|
Liu Y, Yao Z, Lian G, Yang P. Biomolecular phase separation in stress granule assembly and virus infection. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1099-1118. [PMID: 37401177 PMCID: PMC10415189 DOI: 10.3724/abbs.2023117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.
Collapse
Affiliation(s)
- Yi Liu
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Zhiying Yao
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Guiwei Lian
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Peiguo Yang
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| |
Collapse
|
3
|
Pawletko K, Jędrzejowska-Szypułka H, Bogus K, Pascale A, Fahmideh F, Marchesi N, Grajoszek A, Gendosz de Carrillo D, Barski JJ. After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance. Int J Mol Sci 2023; 24:ijms24119446. [PMID: 37298395 DOI: 10.3390/ijms24119446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Katarzyna Pawletko
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Aniela Grajoszek
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jarosław Jerzy Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| |
Collapse
|
4
|
Zhu T, Fang BY, Meng XB, Zhang SX, Wang H, Gao G, Liu F, Wu Y, Hu J, Sun GB, Sun XB. Folium Ginkgo extract and tetramethylpyrazine sodium chloride injection (Xingxiong injection) protects against focal cerebral ischaemia/reperfusion injury via activating the Akt/Nrf2 pathway and inhibiting NLRP3 inflammasome activation. PHARMACEUTICAL BIOLOGY 2022; 60:195-205. [PMID: 35060427 PMCID: PMC8786246 DOI: 10.1080/13880209.2021.2014895] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Folium Ginkgo extract and tetramethylpyrazine sodium chloride injection (Xingxiong injection) is a compound preparation commonly used for treating cerebral ischaemia/reperfusion injury in ischaemic stroke in China. However, its potential mechanisms on ischaemic stroke remain unknown. OBJECTIVE This study explores the potential mechanisms of Xingxiong injection in vivo or in vitro. MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly assigned to five groups: the sham (normal saline), the model (normal saline) and the Xingxiong injection groups (12.5, 25 or 50 mL/kg). The rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by reperfusion for 14 d. Xingxiong injection was administered via intraperitoneal (i.p.) injection immediately after ischaemia induction for 14 d. Afterwards, rats were sacrificed at 14 d induced by administration of Xingxiong injection. RESULTS Xingxiong injection significantly reduces infarct volume (23%) and neurological deficit scores (93%) compared with the MCAO/R group. Additionally, Xingxiong injection inhibits the loss in mitochondrial membrane potential (43%) and reduces caspase-3 level (44%), decreases NOX (41%), protein carbonyl (29%), 4-HNE (40%) and 8-OhdG (41%) levels, inhibits the expression of inflammatory factors, such as TNF-α (26%), IL-1β (34%), IL-6 (39%), MCP-1 (36%), CD11a (41%) and ICAM-1 (43%). Moreover, Xingxiong injection can increase p-Akt/Akt (35%) and Nrf2 (47%) protein expression and inhibit NLRP3 (42%) protein expression. CONCLUSIONS Xingxiong injection prevents cerebral ischaemia/reperfusion injury via activating the Akt/Nrf2 pathway and inhibiting NLRP3 inflammasome. These findings provide experimental evidence for clinical use of drugs in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Ting Zhu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Bin-Yu Fang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Harbin University of Commerce, Harbin, China
| | - Xiang-Bao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shu-Xia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Wang
- Sihuan Pharmaceutical Holdings Group Ltd, Beijing, China
| | - Ge Gao
- Sihuan Pharmaceutical Holdings Group Ltd, Beijing, China
| | - Fei Liu
- Sihuan Pharmaceutical Holdings Group Ltd, Beijing, China
| | - Yu Wu
- Sihuan Pharmaceutical Holdings Group Ltd, Beijing, China
| | - Jin Hu
- Sihuan Pharmaceutical Holdings Group Ltd, Beijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Guo H, Jiang Y, Gu Z, Ren L, Zhu C, Yu S, Wei R. ZFP36 protects against oxygen-glucose deprivation/reoxygenation-induced mitochondrial fragmentation and neuronal apoptosis through inhibiting NOX4-DRP1 pathway. Brain Res Bull 2021; 179:57-67. [PMID: 34896479 DOI: 10.1016/j.brainresbull.2021.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023]
Abstract
The imbalance of mitochondrial dynamics plays an important role in the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Zinc-finger protein 36 (ZFP36) has been documented to have neuroprotective effects, however, whether ZFP36 is involved in the regulation of neuronal survival during cerebral I/R injury remains unknown. In this study, we found that the transcriptional and translational levels of ZFP36 were increased in immortalized hippocampal HT22 neuronal cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. ZFP36 gene silencing exacerbated OGD/R-induced dynamin-related protein 1 (DRP1) activity, mitochondrial fragmentation, oxidative stress and neuronal apoptosis, whereas ZFP36 overexpression exhibited the opposite effects. Besides, we found that NADPH oxidase 4 (NOX4) was upregulated by OGD/R, and NOX4 inhibition remarkably attenuated OGD/R-instigated DRP1 activity, mitochondrial fragmentation and neuronal apoptosis. Further study demonstrated that ZFP36 targeted NOX4 mRNA directly by binding to the AU-rich elements (AREs) in the NOX4 3'-untranslated regions (3'-UTR) and inhibited NOX4 expression. Taken together, our data indicate that ZFP36 protects against OGD/R-induced neuronal injury by inhibiting NOX4-mediated DRP1 activation and excessive mitochondrial fission. Pharmacological targeting of ZFP36 to suppress excessive mitochondrial fission may provide new therapeutic strategies in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Hengjiang Guo
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yan Jiang
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhiqing Gu
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Lulu Ren
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Change Zhu
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Shenghua Yu
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Rong Wei
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China.
| |
Collapse
|
6
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Farley MM, Watkins TA. Intrinsic Neuronal Stress Response Pathways in Injury and Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:93-116. [PMID: 29414247 DOI: 10.1146/annurev-pathol-012414-040354] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
From injury to disease to aging, neurons, like all cells, may face various insults that can impact their function and survival. Although the consequences are substantially dictated by the type, context, and severity of insult, distressed neurons are far from passive. Activation of cellular stress responses aids in the preservation or restoration of nervous system function. However, stress responses themselves can further advance neuropathology and contribute significantly to neuronal dysfunction and neurodegeneration. Here we explore the recent advances in defining the cellular stress responses within neurodegenerative diseases and neuronal injury, and we emphasize axonal injury as a well-characterized model of neuronal insult. We highlight key findings and unanswered questions about neuronal stress response pathways, from the initial detection of cellular insults through the underlying mechanisms of the responses to their ultimate impact on the fates of distressed neurons.
Collapse
Affiliation(s)
- Madeline M Farley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030;
| | - Trent A Watkins
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
8
|
Ke H, Zhang X, Cheng L, Fan Y, Xiao S, Ma Y, Feng G. Bioinformatic analysis to explore key genes associated with brain ischemia–reperfusion injury in rats. Int J Neurosci 2019; 129:945-954. [PMID: 30889366 DOI: 10.1080/00207454.2019.1595615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hong Ke
- Department of Neurology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Xiaoli Zhang
- Department of Nephrology, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Lin Cheng
- Department of Emergency, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yanxia Fan
- Department of Neurology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Shuping Xiao
- Department of Neurology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Yingwen Ma
- Department of Neurology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Guangkun Feng
- Department of Neurology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| |
Collapse
|
9
|
Yin J, Li R, Liu W, Chen Y, Zhang X, Li X, He X, Duan C. Neuroprotective Effect of Protein Phosphatase 2A/Tristetraprolin Following Subarachnoid Hemorrhage in Rats. Front Neurosci 2018; 12:96. [PMID: 29535596 PMCID: PMC5835096 DOI: 10.3389/fnins.2018.00096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) can lead to inflammation and neuronal dysfunction. There is a need for effective strategies to mitigate these effects and improve the outcome of patients who experience SAH. The mRNA-destabilizing protein tristetraprolin (TTP) is an anti-inflammatory factor that induces the decay of cytokine transcripts and has been implicated in diseases such as glioma. However, the mechanism of action of TTP in EBI after SAH is unclear. The present study investigated the effects of TTP regulation via phosphorylation in a rat model of SAH by protein phosphatase (PP)2A, which is a pleiotropic enzyme complex with multiple substrate phospho-proteins. We hypothesized that inhibitory phosphorylation of TTP by PP2A would reduce neuroinflammation and apoptosis. To evaluate the function of each factor, the PP2A agonist FTY720, short interfering (si)RNAs targeting TTP and PP2A were administered to rats by intracerebroventricular injection 24 h before SAH. Rats were evaluated with SAH grade, neurological score, brain water content and by western blotting, and terminal deoxynucleotidyltransferase dUTP nick-end labeling. We found that endogenous PP2A and TTP levels were increased after SAH. FTY720 induced PP2A activation would lead to dephosphorylation and activation of TTP and decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. SiRNA-mediated TTP knockdown abolished anti-inflammatory effects of FTY720 treatment, indicating that PP2A was associated with TTP activation in vivo. Decreased TNF-α, IL-6, and IL-8 levels were associated with improvement of neurological function, reduction of brain edema, suppression of caspase-3, and up-regulation of B cell lymphoma-2. These results demonstrated that PP2A activation could enhance the anti-inflammatory and anti-apoptotic effects of TTP, by which it might shed light on the development of an effective therapeutic strategy against EBI following SAH.
Collapse
Affiliation(s)
- Jian Yin
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Departments of Neurosurgery, Hanghzou Red Cross Hospital, Hangzhou, China
| | - Ran Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunchang Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Disease of mRNA Regulation: Relevance for Ischemic Brain Injury. Transl Stroke Res 2017; 9:251-257. [DOI: 10.1007/s12975-017-0586-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
|
11
|
Barraza CE, Solari CA, Marcovich I, Kershaw C, Galello F, Rossi S, Ashe MP, Portela P. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. PLoS One 2017; 12:e0185416. [PMID: 29045428 PMCID: PMC5646765 DOI: 10.1371/journal.pone.0185416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.
Collapse
Affiliation(s)
- Carla E Barraza
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Clara A Solari
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres", Buenos Aires, Argentina
| | - Christopher Kershaw
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Fiorella Galello
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mark P Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paula Portela
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
12
|
Wang H, Tri Anggraini F, Chen X, DeGracia DJ. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 2017; 37:1494-1507. [PMID: 27381823 PMCID: PMC5453468 DOI: 10.1177/0271678x16657572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prolonged translation arrest correlates with delayed neuronal death of hippocampal CA1 neurons following global cerebral ischemia and reperfusion. Many previous studies investigated ribosome molecular biology, but mRNA regulatory mechanisms after brain ischemia have been less studied. Here we investigated the embryonic lethal abnormal vision/Hu isoforms HuR, HuB, HuC, and HuD, as well as expression of mRNAs containing adenine and rich uridine elements following global ischemia in rat brain. Proteomics of embryonic lethal abnormal vision immunoprecipitations or polysomes isolated from rat hippocampal CA1 and CA3 from controls or following 10 min ischemia plus 8 h of reperfusion showed distinct sets of mRNA-binding proteins, suggesting differential mRNA regulation in each condition. Notably, HuB, HuC, and HuD were undetectable in NIC CA1. At 8 h reperfusion, polysome-associated mRNAs contained 46.1% of ischemia-upregulated mRNAs containing adenine and rich uridine elements in CA3, but only 18.7% in CA1. Since mRNAs containing adenine and rich uridine elements regulation are important to several cellular stress responses, our results suggest CA1 is disadvantaged compared to CA3 in coping with ischemic stress, and this is expected to be an important contributing factor to CA1 selective vulnerability. (Data are available via ProteomeXchange identifier PXD004078 and GEO Series accession number GSE82146).
Collapse
Affiliation(s)
- Haihui Wang
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | | | - Xuequn Chen
- 1 Department of Physiology, Wayne State University, Detroit, USA
| | - Donald J DeGracia
- 1 Department of Physiology, Wayne State University, Detroit, USA.,2 Center for Molecular Medicine and Genetics, Wayne State University, Detroit, USA
| |
Collapse
|
13
|
DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28097803 DOI: 10.1002/wrna.1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.
Collapse
|
14
|
Ayuso MI, Martínez-Alonso E, Regidor I, Alcázar A. Stress Granule Induction after Brain Ischemia Is Independent of Eukaryotic Translation Initiation Factor (eIF) 2α Phosphorylation and Is Correlated with a Decrease in eIF4B and eIF4E Proteins. J Biol Chem 2016; 291:27252-27264. [PMID: 27836976 DOI: 10.1074/jbc.m116.738989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic ribonucleoprotein aggregates that are directly connected with the translation initiation arrest response to cellular stresses. Translation inhibition (TI) is observed in transient brain ischemia, a condition that induces persistent TI even after reperfusion, i.e. when blood flow is restored, and causes delayed neuronal death (DND) in selective vulnerable regions. We previously described a connection between TI and DND in the hippocampal cornu ammonis 1 (CA1) in an animal model of transient brain ischemia. To link the formation of SGs to TI and DND after brain ischemia, we investigated SG induction in brain regions with differential vulnerabilities to ischemia-reperfusion (IR) in this animal model. SG formation is triggered by both eukaryotic translation initiation factor (eIF) 2α phosphorylation and eIF4F complex dysfunction. We analyzed SGs by immunofluorescence colocalization of granule-associated protein T-cell internal antigen-1 with eIF3b, eIF4E, and ribosomal protein S6 and studied eIF2 and eIF4F complex. The results showed that IR stress induced SG formation in the CA1 region after 3-day reperfusion, consistent with TI and DND in CA1. SGs were formed independently of eIF2α phosphorylation, and their appearance was correlated with a decrease in the levels of eIF4F compounds, the cap-binding protein eIF4E, and eIF4B, suggesting that remodeling of the eIF4F complex was required for SG formation. Finally, pharmacological protection of CA1 ischemic neurons with cycloheximide decreased the formation of SGs and restored eIF4E and eIF4B levels in CA1. These findings link changes in eIF4B and eIF4E to SG induction in regions vulnerable to death after IR.
Collapse
Affiliation(s)
| | | | - Ignacio Regidor
- Neurophysiology, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, E-28034 Madrid, Spain
| | | |
Collapse
|
15
|
Abstract
RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals.
Collapse
|
16
|
Bowden HA, Dormann D. Altered mRNP granule dynamics in FTLD pathogenesis. J Neurochem 2016; 138 Suppl 1:112-33. [PMID: 26938019 DOI: 10.1111/jnc.13601] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
In neurons, RNA-binding proteins (RBPs) play a key role in post-transcriptional gene regulation, for example alternative splicing, mRNA localization in neurites and local translation upon synaptic stimulation. There is increasing evidence that defective or mislocalized RBPs - and consequently altered mRNA processing - lead to neuronal dysfunction and cause neurodegeneration, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Cytosolic RBP aggregates containing TAR DNA-binding protein of 43 kDa (TDP-43) or fused in sarcoma (FUS) are a common hallmark of both disorders. There is mounting evidence that translationally silent mRNP granules, such as stress granules or transport granules, play an important role in the formation of these RBP aggregates. These granules are thought to be 'catalytic convertors' of RBP aggregation by providing a high local concentration of RBPs. As recently shown in vitro, RBPs that contain a so-called low-complexity domain start to 'solidify' and eventually aggregate at high protein concentrations. The same may happen in mRNP granules in vivo, leading to 'solidified' granules that lose their dynamic properties and ability to fulfill their physiological functions. This may result in a disturbed stress response, altered mRNA transport and local translation, and formation of pathological TDP-43 or FUS aggregates, all of which may contribute to neuronal dysfunction and neurodegeneration. Here, we discuss the general functional properties of these mRNP granules, how their dynamics may be disrupted in frontotemporal lobar degeneration/amyotrophic lateral sclerosis, for example by loss or gain of function of TDP-43 and FUS, and how this may contribute to the development of RBP aggregates and neurotoxicity. In this review, we discuss how dynamic mRNP granules, such as stress granules or neuronal transport granules, may be converted into pathological aggregates containing misfolded RNA-binding proteins (RBPs), such as TDP-43 and FUS. Abnormal interactions between low-complexity domains in RBPs may cause dynamic mRNP granules to solidify and become dysfunctional. This may result in a disturbed stress response, altered mRNA transport and local translation, as well as RBP aggregation, all of which may contribute to neuronal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Hilary A Bowden
- Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
17
|
C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress. Mol Neurobiol 2016; 54:3062-3077. [DOI: 10.1007/s12035-016-9850-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022]
|
18
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
19
|
Dissociation of eIF4E-binding protein 2 (4E-BP2) from eIF4E independent of Thr37/Thr46 phosphorylation in the ischemic stress response. PLoS One 2015; 10:e0121958. [PMID: 25822952 PMCID: PMC4379021 DOI: 10.1371/journal.pone.0121958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4E-binding proteins (4E-BPs) are translational repressors that bind specifically to eIF4E and are critical in the control of protein translation. 4E-BP2 is the predominant 4E-BP expressed in the brain, but their role is not well known. Here, we characterized four forms of 4E-BP2 detected by two-dimensional gel electrophoresis (2-DGE) in brain. The form with highest electrophoretic mobility was the main form susceptible to phosphorylation at Thr37/Thr46 sites, phosphorylation that was detected in acidic spots. Cerebral ischemia and subsequent reperfusion induced dephosphorylation and phosphorylation of 4E-BP2 at Thr37/Thr46, respectively. The induced phosphorylation was in parallel with the release of 4E-BP2 from eIF4E, although two of the phosphorylated 4E-BP2 forms were bound to eIF4E. Upon long-term reperfusion, there was a decrease in the binding of 4E-BP2 to eIF4E in cerebral cortex, demonstrated by cap binding assays and 4E-BP2-immunoprecipitation experiments. The release of 4E-BP2 from eIF4E was without changes in 4E-BP2 phosphorylation or other post-translational modification recognized by 2-DGE. These findings demonstrated specific changes in 4E-BP2/eIF4E association dependent and independent of 4E-BP2 phosphorylation. The last result supports the notion that phosphorylation may not be the uniquely regulation for the binding of 4E-BP2 to eIF4E under ischemic stress.
Collapse
|
20
|
Lewis MK, Jamison JT, Dunbar JC, DeGracia DJ. mRNA redistribution during permanent focal cerebral ischemia. Transl Stroke Res 2013; 4:604-17. [PMID: 24323415 PMCID: PMC3864703 DOI: 10.1007/s12975-013-0274-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022]
Abstract
Translation arrest occurs in neurons following focal cerebral ischemia and is irreversible in penumbral neurons destined to die. Following global cerebral ischemia, mRNA is sequestered away from 40S ribosomal subunits as mRNA granules, precluding translation. Here, we investigated mRNA granule formation using fluorescence in situ histochemistry out to 8 h permanent focal cerebral ischemia using middle cerebral artery occlusion in Long Evans rats with and without diabetes. Neuronal mRNA granules colocalized with PABP, HuR, and NeuN, but not 40S or 60S ribosomal subunits, or organelle markers. The volume of brain with mRNA granule-containing neurons decreased exponentially with ischemia duration, and was zero after 8 h permanent focal cerebral ischemia or any duration of ischemia in diabetic rats. These results show that neuronal mRNA granule response has a limited range of insult intensity over which it is expressed. Identifying the limits of effective neuronal stress response to ischemia will be important for developing effective stroke therapies.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear/metabolism
- Brain Ischemia/complications
- Brain Ischemia/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- ELAV Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Infarction, Middle Cerebral Artery/complications
- Male
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Poly(A)-Binding Proteins/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Long-Evans
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Time Factors
Collapse
Affiliation(s)
- Monique K. Lewis
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA
| | - Jill T. Jamison
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA
| | - Joseph C. Dunbar
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA
| | - Donald J. DeGracia
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA. Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
21
|
Szymanski JJ, Wang H, Jamison JT, DeGracia DJ. HuR function and translational state analysis following global brain ischemia and reperfusion. Transl Stroke Res 2013; 4:589-603. [PMID: 24323414 DOI: 10.1007/s12975-013-0273-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/19/2022]
Abstract
Prolonged translation arrest in post-ischemic hippocampal CA1 pyramidal neurons precludes translation of induced stress genes and directly correlates with cell death. We evaluated the regulation of mRNAs containing adenine- and uridine-rich elements (ARE) by assessing HuR protein and hsp70 mRNA nuclear translocation, HuR polysome binding, and translation state analysis of CA1 and CA3 at 8 h of reperfusion after 10 min of global cerebral ischemia. There was no difference between CA1 and CA3 at 8 h of reperfusion in nuclear or cytoplasmic HuR protein or hsp70 mRNA, or HuR polysome association, suggesting that neither mechanism contributed to post-ischemic outcome. Translation state analysis revealed that 28 and 58 % of unique mRNAs significantly different between 8hR and NIC, in CA3 and CA1, respectively, were not polysome-bound. There was significantly greater diversity of polysome-bound mRNAs in reperfused CA3 compared to CA1, and in both regions, ARE-containing mRNAs accounted for 4-5 % of the total. These data indicate that posttranscriptional ARE-containing mRNA regulation occurs in reperfused neurons and contributes to post-ischemic outcome. Understanding the differential responses of vulnerable and resistant neurons to ischemia will contribute to the development of effective neuroprotective therapies.
Collapse
Affiliation(s)
- Jeffrey J Szymanski
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI, 48201, USA
| | | | | | | |
Collapse
|
22
|
Ayuso MI, Martínez-Alonso E, Cid C, Alonso de Leciñana M, Alcázar A. The translational repressor eIF4E-binding protein 2 (4E-BP2) correlates with selective delayed neuronal death after ischemia. J Cereb Blood Flow Metab 2013; 33:1173-81. [PMID: 23591646 PMCID: PMC3734765 DOI: 10.1038/jcbfm.2013.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/20/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
Transient brain ischemia induces an inhibition of translational rates and causes delayed neuronal death in selective regions and cognitive deficits, whereas these effects do not occur in resistant areas. The translational repressor eukaryotic initiation factor (eIF) 4E-binding protein-2 (4E-BP2) specifically binds to eIF4E and is critical in the control of protein synthesis. To link neuronal death to translation inhibition, we study the eIF4E association with 4E-BP2 under ischemia reperfusion in a rat model of transient forebrain ischemia. Upon reperfusion, a selective neuronal apoptosis in the hippocampal cornu ammonis 1 (CA1) region was induced, while it did not occur in the cerebral cortex. Confocal microscopy analysis showed a decrease in 4E-BP2/eIF4E colocalization in resistant cortical neurons after reperfusion. In contrast, in vulnerable CA1 neurons, 4E-BP2 remains associated to eIF4E with a higher degree of 4E-BP2/eIF4E colocalization and translation inhibition. Furthermore, the binding of a 4E-BP2 peptide to eIF4E induced neuronal apoptosis in the CA1 region. Finally, pharmacological-induced protection of CA1 neurons inhibited neuronal apoptosis, decreased 4E-BP2/eIF4E association, and recovered translation. These findings documented specific changes in 4E-BP2/eIF4E association during ischemic reperfusion, linking the translation inhibition to selective neuronal death, and identifying 4E-BP2 as a novel target for protection of vulnerable neurons in ischemic injury.
Collapse
Affiliation(s)
- María Irene Ayuso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Scott B, Sun CL, Mao X, Yu C, Vohra BPS, Milbrandt J, Crowder CM. Role of oxygen consumption in hypoxia protection by translation factor depletion. J Exp Biol 2013; 216:2283-92. [PMID: 23531825 PMCID: PMC3667128 DOI: 10.1242/jeb.082263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
Abstract
The reduction of protein synthesis has been associated with resistance to hypoxic cell death. Which components of the translation machinery control hypoxic sensitivity and the precise mechanism has not been systematically investigated, although a reduction in oxygen consumption has been widely assumed to be the mechanism. Using genetic reagents in Caenorhabditis elegans, we examined the effect on organismal survival after hypoxia of knockdown of 10 factors functioning at the three principal steps in translation. Reduction-of-function of all 10 translation factors significantly increased hypoxic survival to varying degrees, not fully accounted for by the level of translational suppression. Measurement of oxygen consumption showed that strong hypoxia resistance was possible without a significant decrease in oxygen consumption. Hypoxic sensitivity had no correlation with lifespan or reactive oxygen species sensitivity, two phenotypes associated with reduced translation. Resistance to tunicamycin, which produces misfolded protein toxicity, was the only phenotype that significantly correlated with hypoxic sensitivity. Translation factor knockdown was also hypoxia protective for mouse primary neurons. These data show that translation factor knockdown is hypoxia protective in both C. elegans and mouse neurons and that oxygen consumption does not necessarily determine survival; rather, mitigation of misfolded protein toxicity is more strongly associated with hypoxic protection.
Collapse
Affiliation(s)
- Barbara Scott
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Chun-Ling Sun
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xianrong Mao
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cong Yu
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bhupinder P. S. Vohra
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - C. Michael Crowder
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
24
|
Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration - lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 2013; 280:4348-70. [DOI: 10.1111/febs.12287] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Eva Bentmann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| | - Christian Haass
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| | - Dorothee Dormann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| |
Collapse
|
25
|
Bailey CE, Hammers DW, Deford JH, Dimayuga VL, Amaning JK, Farrar R, Papaconstantinou J. Ishemia-reperfusion enhances GAPDH nitration in aging skeletal muscle. Aging (Albany NY) 2012; 3:1003-17. [PMID: 22027257 PMCID: PMC3229964 DOI: 10.18632/aging.100394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging and skeletal muscle ischemia/reperfusion (I/R) injury leads to decreased contractile force generation that increases severely with age. Our studies show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein expression is significantly decreased at 3 and 5 days reperfusion in the young mouse muscle and at 1, 3, 5, and 7 days in the aged muscle. Using PCR, we have shown that GAPDH mRNA levels in young and old muscle increase at 5 days reperfusion compared to control, suggesting that the protein deficit is not transcriptional. Furthermore, while total tyrosine nitration did not increase in the young muscle, GAPDH nitration increased significantly at 1 and 3 days reperfusion. In contrast, total tyrosine nitration in aged muscle increased significantly at 1, 3, and 5 days of reperfusion, with increases in GAPDH nitration at the same time points. We conclude that GAPDH protein levels decrease following I/R, that this is not transcriptionally mediated, that the aged muscle experiences greater oxidative stress, protein modification and GAPDH degradation, possibly contributing to decreased muscle function. We propose that tyrosine nitration enhances GAPDH degradation following I/R and that the persistent decrease of GAPDH in aged muscle is due to the prolonged increase in oxidative modification in this age group.
Collapse
Affiliation(s)
- C Eric Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Szymanski JJ, Jamison JT, DeGracia DJ. Texture analysis of poly-adenylated mRNA staining following global brain ischemia and reperfusion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 105:81-94. [PMID: 21477879 PMCID: PMC3141085 DOI: 10.1016/j.cmpb.2011.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/24/2011] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1h of reperfusion after 10min of normothermic global cerebral ischemia. At 1h reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion.
Collapse
Affiliation(s)
- Jeffrey J Szymanski
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
27
|
Jamison JT, Szymanski JJ, Degracia DJ. Organelles do not colocalize with mRNA granules in post-ischemic neurons. Neuroscience 2011; 199:394-400. [PMID: 21978884 DOI: 10.1016/j.neuroscience.2011.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/22/2011] [Accepted: 09/08/2011] [Indexed: 11/15/2022]
Abstract
Following global brain ischemia and reperfusion, it is well-established that neurons undergo a translation arrest that is reversible in surviving neurons, but irreversible in vulnerable neurons. We previously showed a correlation between translation arrest in reperfused neurons and the presence of granular mRNA-containing structures we termed "mRNA granules." Here we further characterized the mRNA granules in reperfused neurons by performing colocalization studies using fluorescent in situ hybridization for poly(A) mRNAs and immunofluorescence histochemistry for markers of organelles and mRNA-binding proteins. There was no colocalization between the mRNA granules and markers of endoplasmic reticulum, cis- or trans-Golgi apparatus, mitochondria, microtubules, intermediate filaments, 60S ribosomal subunits, or the HuR ligands APRIL and pp32. The mRNA granules colocalized with the neuronal marker NeuN regardless of the relative vulnerability of the neuron type. RNA immunoprecipitation of HuR from the cytoplasmic fraction of 8 h reperfused forebrains selectively isolated hsp70 mRNA suggesting the mRNA granules are soluble structures. Together, these results rule out several organelle systems and a known HuR pathway as being directly involved in mRNA granule function.
Collapse
Affiliation(s)
- J T Jamison
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
28
|
High expression of GLT-1 in hippocampal CA3 and dentate gyrus subfields contributes to their inherent resistance to ischemia in rats. Neurochem Int 2011; 59:1019-28. [PMID: 21925558 DOI: 10.1016/j.neuint.2011.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 01/14/2023]
Abstract
It is well known that neurons in the CA3 and dentate gyrus (DG) subfields of the hippocampus are resistant to short period of ischemia which is usually lethal to pyramidal neurons in hippocampal CA1 subfield. The present study was undertaken to clarify whether the inherent higher resistance of neurons in CA3 and DG to ischemia is associated with glial glutamate transporter-1 (GLT-1) in rats. Western blot analysis and immunohistochemistry assay showed that the basal expressions of GLT-1 in both CA3 and DG were much higher than that in CA1 subfield. Mild global brain ischemia for 8 min induced delayed death of almost all CA1 pyramidal neurons and marked GLT-1 down-regulation in the CA1 subfield, but it was not lethal to the neurons in either CA3 or DG and induced GLT-1 up-regulation and astrocyte activation showed normal soma and aplenty slender processes in the both areas. When the global brain ischemia was prolonged to 25 min, neuronal death was clearly observed in CA3 and DG accompanied with down-regulation of GLT-1 expression and abnormal astrocytes represented with hypertrophic somas, but shortened processes. After down-regulating of GLT-1 expression and function by its antisense oligodeoxynucleotides or inhibiting GLT-1 function by dihydrokainate, an inhibitor of GLT-1, the mild global brain ischemia for 8 min, which usually was not lethal to CA3 and DG neurons, induced the neuronal death in CA3 and DG subfields. Taken together, the higher expression of GLT-1 in the CA3 and DG contributes to their inherent resistance to ischemia.
Collapse
|
29
|
Jamison JT, Lewis MK, Kreipke CW, Rafols JA, DeGracia DJ. Polyadenylated mRNA staining reveals distinct neuronal phenotypes following endothelin 1, focal brain ischemia, and global brain ischemia/ reperfusion. Neurol Res 2011; 33:145-61. [PMID: 21499502 PMCID: PMC3074580 DOI: 10.1179/016164111x12881719352255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Most work on ischemia-induced neuronal death has revolved around the relative contributions of necrosis and apoptosis, but this work has not accounted for the role of ischemia-induced stress responses. An expanded view recognizes a competition between ischemia-induced damage mechanisms and stress responses in the genesis of ischemia-induced neuronal death. An important marker of post-ischemic stress responses is inhibition of neuronal protein synthesis, a morphological correlate of which is the compartmentalization of mRNA away from ribosomes in the form of cytoplasmic mRNA granules. METHODS Here we assessed the generality of this mRNA granule response following either 10 or 15 minutes global brain ischemia and 1 hour reperfusion, 4 hours focal cerebral ischemia alone, and endothelin 1 intraventricular injection. RESULTS Both global and focal ischemia led to prominent neuronal cytoplasmic mRNA granule formation in layer II cortical neurons. In addition, we report here new post-ischemic cellular phenotypes characterized by the loss of nuclear polyadenylated mRNA staining in cortical neurons following endothelin 1 treatment and 15 minutes global ischemia. Both mRNA granulation and loss of nuclear mRNAs occurred in non-shrunken post-ischemic neurons. DISCUSSION Where cytoplasmic mRNA granules generally appear to mark a protective response in surviving cells, loss of nuclear mRNAs may mark cellular damage leading to cell atrophy/death. Hence, staining for total mRNA may reveal facets of the competition between stress responses and damage mechanisms at early stages in post-ischemic neurons.
Collapse
Affiliation(s)
- Jill T. Jamison
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, U.S.A
| | - Monique K. Lewis
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, U.S.A
| | - Christian W. Kreipke
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, MI, 48201, U.S.A
| | - Jose A. Rafols
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, MI, 48201, U.S.A
| | - Donald J. DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, U.S.A
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, U.S.A
| |
Collapse
|
30
|
Montori S, Dos-Anjos S, Martínez-Villayandre B, Regueiro-Purriños MM, Gonzalo-Orden JM, Ruano D, Fernández-López A. Age and meloxicam attenuate the ischemia/reperfusion-induced down-regulation in the NMDA receptor genes. Neurochem Int 2010; 56:878-85. [DOI: 10.1016/j.neuint.2010.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/17/2010] [Accepted: 03/21/2010] [Indexed: 12/24/2022]
|
31
|
Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 2010; 92:184-211. [PMID: 20685377 DOI: 10.1016/j.pneurobio.2010.05.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/23/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling. In addition, manipulation of HSPs has robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and has demanded the recent revamping of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we first discuss the HSP superfamilies in terms of protein structure, regulation, expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there we discuss known and proposed HSP impacts on major neurological disease states. This review article presents a three-part discussion on the array of HSP families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases.
Collapse
Affiliation(s)
- R Anne Stetler
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, United States.
| | | | | | | | | | | | | |
Collapse
|
32
|
Assessment of Protein Expression Levels After Transient Global Cerebral Ischemia Using an Antibody Microarray Analysis. Neurochem Res 2010; 35:1239-47. [DOI: 10.1007/s11064-010-0180-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2010] [Indexed: 01/08/2023]
|
33
|
Montori S, Dos Anjos S, Ríos-Granja MA, Pérez-García CC, Fernández-López A, Martínez-Villayandre B. AMPA receptor downregulation induced by ischaemia/reperfusion is attenuated by age and blocked by meloxicam. Neuropathol Appl Neurobiol 2010; 36:436-47. [PMID: 20408958 DOI: 10.1111/j.1365-2990.2010.01086.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM Stroke prevalence increases with age, while alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and inflammation have been related to ischaemia-induced damage. This study shows how age and treatment with an anti-inflammatory agent (meloxicam) modify the levels of AMPAR subunits GluR1 and GluR2, as well as the mRNA levels of the GluR2-editing enzyme, ADAR2, in a global brain ischaemia/reperfusion (I/R) model. METHODS Two days after global ischaemia CA1, CA3, dentate gyrus and cerebral cortex were obtained from sham-operated and I/R-injured 3- and 18-month-old Sprague-Dawley rats. Real time polymerase chain reaction, Western blotting and immunohistochemical assays were performed. Meloxicam treatment was assayed on young animals. RESULTS Data showed that age attenuates the downregulation induced by I/R in the AMPAR subunits GluR1 and GluR2 and modifies the GluR1/GluR2 mRNA level ratio in a structure-dependent way. The study of the ADAR2 mRNA levels showed more downregulation in older animals than young ones. Meloxicam treatment prevented the transcriptional arrest induced by I/R. CONCLUSION Our data suggest that changes in the AMPAR isoforms could be associated with ageing in the different structures studied. Although GluR2 editing seems to be involved in age-dependent vulnerability to ischaemia supporting the 'GluR2 hypothesis', this alone does not explain the differential vulnerability in the different brain regions. Finally, inflammation could play a role in protection from I/R-induced injury.
Collapse
Affiliation(s)
- S Montori
- Area de Biología Celular, Instituto de Biomedicina. Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Guo X, Wu Y, Hartley RS. Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer. Mol Carcinog 2010; 49:130-40. [PMID: 19777567 DOI: 10.1002/mc.20582] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cell cycle regulator cyclin E1 is aberrantly expressed in a variety of human cancers. In breast cancer, elevated cyclin E1 correlates with poor outcome, as do high cytoplasmic levels of the stress-induced RNA-binding protein human antigen R (HuR). We showed previously that increased cytoplasmic HuR elevates cyclin E1 in MCF-7 breast cancer cells by stabilizing its mRNA. We show here that cold-inducible RNA-binding protein (CIRP) co-regulates cyclin E1 with HuR in breast cancer cells. CIRP had been shown to interact with HuR in Xenopus laevis oocytes and to be decreased in endometrial cancer. To investigate if human CIRP and HuR co-regulate cyclin E1, HuR and CIRP levels were altered in MCF-7 cells and effects on cyclin E1 assessed. Altering HuR expression resulted in a reciprocal change in CIRP expression, while altering CIRP expression resulted in corresponding changes in HuR and cyclin E1 expression. CIRP and HuR co-precipitated in the presence of RNA and CIRP enhanced HuR binding to the cyclin E1 mRNA and increased cyclin E1 mRNA stability. CIRP co-localized with HuR predominantly in the nucleus, but also in discrete cytoplasmic foci identified as stress granules (SGs). CIRP overexpression increased the number of HuR-containing SGs, while its knockdown decreased them. Our results suggest that CIRP positively regulates HuR, ultimately resulting in increased protein synthesis of at least one of its targets.
Collapse
Affiliation(s)
- Xun Guo
- Department of Cell Biology and Physiology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | | | |
Collapse
|
35
|
Kedersha N, Anderson P. Regulation of translation by stress granules and processing bodies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:155-85. [PMID: 20374741 PMCID: PMC7102815 DOI: 10.1016/s1877-1173(09)90004-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress necessitates rapid reprogramming of translation in order to facilitate an adaptive response and promote survival. Cytoplasmic stress granules (SGs) and processing bodies (PBs) are dynamic structures that form in response to stress-induced translational arrest. PBs are linked to mRNA silencing and decay, while SGs are more closely linked to translation and the sorting of specific mRNAs for different fates. While they share some components and can interact physically, SGs and PBs are regulated independently, house separate functions, and contain unique markers. SG formation is associated with numerous disease states, and the expanding list of SG-associated proteins integrates SG formation with other processes such as transcription, splicing, and survival. Growing evidence suggests that SG assembly is initiated by translational arrest, and mediates cross talk with many other signaling pathways.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
36
|
Pastor MD, García-Yébenes I, Fradejas N, Pérez-Ortiz JM, Mora-Lee S, Tranque P, Moro MÁ, Pende M, Calvo S. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J Biol Chem 2009; 284:22067-22078. [PMID: 19535330 DOI: 10.1074/jbc.m109.033100] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurons are highly dependent on astrocyte survival during brain damage. To identify genes involved in astrocyte function during ischemia, we performed mRNA differential display in astrocytes after oxygen and glucose deprivation (OGD). We detected a robust down-regulation of S6 kinase 1 (S6K1) mRNA that was accompanied by a sharp decrease in protein levels and activity. OGD-induced apoptosis was increased by the combined deletion of S6K1 and S6K2 genes, as well as by treatment with rapamycin that inhibits S6K1 activity by acting on the upstream regulator mTOR (mammalian target of rapamycin). Astrocytes lacking S6K1 and S6K2 (S6K1;S6K2-/-) displayed a defect in BAD phosphorylation and in the expression of the anti-apoptotic factors Bcl-2 and Bcl-xL. Furthermore reactive oxygen species were increased while translation recovery was impaired in S6K-deficient astrocytes following OGD. Rescue of either S6K1 or S6K2 expression by adenoviral infection revealed that protective functions were specifically mediated by S6K1, because this isoform selectively promoted resistance to OGD and reduction of ROS levels. Finally, "in vivo" effects of S6K suppression were analyzed in the permanent middle cerebral artery occlusion model of ischemia, in which absence of S6K expression increased mortality and infarct volume. In summary, this article uncovers a protective role for astrocyte S6K1 against brain ischemia, indicating a functional pathway that senses nutrient and oxygen levels and may be beneficial for neuronal survival.
Collapse
Affiliation(s)
- María Dolores Pastor
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Isaac García-Yébenes
- Department of Pharmacology, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Noelia Fradejas
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - José Manuel Pérez-Ortiz
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Silvia Mora-Lee
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Pedro Tranque
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - María Ángeles Moro
- Department of Pharmacology, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mario Pende
- INSERM U845, Université Paris Descartes, 75015 Paris, France
| | - Soledad Calvo
- Department of Medical Sciences, Medical School, Universidad de Castilla La Mancha, 02006 Albacete, Spain
| |
Collapse
|
37
|
Thomas MG, Martinez Tosar LJ, Desbats MA, Leishman CC, Boccaccio GL. Mammalian Staufen 1 is recruited to stress granules and impairs their assembly. J Cell Sci 2009; 122:563-73. [PMID: 19193871 PMCID: PMC2714435 DOI: 10.1242/jcs.038208] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2008] [Indexed: 02/04/2023] Open
Abstract
Stress granules are cytoplasmic mRNA-silencing foci that form transiently during the stress response. Stress granules harbor abortive translation initiation complexes and are in dynamic equilibrium with translating polysomes. Mammalian Staufen 1 (Stau1) is a ubiquitous double-stranded RNA-binding protein associated with polysomes. Here, we show that Stau1 is recruited to stress granules upon induction of endoplasmic reticulum or oxidative stress as well in stress granules induced by translation initiation blockers. We found that stress granules lacking Stau1 formed in cells depleted of this molecule, indicating that Stau1 is not an essential component of stress granules. Moreover, Stau1 knockdown facilitated stress granule formation upon stress induction. Conversely, transient transfection of Stau1 impaired stress granule formation upon stress or pharmacological initiation arrest. The inhibitory capacity of Stau1 mapped to the amino-terminal half of the molecule, a region known to bind to polysomes. We found that the fraction of polysomes remaining upon stress induction was enriched in Stau1, and that Stau1 overexpression stabilized polysomes against stress. We propose that Stau1 is involved in recovery from stress by stabilizing polysomes, thus helping stress granule dissolution.
Collapse
|
38
|
Beaudoin ME, Poirel VJ, Krushel LA. Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Res 2008; 36:6835-47. [PMID: 18953033 PMCID: PMC2588504 DOI: 10.1093/nar/gkn792] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/14/2008] [Accepted: 10/10/2008] [Indexed: 12/31/2022] Open
Abstract
Expression of amyloid precursor protein (APP) is critical to the etiology of Alzheimer's disease (AD). Consequently, regulating APP expression is one approach to block disease progression. To this end, APP can be targeted at the levels of transcription, translation, and protein stability. Little is currently known about the translation of APP mRNA. Here, we report that endogenous APP mRNA is translated in neural cell lines via an internal ribosome entry site (IRES) located in the 5'-untranslated leader. The functional unit of the APP IRES is located within the 5' 50 nucleotides of the 5'-leader. In addition, we found that the APP IRES is positively regulated by two conditions correlated with AD, increased intracellular iron concentration and ischemia. Interestingly, the enhancement of APP IRES activity is dependent upon de novo transcription. Taken together, our data suggest that internal initiation of translation of the APP mRNA is an important mode for synthesis of APP, a mechanism which is regulated by conditions that also contribute to AD.
Collapse
Affiliation(s)
- Monique E. Beaudoin
- Neurosciences Program, Department of Biochemistry and Molecular Genetics and Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Vincent-Joseph Poirel
- Neurosciences Program, Department of Biochemistry and Molecular Genetics and Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Leslie A. Krushel
- Neurosciences Program, Department of Biochemistry and Molecular Genetics and Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
39
|
DeGracia DJ, Jamison JT, Szymanski JJ, Lewis MK. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem 2008; 106:2288-301. [PMID: 18627434 PMCID: PMC2574835 DOI: 10.1111/j.1471-4159.2008.05561.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A persistent translation arrest (TA) correlates precisely with the selective vulnerability of post-ischemic neurons. Mechanisms of post-ischemic TA that have been assessed include ribosome biochemistry, the link between TA and stress responses, and the inactivation of translational components via sequestration in subcellular structures. Each of these approaches provides a perspective on post-ischemic TA. Here, we develop the notion that mRNA regulation via RNA-binding proteins, or ribonomics, also contributes to post-ischemic TA. We describe the ribonomic network, or structures involved in mRNA regulation, including nuclear foci, polysomes, stress granules, embryonic lethal abnormal vision/Hu granules, processing bodies, exosomes, and RNA granules. Transcriptional, ribonomic, and ribosomal regulation together provide multiple layers mediating cell reprogramming. Stress gene induction via the heat-shock response, immediate early genes, and endoplasmic reticulum stress represents significant reprogramming of post-ischemic neurons. We present a model of post-ischemic TA in ischemia-resistant neurons that incorporates ribonomic considerations. In this model, selective translation of stress-induced mRNAs contributes to translation recovery. This model provides a basis to study dysfunctional stress responses in vulnerable neurons, with a key focus on the inability of vulnerable neurons to selectively translate stress-induced mRNAs. We suggest a ribonomic approach will shed new light on the roles of mRNA regulation in persistent TA in vulnerable post-ischemic neurons.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|