1
|
Intranasal delivery of biotechnology-based therapeutics. Drug Discov Today 2022; 27:103371. [PMID: 36174965 DOI: 10.1016/j.drudis.2022.103371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022]
Abstract
Biotechnology-based therapeutics include a wide range of products, such as recombinant hormones, stem cells, therapeutic enzymes, monoclonal antibodies, genes, vaccines, among others. The administration of these macromolecules has been studied via various routes. The nasal route is one of the promising routes of administration for biotechnology products owing to its easy delivery, the rich vascularity of the nasal mucosa, high absorption and targeted action. Several preclinical studies have been reported for nasal delivery of these products and many are at the clinical stage. This review focuses on biotechnology-based therapeutics administered via the intranasal route for treating various diseases.
Collapse
|
2
|
Jordan K, Murphy J, Singh A, Mitchell CS. Astrocyte-Mediated Neuromodulatory Regulation in Preclinical ALS: A Metadata Analysis. Front Cell Neurosci 2018; 12:491. [PMID: 30618638 PMCID: PMC6305074 DOI: 10.3389/fncel.2018.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive degradation of motoneurons in the central nervous system (CNS). Astrocytes are key regulators for inflammation and neuromodulatory signaling, both of which contribute to ALS. The study goal was to ascertain potential temporal changes in astrocyte-mediated neuromodulatory regulation with transgenic ALS model progression: glutamate, GTL-1, GluR1, GluR2, GABA, ChAT activity, VGF, TNFα, aspartate, and IGF-1. We examine neuromodulatory changes in data aggregates from 42 peer-reviewed studies derived from transgenic ALS mixed cell cultures (neurons + astrocytes). For each corresponding experimental time point, the ratio of transgenic to wild type (WT) was found for each compound. ANOVA and a student's t-test were performed to compare disease stages (early, post-onset, and end stage). Glutamate in transgenic SOD1-G93A mixed cell cultures does not change over time (p > 0.05). GLT-1 levels were found to be decreased 23% over WT but only at end-stage (p < 0.05). Glutamate receptors (GluR1, GluR2) in SOD1-G93A were not substantially different from WT, although SOD1-G93A GluR1 decreased by 21% from post-onset to end-stage (p < 0.05). ChAT activity was insignificantly decreased. VGF is decreased throughout ALS (p < 0.05). Aspartate is elevated by 25% in SOD1-G93A but only during end-stage (p < 0.05). TNFα is increased by a dramatic 362% (p < 0.05). Furthermore, principal component analysis identified TNFα as contributing to 55% of the data variance in the first component. Thus, TNFα, which modulates astrocyte regulation via multiple pathways, could be a strategic treatment target. Overall results suggest changes in neuromodulator levels are subtle in SOD1-G93A ALS mixed cell cultures. If excitotoxicity is present as is often presumed, it could be due to ALS cells being more sensitive to small changes in neuromodulation. Hence, seemingly unsubstantial or oscillatory changes in neuromodulators could wreak havoc in ALS cells, resulting in failed microenvironment homeostasis whereby both hyperexcitability and hypoexcitability can coexist. Future work is needed to examine local, spatiotemporal neuromodulatory homeostasis and assess its functional impact in ALS.
Collapse
Affiliation(s)
- Kathleen Jordan
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Murphy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Anjanya Singh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Abstract
Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.
Collapse
|
4
|
Jiang Y, Li Y, Liu X. Intranasal delivery: circumventing the iron curtain to treat neurological disorders. Expert Opin Drug Deliv 2015. [PMID: 26206202 DOI: 10.1517/17425247.2015.1065812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is like an iron curtain that prevents exogenous substances, including most drugs, from entering the CNS. Intranasal delivery has been demonstrated to circumvent the BBB due to the special anatomy of the olfactory and trigeminal neural pathways that connect the nasal mucosa with the brain and the perivascular pathway within the CNS. In the last two decades, the concepts, mechanisms and pathways of intranasal delivery to the CNS have led to great success both in preclinical and clinical studies. More researchers have translated results from bench to bedside, and a number of publications have reported the clinical application of intranasal delivery. AREAS COVERED This review summarizes results from recent clinical trials utilizing intranasal delivery of therapeutics to explore its pharmacokinetics and application to treating neurological disorders. Moreover, existing problems with the methods and possible solutions have also been discussed. The promising results from clinical trials have demonstrated that intranasal delivery provides an extraordinary approach for circumventing the BBB. Many drugs, including high-molecular-weight molecules, could potentially improve the treatment of neurological disorders via intranasal administration. EXPERT OPINION Intranasal delivery is a novel method with great potential for delivering and targeting therapeutics to the CNS to treat neurological disorders.
Collapse
Affiliation(s)
- Yongjun Jiang
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Yun Li
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Xinfeng Liu
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| |
Collapse
|
5
|
Dibaj P, Zschüntzsch J, Steffens H, Scheffel J, Göricke B, Weishaupt JH, Le Meur K, Kirchhoff F, Hanisch UK, Schomburg ED, Neusch C. Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1(G93A) model for ALS. PLoS One 2012; 7:e43963. [PMID: 22952827 PMCID: PMC3428282 DOI: 10.1371/journal.pone.0043963] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in SOD1 cause hereditary variants of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). Pathophysiology of the disease is non-cell-autonomous, with toxicity deriving also from glia. In particular, microglia contribute to disease progression. Methylene blue (MB) inhibits the effect of nitric oxide, which mediates microglial responses to injury. In vivo 2P-LSM imaging was performed in ALS-linked transgenic SOD1(G93A) mice to investigate the effect of MB on microglia-mediated inflammation in the spinal cord. Local superfusion of the lateral spinal cord with MB inhibited the microglial reaction directed at a laser-induced axon transection in control and SOD1(G93A) mice. In vitro, MB at high concentrations inhibited cytokine and chemokine release from microglia of control and advanced clinical SOD1(G93A) mice. Systemic MB-treatment of SOD1(G93A) mice at early preclinical stages significantly delayed disease onset and motor dysfunction. However, an increase of MB dose had no additional effect on disease progression; this was unexpected in view of the local anti-inflammatory effects. Furthermore, in vivo imaging of systemically MB-treated mice also showed no alterations of microglia activity in response to local lesions. Thus although systemic MB treatment had no effect on microgliosis, instead, its use revealed an important influence on motor neuron survival as indicated by an increased number of lumbar anterior horn neurons present at the time of disease onset. Thus, potentially beneficial effects of locally applied MB on inflammatory events contributing to disease progression could not be reproduced in SOD1(G93A) mice via systemic administration, whereas systemic MB application delayed disease onset via neuroprotection.
Collapse
Affiliation(s)
- Payam Dibaj
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Defective neuromuscular transmission in the SOD1 G93A transgenic mouse improves after administration of human umbilical cord blood cells. Stem Cell Rev Rep 2012; 8:224-8. [PMID: 21678037 DOI: 10.1007/s12015-011-9281-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To assess the effect of human umbilical cord blood (hUCB) transplantation on neuromuscular transmission in SOD1(G93A) transgenic mice, we studied the probability of neuromuscular transmission (PNMT), a relevant physiological indicator of motor nerve function, in 3 SOD1(G93A) mice transplanted with hUCB and compared to PNMT in 4 SOD1(G93A) mice without cell transplantation and 3 non-mutant SOD1 transgenic mice. For preparations isolated from non-mutant SOD1 transgenic mice, PNMT was 0.93 and 0.84 during the first 5 s of 70 and 90 Hz trains, respectively. PNMT gradually declined to 0.77 and 0.42 at the end of the trains. In striking contrast, PNMT for preparations from non-treated mutant SOD1(G93A) mice was 0.52 and 0.36 in the first 5 s of 70 and 90 Hz trains, respectively (p<0.05). Treatment with hUCB significantly (p<0.05) improved PNMT in SOD1(G93A) preparations. That is, the initial 5 s PNMT was 0.88 and 0.68 for the 70 and 90 Hz stimuli, respectively. We concluded that hUCB transplantation significantly improved PNMT for muscles removed from SOD1(G93A) mice. Testing PNMT in the SOD1(G93A) mouse model could be used as a simple in vitro protocol to detect a positive cellular response to therapeutic interventions in ALS.
Collapse
|
7
|
Liu X. Clinical trials of intranasal delivery for treating neurological disorders--a critical review. Expert Opin Drug Deliv 2012; 8:1681-90. [PMID: 22097907 DOI: 10.1517/17425247.2011.633508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The intranasal delivery of therapeutics to the brain has achieved great success in preclinical studies. These findings are important because there are many neurological disorders without feasible treatments, due to a lack of effective drug delivery methods to the brain. Translating such intranasal delivery strategies from bench to bedside is an important step for curing these neurological diseases. AREAS COVERED This review summarizes recent clinical trials that have investigated the intranasal delivery of drugs to the brain to treat neurological disorders and their potential mechanisms of action. In addition, the potential opportunities as well as challenges of intranasal delivery in clinical trials are discussed. EXPERT OPINION The intranasal delivery of drugs to the brain is a novel method with great potential, and it may provide an extraordinary approach to overcome the existing barriers of drug delivery for treating some neurological disorders. Intranasal delivery of central nervous system therapeutics has shown promise in several clinical trials, which demonstrates both the need and importance of further research.
Collapse
Affiliation(s)
- Xinfeng Liu
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
8
|
Choe MA, An GJ. [Effects of nitric oxide synthase inhibitor on hindlimb muscles in rats with neuropathic pain induced by unilateral peripheral nerve injury]. J Korean Acad Nurs 2012; 41:520-7. [PMID: 21964227 DOI: 10.4040/jkan.2011.41.4.520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE The purpose of this study was to examine effects of nitric oxide synthase (NOS) inhibitor on muscle weight and myofibrillar protein content of affected and unaffected hindlimb muscles in rats with neuropathic pain induced by unilateral peripheral nerve injury. METHODS Neuropathic pain was induced by ligation and cutting of the left L5 spinal nerve. Adult male Sprague-Dawley rats were randomly assigned to one of two groups: The NOSI group (n=19) had NOS inhibitor (L-NAME) injections daily for 14 days, and the Vehicle group (n=20) had vehicle injections daily for 14 days. Withdrawal threshold, body weight, food intake and activity were measured every day. At 15 days all rats were anesthetized and soleus, plantaris and gastrocnemius muscles were dissected from hindlimbs. Muscle weight and myofibrillar protein content of the dissected muscles were determined. RESULTS The NOSI group showed significant increases as compared to the Vehicle group for body weight at 15 days, muscle weight and myofibrillar protein content of the unaffected soleus and gastrocnemius. The NOSI group demonstrated a higher pain threshold than the vehicle group. CONCLUSION NOSI for 14 days attenuates unaffected soleus and gastrocnemius muscle atrophy in neuropathic pain model.
Collapse
Affiliation(s)
- Myoung-Ae Choe
- College of Nursing, Seoul National University, Seoul, Korea
| | | |
Collapse
|
9
|
Lim MA, Selak MA, Xiang Z, Krainc D, Neve RL, Kraemer BC, Watts JL, Kalb RG. Reduced activity of AMP-activated protein kinase protects against genetic models of motor neuron disease. J Neurosci 2012; 32:1123-41. [PMID: 22262909 PMCID: PMC3742882 DOI: 10.1523/jneurosci.6554-10.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 11/21/2011] [Accepted: 11/27/2011] [Indexed: 12/12/2022] Open
Abstract
A growing body of research indicates that amyotrophic lateral sclerosis (ALS) patients and mouse models of ALS exhibit metabolic dysfunction. A subpopulation of ALS patients possesses higher levels of resting energy expenditure and lower fat-free mass compared to healthy controls. Similarly, two mutant copper zinc superoxide dismutase 1 (mSOD1) mouse models of familial ALS possess a hypermetabolic phenotype. The pathophysiological relevance of the bioenergetic defects observed in ALS remains largely elusive. AMP-activated protein kinase (AMPK) is a key sensor of cellular energy status and thus might be activated in various models of ALS. Here, we report that AMPK activity is increased in spinal cord cultures expressing mSOD1, as well as in spinal cord lysates from mSOD1 mice. Reducing AMPK activity either pharmacologically or genetically prevents mSOD1-induced motor neuron death in vitro. To investigate the role of AMPK in vivo, we used Caenorhabditis elegans models of motor neuron disease. C. elegans engineered to express human mSOD1 (G85R) in neurons develops locomotor dysfunction and severe fecundity defects when compared to transgenic worms expressing human wild-type SOD1. Genetic reduction of aak-2, the ortholog of the AMPK α2 catalytic subunit in nematodes, improved locomotor behavior and fecundity in G85R animals. Similar observations were made with nematodes engineered to express mutant tat-activating regulatory (TAR) DNA-binding protein of 43 kDa molecular weight. Altogether, these data suggest that bioenergetic abnormalities are likely to be pathophysiologically relevant to motor neuron disease.
Collapse
Affiliation(s)
- M A Lim
- Department of Pediatrics, Division of Neurology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hematopoietic Growth Factor Family for Stroke Drug Development. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Pollari E, Savchenko E, Jaronen M, Kanninen K, Malm T, Wojciechowski S, Ahtoniemi T, Goldsteins G, Giniatullina R, Giniatullin R, Koistinaho J, Magga J. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2011; 8:74. [PMID: 21711557 PMCID: PMC3146845 DOI: 10.1186/1742-2094-8-74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Granulocyte colony stimulating factor (GCSF) is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery. METHODS Human mutant G93A superoxide dismutase (SOD1) ALS mice were treated with pegfilgrastim starting at the presymptomatic stage and continued until the end stage. After long-term pegfilgrastim treatment, the inflammation status was defined in the spinal cord and peripheral tissues including hematopoietic organs and muscle. The effect of GCSF on spinal cord neuron survival and microglia, bone marrow and spleen monocyte activation was assessed in vitro. RESULTS Long-term pegfilgrastim treatment prolonged mutant SOD1 mice survival and attenuated both astro- and microgliosis in the spinal cord. Pegfilgrastim in SOD1 mice modulated the inflammatory cell populations in the bone marrow and spleen and reduced the production of pro-inflammatory cytokine in monocytes and microglia. The mobilization of hematopoietic stem cells into the circulation was restored back to basal level after long-term pegfilgrastim treatment in SOD1 mice while the storage of Ly6C expressing monocytes in the bone marrow and spleen remained elevated. After pegfilgrastim treatment, an increased proportion of these cells in the degenerative muscle was detected at the end stage of ALS. CONCLUSIONS GCSF attenuated inflammation in the CNS and the periphery in a mouse model of ALS and thereby delayed the progression of the disease. This mechanism of action targeting inflammation provides a new perspective of the usage of GCSF in the treatment of ALS.
Collapse
Affiliation(s)
- Eveliina Pollari
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Merja Jaronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Johanna Magga
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, University of Oulu, Oulu, Finland
| |
Collapse
|
12
|
Solomon JA, Tarnopolsky MA, Hamadeh MJ. One universal common endpoint in mouse models of amyotrophic lateral sclerosis. PLoS One 2011; 6:e20582. [PMID: 21687686 PMCID: PMC3110799 DOI: 10.1371/journal.pone.0020582] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 05/05/2011] [Indexed: 12/14/2022] Open
Abstract
There is no consensus among research laboratories around the world on the criteria that define endpoint in studies involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4 (functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex >20 s). The age (d; mean ± SD) at which mice reached endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9±10.3 d, CS 4+ at 126.6±9.8 d and CS 5 at 127.6±9.8 d, all significantly different from each other (P<0.001). There was a significant positive correlation between CS 4 and CS 5 (r = 0.95, P<0.001), CS 4 and CS 4+ (r = 0.96, P<0.001), and CS 4+ and CS 5 (r = 0.98, P<0.001), with the Bland-Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34% faster than CS 4+ (P = 0.046) and CS 5 (P = 0.006), respectively. Adopting CS 4 as endpoint would spare a mouse an average of 4 days (P<0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5 provides information regarding proprioception and severe motor neuron death, both could be important parameters in establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as endpoint compromise the acquisition of insight about the effects of interventions in animal models of ALS?
Collapse
Affiliation(s)
- Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Scranton RA, Fletcher L, Sprague S, Jimenez DF, Digicaylioglu M. The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS. PLoS One 2011; 6:e18711. [PMID: 21533252 PMCID: PMC3076435 DOI: 10.1371/journal.pone.0018711] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023] Open
Abstract
Background The blood brain barrier (BBB) is impermeable to most drugs, impeding the establishment of novel neuroprotective therapies and strategies for many neurological diseases. Intranasal administration offers an alternative path for efficient drug delivery into the CNS. So far, the anatomical structures discussed to be involved in the transport of intranasally administered drugs into the CNS include the trigeminal nerve, olfactory nerve and the rostral migratory stream (RMS), but the relative contributions are debated. Methods and Findings In the present study we demonstrate that surgical transection, and the resulting structural disruption of the RMS, in mice effectively obstructs the uptake of intranasally administered radioligands into the CNS. Furthermore, using a fluorescent cell tracer, we demonstrate that intranasal administration in mice allows agents to be distributed throughout the entire brain, including olfactory bulb, hippocampus, cortex and cerebellum. Conclusions This study provides evidence of the vital role the RMS has in the CNS delivery of intranasally administered agents. The identification of the RMS as the major access path for intranasally administered drugs into the CNS may contribute to the development of treatments that are tailored for efficient transport within this structure. Research into the RMS needs to continue to elucidate its limitations, capabilities, mechanisms of transport and potential hazards before we are able to advance this technique into human research.
Collapse
Affiliation(s)
- Robert A. Scranton
- University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Lauren Fletcher
- University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shane Sprague
- University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - David F. Jimenez
- University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Murat Digicaylioglu
- University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
INTRODUCTION Stem cell-based therapy has proved to be a promising treatment option for neurological disorders. However, there are difficulties in successfully administrating these stem cells. For example, the brain-blood barrier impedes the entrance of stem cells into the CNS after systemic administration. Direct transplantation or injection may result in brain injury, and these strategies are clinically less feasible. Intranasal administration is a non-invasive and effective alternative for the delivery of drugs, vector-encoded viruses or even phages to the CNS. Recent studies have in fact demonstrated that stem cells may enter the CNS after intranasal administration. These results suggest that intranasal delivery may provide an alternative strategy for stem cell-based therapy. AREAS COVERED This review summarizes current studies that have applied the intranasal delivery of stem cells into the brain. In addition, the distribution and fate of stem cells in the brain and the potential opportunities as well as challenges of intranasal stem cell delivery are also discussed. EXPERT OPINION Intranasal delivery of stem cells is a new method with great potential for the transplantation of stem cells into the brain, and it may provide an extraordinary approach to overcoming the existing barriers of stem cell delivery for the treatment of many neurological disorders. This potential benefit emphasizes the importance of future research into intranasal delivery of stem cells.
Collapse
Affiliation(s)
- Yongjun Jiang
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology, Nanjing, Jiangsu Province, China
| | | | | | | |
Collapse
|
15
|
Suzuki N, Mizuno H, Warita H, Takeda S, Itoyama Y, Aoki M. Neuronal NOS is dislocated during muscle atrophy in amyotrophic lateral sclerosis. J Neurol Sci 2010; 294:95-101. [PMID: 20435320 DOI: 10.1016/j.jns.2010.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 12/11/2022]
Abstract
Previously, we demonstrated that neuronal nitric oxide synthase (nNOS) is activated and promotes muscle atrophy in skeletal muscle during tail suspension, a model of unloading and denervation. Here, we examined patients with amyotrophic lateral sclerosis (ALS) and mutant (H46R) SOD1 transgenic (Tg) mice model using immunohistochemistry, Western blotting and real time PCR. We found cytoplasmic nNOS staining of angulated muscle fibers in patients with ALS. We also examined mutant SOD1 Tg mice and found cytoplasmic nNOS staining even before the onset of clinical muscle atrophy. In the Tg mice, nNOS was largely extracted with 100 mM NaCl and barely detected in the pellet fraction, suggesting fragile anchoring of nNOS to the sarcolemma. We also showed an elevated expression of atrogin-1, key molecules in muscle atrophy at the end stage. A common nNOS dislocation/atrogin-1/muscle atrophy pathway among tail suspension, denervation and ALS is suggested. nNOS modulation therapy may be beneficial in several types of muscle atrophy.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
IMPORTANCE OF THE FIELD Recombinant erythropoietin (rEPO) failed in a recent clinical study to protect from damages induced by ischemic stroke. The lack of acute treatments in ischemic stroke and the promising outcome in numerous preclinical studies in vivo demands a more critical evaluation of the future use of EPO as an acute treatment. AREAS COVERED IN THIS REVIEW The current use and administration of rhEPO and its analogs in animal models and the future use of this cytokine in the treatment of ischemic stroke. WHAT THE READER WILL GAIN In this review the potential reasons for the failure of EPO in the clinical trial are analysed and whether the preclinical trials sufficiently evaluated the true potential of recombinant EPO and its analogs is assessed. Alternative methods for administration of EPO to enhance its potential as a neuroprotective drug in ischemic stroke are discussed. TAKE HOME MESSAGE Failure in clinical trial does not necessarily indicate the lack of therapeutic potential of EPO. This review encourages further investigation of the true potential of EPO as a candidate drug for the treatment of ischemic stroke by improved preclinical experimental design and utilization of alternative administration methods.
Collapse
Affiliation(s)
- Murat Digicaylioglu
- Department of Neurosurgery and Physiology, University of Texas, Health Science Center, 7703 Floyd Curl Drive-7843, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
17
|
Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 2010; 99:1654-73. [PMID: 19877171 DOI: 10.1002/jps.21924] [Citation(s) in RCA: 847] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) limits the distribution of systemically administered therapeutics to the central nervous system (CNS), posing a significant challenge to drug development efforts to treat neurological and psychiatric diseases and disorders. Intranasal delivery is a noninvasive and convenient method that rapidly targets therapeutics to the CNS, bypassing the BBB and minimizing systemic exposure. This review focuses on the current understanding of the mechanisms underlying intranasal delivery to the CNS, with a discussion of pathways from the nasal cavity to the CNS involving the olfactory and trigeminal nerves, the vasculature, the cerebrospinal fluid, and the lymphatic system. In addition to the properties of the therapeutic, deposition of the drug formulation within the nasal passages and composition of the formulation can influence the pathway a therapeutic follows into the CNS after intranasal administration. Experimental factors, such as head position, volume, and method of administration, and formulation parameters, such as pH, osmolarity, or inclusion of permeation enhancers or mucoadhesives, can influence formulation deposition within the nasal passages and pathways followed into the CNS. Significant research will be required to develop and improve current intranasal treatments and careful consideration should be given to the factors discussed in this review.
Collapse
Affiliation(s)
- Shyeilla V Dhuria
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
18
|
Hart PC, Bergner CL, Smolinsky AN, Dufour BD, Egan RJ, Laporte JL, Kalueff AV. Experimental models of anxiety for drug discovery and brain research. Methods Mol Biol 2010; 602:299-321. [PMID: 20012406 DOI: 10.1007/978-1-60761-058-8_18] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.
Collapse
Affiliation(s)
- Peter C Hart
- Department of Physiology, Georgetown University Medical School, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|