1
|
De Pieri M, Sabe M, Rochas V, Poglia G, Bartolomei J, Kirschner M, Kaiser S. Resting-state EEG and MEG gamma frequencies in schizophrenia: a systematic review and exploratory power-spectrum metanalysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:48. [PMID: 40128239 PMCID: PMC11933325 DOI: 10.1038/s41537-025-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
The hypoactivity of parvalbumin-containing interneurons (PV-interneurons) is a pathogenetic mechanism of schizophrenia according to the glutamatergic theory, and PV-interneurons are necessary for the generation of EEG/MEG gamma-frequencies (30-100 Hz). The present study aims to a literature synthesis on resting-state gamma-frequency changes in patients with schizophrenia vs healthy controls, and to examine the relationship between these changes and severity of symptoms. A protocol was enregistered in PROSPERO and a systematic search was conducted in PubMed, PsycINFO and Cochrane Database of Systematic Reviews, following PRISMA guidelines. An exploratory metanalysis was realized. Out of 1391 records, 43 were included for a qualitative synthesis (N = 2133 [11-185], females 37.4%, age 33.9 ± 9.2). Results on power spectra were heterogeneous: in 12 studies gamma power was increased, involving the whole brain (N = 3), multiple regions (N = 6) or only frontal (N = 1), central (n = 1) and temporal (N = 1) areas; in 3 studies gamma power was reduced, involving multiple areas (N = 2) or the right temporal region (N = 1); one study revealed mixed results and 13 studies showed no differences. The meta-analysis on 4 studies (N = 211) showed non-significant differences between patients and controls and a large heterogeneity. The functional connectivity picture consists of sparse patterns of decreases and/or increases, widespread to multiple regions. Relationships emerged between gamma power and connectivity and severity of psychotic and cognitive symptoms. Theta-gamma coupling was increased in patients, with limited evidence for other changes in phase-amplitude coupling. Resting-state gamma-frequencies alterations in schizophrenia were inconsistent across studies; the heterogeneity of patients and methods could partially explain this outcome.
Collapse
Affiliation(s)
- Marco De Pieri
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland.
| | - Michel Sabe
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Greta Poglia
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Javier Bartolomei
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Park S, Heu J, Scheldrup G, Tisdale RK, Sun Y, Haire M, Ma SC, Hoener MC, Kilduff TS. Trace amine-associated receptors (TAARs)2-9 knockout mice exhibit reduced wakefulness and disrupted REM sleep. Front Psychiatry 2025; 15:1467964. [PMID: 39944134 PMCID: PMC11814429 DOI: 10.3389/fpsyt.2024.1467964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction This study aimed to investigate the role of TAAR2-9 in sleep/wake regulation, given TAAR1's known involvement in modulating neurotransmitter release and sleep patterns. Methods Male TAAR2-9 knockout (KO) and wild-type (WT) mice were compared using baseline sleep/wake patterns, responses to sleep deprivation, effects of TAAR1 agonists, and dopaminergic markers. EEG recordings and tyrosine hydroxylase immunohistochemistry were used for analysis. Results KO mice exhibited lower delta and theta power and higher gamma power, with fragmented sleep characterized by 16% more NREM sleep during the dark phase and 23% more REM sleep during the light phase compared to WT mice. High doses of the TAAR1 agonist RO5256390 increased wakefulness and reduced NREM sleep, while both RO5256390 and the partial agonist RO5263397 suppressed REM sleep in KO mice. Elevated tyrosine hydroxylase levels in the ventral tegmental area suggested dopaminergic involvement in these altered sleep patterns. Discussion TAAR2-9 modulates sleep/wake states and interacts with TAAR1. These findings highlight the therapeutic potential of targeting TAARs 2-9 in sleep-related neuropsychiatric disorders. Further research is needed to elucidate their roles.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Gavin Scheldrup
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Ryan K. Tisdale
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Yu Sun
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Meghan Haire
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Shun-Chieh Ma
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Marius C. Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd.", Basel, Switzerland
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| |
Collapse
|
3
|
Raja SM, Guptill JT, Mack M, Peterson M, Byard S, Twieg R, Jordan L, Rich N, Castledine R, Bourne S, Wilmshurst M, Oxendine S, Avula SG, Zuleta H, Quigley P, Lawson S, McQuaker SJ, Ahmadkhaniha R, Appelbaum LG, Kowalski K, Barksdale CT, Gufford BT, Awan A, Sancho AR, Moore MC, Berrada K, Cogan GB, DeLaRosa J, Radcliffe J, Pao M, Kennedy M, Lawrence Q, Goldfeder L, Amanfo L, Zanos P, Gilbert JR, Morris PJ, Moaddel R, Gould TD, Zarate CA, Thomas CJ. A Phase 1 Assessment of the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of (2R,6R)-Hydroxynorketamine in Healthy Volunteers. Clin Pharmacol Ther 2024; 116:1314-1324. [PMID: 39054770 PMCID: PMC11479831 DOI: 10.1002/cpt.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
(R,S)-Ketamine (ketamine) is a dissociative anesthetic that also possesses analgesic and antidepressant activity. Undesirable dissociative side effects and misuse potential limit expanded use of ketamine in several mental health disorders despite promising clinical activity and intensifying medical need. (2R,6R)-Hydroxynorketamine (RR-HNK) is a metabolite of ketamine that lacks anesthetic and dissociative activity but maintains antidepressant and analgesic activity in multiple preclinical models. To enable future assessments in selected human indications, we report the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of RR-HNK in a Phase 1 study in healthy volunteers (NCT04711005). A six-level single-ascending dose (SAD) (0.1-4 mg/kg) and a two-level multiple ascending dose (MAD) (1 and 2 mg/kg) study was performed using a 40-minute IV administration emulating the common practice for ketamine administration for depression. Safety assessments showed RR-HNK possessed a minimal adverse event profile and no serious adverse events at all doses examined. Evaluations of dissociation and sedation demonstrated that RR-HNK did not possess anesthetic or dissociative characteristics in the doses examined. RR-HNK PK parameters were measured in both the SAD and MAD studies and exhibited dose-proportional increases in exposure. Quantitative electroencephalography (EEG) measurements collected as a PD parameter based on preclinical findings and ketamine's established effect on gamma-power oscillations demonstrated increases of gamma power in some participants at the lower/mid-range doses examined. Cerebrospinal fluid examination confirmed RR-HNK exposure within the central nervous system (CNS). Collectively, these data demonstrate RR-HNK is well tolerated with an acceptable PK profile and promising PD outcomes to support the progression into Phase 2.
Collapse
Affiliation(s)
- Shruti M. Raja
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey T. Guptill
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
- Argenx BV, 9052 Gent, Belgium
| | - Michelle Mack
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Stephen Byard
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Robert Twieg
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | - Lynn Jordan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | | | - Samuel Bourne
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Sarah Oxendine
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Helen Zuleta
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Paul Quigley
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Sheila Lawson
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Reza Ahmadkhaniha
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Lawrence G. Appelbaum
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Kowalski
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | | | - Brandon T. Gufford
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Asaad Awan
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alfredo R. Sancho
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Max C. Moore
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Karim Berrada
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Gregory B. Cogan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jesse DeLaRosa
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeanne Radcliffe
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maryland Pao
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Lisa Goldfeder
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leslie Amanfo
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
| | - Ruin Moaddel
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Todd D. Gould
- Departments of Psychiatry, Pharmacology, and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Acero-Castillo MC, Correia MBM, Caixeta FV, Motta V, Barros M, Maior RS. Is the antidepressant effect of ketamine separate from its psychotomimetic effect? A review of rodent models. Neuropharmacology 2024; 258:110088. [PMID: 39032814 DOI: 10.1016/j.neuropharm.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Ketamine is an NMDA (N-methyl-d-aspartate) glutamate receptor antagonist, which has a myriad of dose-dependent pharmacological and behavioral effects, including anesthetic, sedative, amnestic, analgesic, and anti-inflammatory properties. Intriguingly, ketamine at subanesthetic doses displays a relevant profile both in mimicking symptoms of schizophrenia and also as the first fast-acting treatment for depression. Here, we present an overview of the state-of-the-art knowledge about ketamine as an antidepressant as well as a pharmacological model of schizophrenia in animal models and human participants. Ketamine's dual effect appears to arise from its mechanism of action involving NMDA receptors, with both immediate and downstream consequences being triggered as a result. Finally, we discuss the feasibility of a unified approach linking the glutamatergic hypothesis of schizophrenia to the promising preclinical and clinical success of ketamine in the treatment of refractory depression.
Collapse
Affiliation(s)
- M C Acero-Castillo
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M B M Correia
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil; Department of Anthropology, Emory University, Atlanta GA, ZIP 30322, USA
| | - F V Caixeta
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - V Motta
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - R S Maior
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil.
| |
Collapse
|
5
|
Cizus E, Jasinskyte U, Guzulaitis R. Effects of acute and chronic ketamine administration on spontaneous and evoked brain activity. Brain Res 2024; 1846:149232. [PMID: 39260789 DOI: 10.1016/j.brainres.2024.149232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Schizophrenia is believed to be, at least in part, a dysfunction of the glutamatergic system. In line with anatomical evidence, suppressing N-methyl-D-aspartate (NMDA) neurotransmission leads to symptoms that are characteristic of schizophrenia. Rodent models of schizophrenia often involve the acute application of NMDA antagonists, which produce both behavioural and brain activity changes that closely resemble symptoms observed in schizophrenia. It is, however, important to note that the full spectrum of schizophrenia symptoms may not be manifested following the acute suppression of NMDA receptors. This has led to the proposal of a chronic model where NMDA receptors are suppressed for prolonged periods. Although the chronic model has shown promising results from a behavioural perspective and alterations in metabolic processes in the brain, its impact on brain oscillations remains largely unknown. The aim of this study is to examine the impact of acute and chronic NMDA neurotransmission suppression on brains' oscillatory activity. To achieve this, chronic brain activity recordings in mice of both sexes were used to assess both spontaneous and evoked brain oscillations. The study demonstrates that an acute suppression of NMDA receptors alters brain oscillations across a wide frequency spectrum and diminishes the oscillatory potency in evoked responses, paralleling changes observed in schizophrenia. However, the chronic suppression of NMDA receptors did not have the expected cumulative effect on brain activity. This research highlights the robust yet similar impacts of acute and chronic NMDA receptor suppression on brain activity, contributing to the nuanced understanding of rodent models of schizophrenia.
Collapse
Affiliation(s)
- Ernestas Cizus
- The Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Urte Jasinskyte
- The Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | |
Collapse
|
6
|
Bianciardi B, Mastek H, Franka M, Uhlhaas PJ. Effects of N-Methyl-d-Aspartate Receptor Antagonists on Gamma-Band Activity During Auditory Stimulation Compared With Electro/Magneto-encephalographic Data in Schizophrenia and Early-Stage Psychosis: A Systematic Review and Perspective. Schizophr Bull 2024; 50:1104-1116. [PMID: 38934800 PMCID: PMC11349021 DOI: 10.1093/schbul/sbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND HYPOTHESIS N-Methyl-d-aspartate receptor (NMDA-R) hypofunctioning has been hypothesized to be involved in circuit dysfunctions in schizophrenia (ScZ). Yet, it remains to be determined whether the physiological changes observed following NMDA-R antagonist administration are consistent with auditory gamma-band activity in ScZ which is dependent on NMDA-R activity. STUDY DESIGN This systematic review investigated the effects of NMDA-R antagonists on auditory gamma-band activity in preclinical (n = 15) and human (n = 3) studies and compared these data to electro/magneto-encephalographic measurements in ScZ patients (n = 37) and 9 studies in early-stage psychosis. The following gamma-band parameters were examined: (1) evoked spectral power, (2) intertrial phase coherence (ITPC), (3) induced spectral power, and (4) baseline power. STUDY RESULTS Animal and human pharmacological data reported a reduction, especially for evoked gamma-band power and ITPC, as well as an increase and biphasic effects of gamma-band activity following NMDA-R antagonist administration. In addition, NMDA-R antagonists increased baseline gamma-band activity in preclinical studies. Reductions in ITPC and evoked gamma-band power were broadly compatible with findings observed in ScZ and early-stage psychosis patients where the majority of studies observed decreased gamma-band spectral power and ITPC. In regard to baseline gamma-band power, there were inconsistent findings. Finally, a publication bias was observed in studies investigating auditory gamma-band activity in ScZ patients. CONCLUSIONS Our systematic review indicates that NMDA-R antagonists may partially recreate reductions in gamma-band spectral power and ITPC during auditory stimulation in ScZ. These findings are discussed in the context of current theories involving alteration in E/I balance and the role of NMDA hypofunction in the pathophysiology of ScZ.
Collapse
Affiliation(s)
- Bianca Bianciardi
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Helena Mastek
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michelle Franka
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Huang Y, Cao C, Dai S, Deng H, Su L, Zheng JS. Magnetoencephalography-derived oscillatory microstate patterns across lifespan: the Cambridge centre for ageing and neuroscience cohort. Brain Commun 2024; 6:fcae150. [PMID: 38745970 PMCID: PMC11091929 DOI: 10.1093/braincomms/fcae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The aging brain represents the primary risk factor for many neurodegenerative disorders. Whole-brain oscillations may contribute novel early biomarkers of aging. Here, we investigated the dynamic oscillatory neural activities across lifespan (from 18 to 88 years) using resting Magnetoencephalography (MEG) in a large cohort of 624 individuals. Our aim was to examine the patterns of oscillation microstates during the aging process. By using a machine-learning algorithm, we identify four typical clusters of microstate patterns across different age groups and different frequency bands: left-to-right topographic MS1, right-to-left topographic MS2, anterior-posterior MS3 and fronto-central MS4. We observed a decreased alpha duration and an increased alpha occurrence for sensory-related microstate patterns (MS1 & MS2). Accordingly, theta and beta changes from MS1 & MS2 may be related to motor decline that increased with age. Furthermore, voluntary 'top-down' saliency/attention networks may be reflected by the increased MS3 & MS4 alpha occurrence and complementary beta activities. The findings of this study advance our knowledge of how the aging brain shows dysfunctions in neural state transitions. By leveraging the identified microstate patterns, this study provides new insights into predicting healthy aging and the potential neuropsychiatric cognitive decline.
Collapse
Affiliation(s)
- Yujing Huang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Chenglong Cao
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Shenyi Dai
- Department of Economics and Management, China Jiliang University, Hangzhou 310024, Zhejiang Province, China
- Hangzhou iNeuro Technology Co., LTD, Hangzhou 310024, Zhejiang Province, China
| | - Hu Deng
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge CB20SZ, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire S102HQ, United Kingdom
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
8
|
Ciralli B, Malfatti T, Hilscher MM, Leao RN, Cederroth CR, Leao KE, Kullander K. Unraveling the role of Slc10a4 in auditory processing and sensory motor gating: Implications for neuropsychiatric disorders? Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110930. [PMID: 38160852 DOI: 10.1016/j.pnpbp.2023.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Psychiatric disorders, such as schizophrenia, are complex and challenging to study, partly due to the lack of suitable animal models. However, the absence of the Slc10a4 gene, which codes for a monoaminergic and cholinergic associated vesicular transporter protein, in knockout mice (Slc10a4-/-), leads to the accumulation of extracellular dopamine. A major challenge for studying schizophrenia is the lack of suitable animal models that accurately represent the disorder. We sought to overcome this challenge by using Slc10a4-/- mice as a potential model, considering their altered dopamine levels. This makes them a potential animal model for schizophrenia, a disorder known to be associated with altered dopamine signaling in the brain. METHODS The locomotion, auditory sensory filtering and prepulse inhibition (PPI) of Slc10a4-/- mice were quantified and compared to wildtype (WT) littermates. Intrahippocampal electrodes were used to record auditory event-related potentials (aERPs) for quantifying sensory filtering in response to paired-clicks. The channel above aERPs phase reversal was chosen for reliably comparing results between animals, and aERPs amplitude and latency of click responses were quantified. WT and Slc10a4-/- mice were also administered subanesthetic doses of ketamine to provoke psychomimetic behavior. RESULTS Baseline locomotion during auditory stimulation was similar between Slc10a4-/- mice and WT littermates. In WT animals, normal auditory processing was observed after i.p saline injections, and it was maintained under the influence of 5 mg/kg ketamine, but disrupted by 20 mg/kg ketamine. On the other hand, Slc10a4-/- mice did not show significant differences between N40 S1 and S2 amplitude responses in saline or low dose ketamine treatment. Auditory gating was considered preserved since the second N40 peak was consistently suppressed, but with increased latency. The P80 component showed higher amplitude, with shorter S2 latency under saline and 5 mg/kg ketamine treatment in Slc10a4-/- mice, which was not observed in WT littermates. Prepulse inhibition was also decreased in Slc10a4-/- mice when the longer interstimulus interval of 100 ms was applied, compared to WT littermates. CONCLUSION The Slc10a4-/- mice responses indicate that cholinergic and monoaminergic systems participate in the PPI magnitude, in the temporal coding (response latency) of the auditory sensory gating component N40, and in the amplitude of aERPs P80 component. These results suggest that Slc10a4-/- mice can be considered as potential models for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Barbara Ciralli
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Thawann Malfatti
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden; Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Markus M Hilscher
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Richardson N Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Katarina E Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Programme in Genomics and Neurobiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Wang L, Wang L, Chen J, Qiu C, Liu T, Wu Y, Li Y, Zou P, Guo S, Lu J. Five-week music therapy improves overall symptoms in schizophrenia by modulating theta and gamma oscillations. Front Psychiatry 2024; 15:1358726. [PMID: 38505791 PMCID: PMC10948521 DOI: 10.3389/fpsyt.2024.1358726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Some clinical studies have shown that music therapy as an adjunctive therapy can improve overall symptoms in patients with schizophrenia. However, the neural mechanisms of this improvement remain unclear due to insufficient neuroimaging evidence. Methods In this work, 17 patients with schizophrenia accepted a five-week music therapy (music group) that integrated listening, singing, and composing, and required patients to cooperate in a group to complete music therapy tasks. Meanwhile, 15 patients with schizophrenia received a five-week visual art intervention as the control group including handicraft and painting activities. We collected the Manchester Scale (MS) and Positive and Negative Symptom Scale (PANSS) scores and electroencephalography (EEG) data before and after intervention in two groups. Results Behavioral results showed that both interventions mentioned above can effectively help patients with schizophrenia relieve their overall symptoms, while a trend-level effect was observed in favor of music therapy. The EEG results indicated that music therapy can improve abnormal neural oscillations in schizophrenia which is reflected by a decrease in theta oscillation in the parietal lobe and an increase in gamma oscillation in the prefrontal lobe. In addition, correlation analysis showed that in the music group, both reductions in theta oscillations in the parietal lobe and increases in gamma oscillations in the prefrontal lobe were positively correlated with the improvement of overall symptoms. Discussion These findings help us to better understand the neural mechanisms by which music therapy improves overall symptoms in schizophrenia and provide more evidence for the application of music therapy in other psychiatric disorders.
Collapse
Affiliation(s)
- Lujie Wang
- Music and Digital Intelligence, Key Laboratory of Sichuan Province, Sichuan Conservatory of Music, Chengdu, China
- Department of Musicology, Sichuan Conservatory of Music, Chengdu, China
- Southwest Music Research Center, Key Research Base of Social Sciences in Sichuan Province, Sichuan Conservatory of Music, Chengdu, China
| | - Liju Wang
- Ministry of Education (MOE) Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxian Chen
- Ministry of Education (MOE) Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chenxi Qiu
- Ministry of Education (MOE) Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Liu
- Department of Rehabilitation, Chengdu Dekang Hospital, Chengdu, China
| | - Yulin Wu
- Yueling Music Therapy Service Center, Chengdu, China
| | - Yan Li
- Ministry of Education (MOE) Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengyu Zou
- Ministry of Education (MOE) Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sijia Guo
- Ministry of Education (MOE) Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Lu
- Ministry of Education (MOE) Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
11
|
Gautam D, Raza MU, Miyakoshi M, Molina JL, Joshi YB, Clayson PE, Light GA, Swerdlow NR, Sivarao DV. Click-train evoked steady state harmonic response as a novel pharmacodynamic biomarker of cortical oscillatory synchrony. Neuropharmacology 2023; 240:109707. [PMID: 37673332 DOI: 10.1016/j.neuropharm.2023.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Sensory networks naturally entrain to rhythmic stimuli like a click train delivered at a particular frequency. Such synchronization is integral to information processing, can be measured by electroencephalography (EEG) and is an accessible index of neural network function. Click trains evoke neural entrainment not only at the driving frequency (F), referred to as the auditory steady state response (ASSR), but also at its higher multiples called the steady state harmonic response (SSHR). Since harmonics play an important and non-redundant role in acoustic information processing, we hypothesized that SSHR may differ from ASSR in presentation and pharmacological sensitivity. In female SD rats, a 2 s-long train stimulus was used to evoke ASSR at 20 Hz and its SSHR at 40, 60 and 80 Hz, recorded from a prefrontal epidural electrode. Narrow band evoked responses were evident at all frequencies; signal power was strongest at 20 Hz while phase synchrony was strongest at 80 Hz. SSHR at 40 Hz took the longest time (∼180 ms from stimulus onset) to establish synchrony. The NMDA antagonist MK801 (0.025-0.1 mg/kg) did not consistently affect 20 Hz ASSR phase synchrony but robustly and dose-dependently attenuated synchrony of all SSHR. Evoked power was attenuated by MK801 at 20 Hz ASSR and 40 Hz SSHR only. Thus, presentation as well as pharmacological sensitivity distinguished SSHR from ASSR, making them non-redundant markers of cortical network function. SSHR is a novel and promising translational biomarker of cortical oscillatory dynamics that may have important applications in CNS drug development and personalized medicine.
Collapse
Affiliation(s)
- Deepshila Gautam
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37604, USA
| | - Muhammad Ummear Raza
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37604, USA
| | - M Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J L Molina
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA; VISN 22 MIRECC, SD Veterans Administration Health System, La Jolla, CA, USA
| | - Y B Joshi
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA; VISN 22 MIRECC, SD Veterans Administration Health System, La Jolla, CA, USA
| | - P E Clayson
- Department of Psychology, University of South Florida, Tampa, FL, USA
| | - G A Light
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA; VISN 22 MIRECC, SD Veterans Administration Health System, La Jolla, CA, USA
| | - N R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA; VISN 22 MIRECC, SD Veterans Administration Health System, La Jolla, CA, USA
| | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37604, USA.
| |
Collapse
|
12
|
Tada M, Kirihara K, Koshiyama D, Nagai T, Fujiouka M, Usui K, Satomura Y, Koike S, Sawada K, Matsuoka J, Morita K, Araki T, Kasai K. Alterations of auditory-evoked gamma oscillations are more pronounced than alterations of spontaneous power of gamma oscillation in early stages of schizophrenia. Transl Psychiatry 2023; 13:218. [PMID: 37365182 DOI: 10.1038/s41398-023-02511-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Several animal models of schizophrenia and patients with chronic schizophrenia have shown increased spontaneous power of gamma oscillations. However, the most robust alterations of gamma oscillations in patients with schizophrenia are reduced auditory-oscillatory responses. We hypothesized that patients with early-stage schizophrenia would have increased spontaneous power of gamma oscillations and reduced auditory-oscillatory responses. This study included 77 participants, including 27 ultra-high-risk (UHR) individuals, 19 patients with recent-onset schizophrenia (ROS), and 31 healthy controls (HCs). The auditory steady-state response (ASSR) and spontaneous power of gamma oscillations measured as induced power during the ASSR period were calculated using electroencephalography during 40-Hz auditory click-trains. The ASSRs were lower in the UHR and ROS groups than in the HC group, whereas the spontaneous power of gamma oscillations in the UHR and ROS groups did not significantly differ from power in the HC group. Both early-latency (0-100 ms) and late-latency (300-400 ms) ASSRs were significantly reduced and negatively correlated with the spontaneous power of gamma oscillations in the ROS group. In contrast, UHR individuals exhibited reduced late-latency ASSR and a correlation between the unchanged early-latency ASSR and the spontaneous power of gamma oscillations. ASSR was positively correlated with the hallucinatory behavior score in the ROS group. Correlation patterns between the ASSR and spontaneous power of gamma oscillations differed between the UHR and ROS groups, suggesting that the neural dynamics involved in non-stimulus-locked/task modulation change with disease progression and may be disrupted after psychosis onset.
Collapse
Affiliation(s)
- Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Office for Mental Health Support, Center for Research on Counseling and Support Services, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mao Fujiouka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Office for Mental Health Support, Center for Research on Counseling and Support Services, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jun Matsuoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
13
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
14
|
Delgado-Sallent C, Gener T, Nebot P, López-Cabezón C, Puig MV. Neural substrates of cognitive impairment in a NMDAR hypofunction mouse model of schizophrenia and partial rescue by risperidone. Front Cell Neurosci 2023; 17:1152248. [PMID: 37066076 PMCID: PMC10104169 DOI: 10.3389/fncel.2023.1152248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
N-methyl D-aspartate receptor (NMDAR) hypofunction is a pathophysiological mechanism relevant for schizophrenia. Acute administration of the NMDAR antagonist phencyclidine (PCP) induces psychosis in patients and animals while subchronic PCP (sPCP) produces cognitive dysfunction for weeks. We investigated the neural correlates of memory and auditory impairments in mice treated with sPCP and the rescuing abilities of the atypical antipsychotic drug risperidone administered daily for two weeks. We recorded neural activities in the medial prefrontal cortex (mPFC) and the dorsal hippocampus (dHPC) during memory acquisition, short-term, and long-term memory in the novel object recognition test and during auditory processing and mismatch negativity (MMN) and examined the effects of sPCP and sPCP followed by risperidone. We found that the information about the familiar object and its short-term storage were associated with mPFC→dHPC high gamma connectivity (phase slope index) whereas long-term memory retrieval depended on dHPC→mPFC theta connectivity. sPCP impaired short-term and long-term memories, which were associated with increased theta power in the mPFC, decreased gamma power and theta-gamma coupling in the dHPC, and disrupted mPFC-dHPC connectivity. Risperidone rescued the memory deficits and partly restored hippocampal desynchronization but did not ameliorate mPFC and circuit connectivity alterations. sPCP also impaired auditory processing and its neural correlates (evoked potentials and MMN) in the mPFC, which were also partly rescued by risperidone. Our study suggests that the mPFC and the dHPC disconnect during NMDAR hypofunction, possibly underlying cognitive impairment in schizophrenia, and that risperidone targets this circuit to ameliorate cognitive abilities in patients.
Collapse
Affiliation(s)
- Cristina Delgado-Sallent
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Thomas Gener
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pau Nebot
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Cristina López-Cabezón
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M. Victoria Puig
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: M. Victoria Puig,
| |
Collapse
|
15
|
Abad-Perez P, F.J. MP, Martínez-Otero L, Borrell V, Redondo R, Brotons-Mas J. Theta/gamma co-modulation disruption after nmdar blockade by mk801 is associated with spatial working memory deficits in mice. Neuroscience 2023; 519:162-176. [PMID: 36990270 DOI: 10.1016/j.neuroscience.2023.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Abnormal NMDAr function has been linked to oscillopathies, psychosis, and cognitive dysfunction in schizophrenia (SCZ). Here, we investigate the role of N-methyl-D-aspartate receptor (NMDAr) hypofunction in pathological oscillations and behavior. We implanted mice with tetrodes in the dorsal/intermediate hippocampus and medial prefrontal cortex (mPFC), administered the NMDAr antagonist MK-801, and recorded oscillations during spontaneous exploration in an open field and in the y-maze spatial working memory test. Our results show that NMDAr blockade disrupted the correlation between oscillations and speed of movement, crucial for internal representations of distance. In the hippocampus, MK-801 increased gamma oscillations and disrupted theta/gamma coupling during spatial working memory. In the mPFC, MK-801 increased the power of theta and gamma, generated high-frequency oscillations (HFO 155-185 Hz), and disrupted theta/gamma coupling. Moreover, the performance of mice in the spatial working memory version of the y-maze was strongly correlated with CA1-PFC theta/gamma co-modulation. Thus, theta/gamma mediated by NMDAr function might explain several of SCZ's cognitive symptoms and might be crucial to explaining hippocampal-PFC interaction.
Collapse
|
16
|
Qin Y, Mahdavi A, Bertschy M, Anderson PM, Kulikova S, Pinault D. The psychotomimetic ketamine disrupts the transfer of late sensory information in the corticothalamic network. Eur J Neurosci 2023; 57:440-455. [PMID: 36226598 PMCID: PMC10092610 DOI: 10.1111/ejn.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
In prodromal and early schizophrenia, disorders of attention and perception are associated with structural and chemical brain abnormalities and with dysfunctional corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the symptoms of prodromal and early schizophrenia, including disturbances in ongoing and task & sensory-related broadband beta-/gamma-frequency (17-29 Hz/30-80 Hz) oscillations in corticothalamic networks. In normal healthy subjects and rodents, complex integration processes, like sensory perception, induce transient, large-scale synchronised beta/gamma oscillations in a time window of a few hundred ms (200-700 ms) after the presentation of the object of attention (e.g., sensory stimulation). Our goal was to use an electrophysiological multisite network approach to investigate, in lightly anesthetised rats, the effects of a single psychotomimetic dose (2.5 mg/kg, subcutaneous) of ketamine on sensory stimulus-induced oscillations. Ketamine transiently increased the power of baseline beta/gamma oscillations and decreased sensory-induced beta/gamma oscillations. In addition, it disrupted information transferability in both the somatosensory thalamus and the related cortex and decreased the sensory-induced thalamocortical connectivity in the broadband gamma range. The present findings support the hypothesis that NMDA receptor antagonism disrupts the transfer of perceptual information in the somatosensory cortico-thalamo-cortical system.
Collapse
Affiliation(s)
- Yi Qin
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- Netherlands Institute for NeuroscienceThe Netherlands
| | - Ali Mahdavi
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- The University of Freiburg, Bernstein Center FreiburgFreiburgGermany
| | - Marine Bertschy
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| | - Paul M. Anderson
- Dept. Cognitive Neurobiology, Center for Brain ResearchMedical University ViennaAustria
| | - Sofya Kulikova
- National Research University Higher School of EconomicsPermRussia
| | - Didier Pinault
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| |
Collapse
|
17
|
Differential Effects of Chronic Methamphetamine Treatment on High-Frequency Oscillations and Responses to Acute Methamphetamine and NMDA Receptor Blockade in Conscious Mice. Brain Sci 2022; 12:brainsci12111503. [DOI: 10.3390/brainsci12111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulation of high-frequency neuronal oscillations has been implicated in the pathophysiology of schizophrenia. Chronic methamphetamine (METH) use can induce psychosis similar to paranoid schizophrenia. The current study in mice aimed to determine the effect of chronic METH treatment on ongoing and evoked neuronal oscillations. C57BL/6 mice were treated with METH or vehicle control for three weeks and implanted with extradural recording electrodes. Two weeks after the last METH injection, mice underwent three EEG recording sessions to measure ongoing and auditory-evoked gamma and beta oscillatory power in response to an acute challenge with METH (2 mg/kg), the NMDA receptor antagonist MK-801 (0.3 mg/kg), or saline control. A separate group of mice pretreated with METH showed significantly greater locomotor hyperactivity to an acute METH challenge, confirming long-term sensitisation. Chronic METH did not affect ongoing or evoked gamma or beta power. Acute MK-801 challenge reduced ongoing beta power whereas acute METH challenge significantly increased ongoing gamma power. Both MK-801 and METH challenge suppressed evoked gamma power. Chronic METH treatment did not modulate these acute drug effects. There were minor effects of chronic METH and acute METH and MK-801 on selected components of event-related potential (ERP) waves. In conclusion, chronic METH treatment did not exert neuroplastic effects on the regulation of cortical gamma oscillations in a manner consistent with schizophrenia, despite causing behavioural sensitisation.
Collapse
|
18
|
Featherstone RE, Shimada T, Crown LM, Melnychenko O, Yi J, Matsumoto M, Tajinda K, Mihara T, Adachi M, Siegel SJ. Calcium/calmodulin-dependent protein kinase IIα heterozygous knockout mice show electroencephalogram and behavioral changes characteristic of a subpopulation of schizophrenia and intellectual impairment. Neuroscience 2022; 499:104-117. [PMID: 35901933 DOI: 10.1016/j.neuroscience.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Cognitive deficit remains an intractable symptom of schizophrenia, accounting for substantial disability. Despite this, little is known about the cause of cognitive dysfunction in schizophrenia. Recent studies suggest that schizophrenia patients show several changes in dentate gyrus structure and functional characteristic of immaturity. The immature dentate gyrus (iDG) has been replicated in several mouse models, most notably the αCaMKII heterozygous mouse (CaMKIIa-hKO). The current study characterizes behavioral phenotypes of CaMKIIa-hKO mice and determines their neurophysiological profile using electroencephalogram (EEG) recording from hippocampus. CaMKIIa-hKO mice were hypoactive in home-cage environment; however, they displayed less anxiety-like phenotype, suggestive of impulsivity-like behavior. In addition, severe cognitive dysfunction was evident in CaMKIIa-hKO mice as examined by novel object recognition and contextual fear conditioning. Several EEG phenomena established in both patients and relevant animal models indicate key pathological changes associated with the disease, include auditory event-related potentials and time-frequency EEG oscillations. CaMKIIa-hKO mice showed altered event-related potentials characterized by an increase in amplitude of the N40 and P80, as well as increased P80 latency. These mice also showed increased power in theta range time-frequency measures. Additionally, CaMKIIa-hKO mice showed spontaneous bursts of spike wave activity, possibly indicating absence seizures. The GABAB agonist baclofen increased, while the GABAB antagonist CGP35348 and the T-Type Ca2+ channel blocker Ethosuximide decreased spike wave burst frequency. None of these changes in event-related potentials or EEG oscillations are characteristic of those observed in general population of patients with schizophrenia; yet, CaMKIIa-hKO mice likely model a subpopulation of patients with schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Takeshi Shimada
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Lindsey M Crown
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Olya Melnychenko
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | - Janice Yi
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA
| | | | | | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Megumi Adachi
- Astellas Research Institute of America, San Diego, CA, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los, Angeles, CA, USA.
| |
Collapse
|
19
|
Leung LS, Ma J. Medial Septum Modulates Consciousness and Psychosis-Related Behaviors Through Hippocampal Gamma Activity. Front Neural Circuits 2022; 16:895000. [PMID: 35874429 PMCID: PMC9301478 DOI: 10.3389/fncir.2022.895000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormally high-amplitude hippocampal gamma activity (30–100 Hz) in behaving animals is seen after a hippocampal seizure, following injection of phencyclidine (PCP) or ketamine, and transiently in a delirium stage during induction of general anesthesia. High-amplitude hippocampal gamma activity in behaving rats is associated with hyperactive behavior and impairment in sensorimotor gating and sensory gating. The medial septum is necessary for the high-amplitude gamma activity and abnormal behaviors observed following a hippocampal seizure or injection of PCP/ketamine. Glutamatergic projection of the hippocampus to the nucleus accumbens (NAC) and dopaminergic transmission in NAC is necessary for abnormal behaviors. Large hippocampal gamma waves are suggested to contribute to seizure-induced automatism following temporal lobe seizures, and the schizophrenia-like symptoms induced by PCP/ketamine. Low-amplitude gamma activity is found during general anesthesia, associated with loss of consciousness in humans and loss of righting reflex in animals. Local inactivation or lesion of the medial septum, NAC, and brain areas connected to the septohippocampal-NAC system attenuates the increase in hippocampal gamma and associated behavioral disruptions induced by hippocampal seizure or PCP/ketamine. Inactivation or lesion of the septohippocampal-NAC system decreases the dose of anesthetic necessary for gamma decrease and loss of consciousness in animals. Thus, it is proposed that the septohippocampal-NAC system serves to control consciousness and the behavioral hyperactivity and neural dysfunctions during psychosis.
Collapse
|
20
|
Iwamura Y, Nakayama T, Matsumoto A, Ogi Y, Yamaguchi M, Kobayashi A, Matsumoto K, Katsura Y, Konoike N, Nakamura K, Ikeda K. Effect of dopamine receptor-related compounds on naive common marmosets for auditory steady state response. J Neurophysiol 2022; 128:229-238. [PMID: 35583977 DOI: 10.1152/jn.00147.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormalities of auditory steady state responses (ASSR) and the effects of antipsychotic drugs on ASSR have been investigated in patients with schizophrenia. It is presumed that effects of drugs do not directly reflect on ASSR, because of ASSR abnormalities associated with schizophrenia. Therefore, to investigate the direct effect of drugs on ASSR, we established an ASSR evaluation system for common marmosets in a naïve state. Dopamine D1 receptor stimulation (SKF-81297, 2 mg/kg, intraperitoneal) significantly increased evoked power (EP) at 40 Hz. The phase locking factor (PLF) was increased significantly at 20, 30, 40, and 80 Hz. However, the administration of a dopamine D1 receptor antagonist (SCH-39166, 0.3 mg/kg intraperitoneal) resulted in a significant decrease in EP and PLF at 30 Hz. Dopamine D2 receptor stimulation (quinpirole, 1 mg/kg, intramuscular) tended to increase EP and induced power (IP) at all frequencies, and a significant difference was observed at 30 Hz IP. There was no change in PLF at all frequencies. In addition, dopamine D2 receptor blockade (raclopride, 3 mg/kg, intraperitoneal) reduced EP and PLF at 30 Hz. Subcutaneous administration of the serotonin dopamine antagonist, risperidone (0.3 mg/kg), tended to increase IP and decrease PLF, but not significantly. Taken together, it is possible to compare the differences in the mode of action of drugs on ASSR using naïve non-human primates.
Collapse
Affiliation(s)
- Yoshihiro Iwamura
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Tatsuo Nakayama
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Atsushi Matsumoto
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Yuji Ogi
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Masataka Yamaguchi
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Atsushi Kobayashi
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Kenji Matsumoto
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Yasunori Katsura
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| | - Naho Konoike
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Katsuki Nakamura
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Kazuhito Ikeda
- Platform Technology Research Unit, Drug Research Division, Sumitomo Pharma, Co., Osaka, Japan
| |
Collapse
|
21
|
The glutamate/N-methyl-d-aspartate receptor (NMDAR) model of schizophrenia at 35: On the path from syndrome to disease. Schizophr Res 2022; 242:56-61. [PMID: 35125283 DOI: 10.1016/j.schres.2022.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
|
22
|
Pathway-specific contribution of parvalbumin interneuron NMDARs to synaptic currents and thalamocortical feedforward inhibition. Mol Psychiatry 2022; 27:5124-5134. [PMID: 36075962 PMCID: PMC9763122 DOI: 10.1038/s41380-022-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Prefrontal cortex (PFC) is a site of information convergence important for behaviors relevant to psychiatric disorders. Despite the importance of inhibitory GABAergic parvalbumin-expressing (PV+) interneurons to PFC circuit function and decades of interest in N-methyl-D-aspartate receptors (NMDARs) in these neurons, examples of defined circuit functions that depend on PV+ interneuron NMDARs have been elusive. Indeed, it remains controversial whether all PV+ interneurons contain functional NMDARs in adult PFC, which has major consequences for hypotheses of the pathogenesis of psychiatric disorders. Using a combination of fluorescent in situ hybridization, pathway-specific optogenetics, cell-type-specific gene ablation, and electrophysiological recordings from PV+ interneurons, here we resolve this controversy. We found that nearly 100% of PV+ interneurons in adult medial PFC (mPFC) express transcripts encoding GluN1 and GluN2B, and they have functional NMDARs. By optogenetically stimulating corticocortical and thalamocortical inputs to mPFC, we show that synaptic NMDAR contribution to PV+ interneuron EPSCs is pathway-specific, which likely explains earlier reports of PV+ interneurons without synaptic NMDAR currents. Lastly, we report a major contribution of NMDARs in PV+ interneurons to thalamus-mediated feedforward inhibition in adult mPFC circuits, suggesting molecular and circuit-based mechanisms for cognitive impairment under conditions of reduced NMDAR function. These findings represent an important conceptual advance that has major implications for hypotheses of the pathogenesis of psychiatric disorders.
Collapse
|
23
|
Guang J, Baker H, Ben-Yishay Nizri O, Firman S, Werner-Reiss U, Kapuller V, Israel Z, Bergman H. Toward asleep DBS: cortico-basal ganglia spectral and coherence activity during interleaved propofol/ketamine sedation mimics NREM/REM sleep activity. NPJ PARKINSONS DISEASE 2021; 7:67. [PMID: 34341348 PMCID: PMC8329235 DOI: 10.1038/s41531-021-00211-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
Deep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson's disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.
Collapse
Affiliation(s)
- Jing Guang
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Halen Baker
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Shimon Firman
- Department of Anesthesiology, Critical Care Medicine, and Pain Management, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Werner-Reiss
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vadim Kapuller
- Department of Pediatric Surgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.,Asuta-Ashdod University Medical Center, Ashdod, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurosurgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Thériault RK, St-Denis M, Hewitt T, Khokhar JY, Lalonde J, Perreault ML. Sex-Specific Cannabidiol- and Iloperidone-Induced Neuronal Activity Changes in an In Vitro MAM Model System of Schizophrenia. Int J Mol Sci 2021; 22:ijms22115511. [PMID: 34073710 PMCID: PMC8197248 DOI: 10.3390/ijms22115511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cortical circuit dysfunction is thought to be an underlying mechanism of schizophrenia (SZ) pathophysiology with normalization of aberrant circuit activity proposed as a biomarker for antipsychotic efficacy. Cannabidiol (CBD) shows potential as an adjunctive antipsychotic therapy; however, potential sex effects in these drug interactions remain unknown. In the present study, we sought to elucidate sex effects of CBD coadministration with the atypical antipsychotic iloperidone (ILO) on the activity of primary cortical neuron cultures derived from the rat methylazoxymethanol acetate (MAM) model used for the study of SZ. Spontaneous network activity measurements were obtained using a multielectrode array at baseline and following administration of CBD or ILO alone, or combined. At baseline, MAM male neurons displayed increased bursting activity whereas MAM female neurons exhibited no difference in bursting activity compared to sex-matched controls. CBD administered alone showed a rapid but transient increase in neuronal activity in the MAM networks, an effect more pronounced in females. Furthermore, ILO had an additive effect on CBD-induced elevations in activity in the MAM male neurons. In the MAM female neurons, CBD or ILO administration resulted in time-dependent elevations in neuronal activity, but the short-term CBD-induced increases in activity were lost when CBD and ILO were combined. Our findings indicate that CBD induces rapid increases in cortical neuronal activity, with sex-specific drug interactions upon ILO coadministration. This suggests that sex should be a consideration when implementing adjunct therapy for treatment of SZ.
Collapse
Affiliation(s)
- Rachel-Karson Thériault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Myles St-Denis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
| | - Tristen Hewitt
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jibran Y. Khokhar
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
25
|
Isla AG, Balleza-Tapia H, Fisahn A. Efficacy of preclinical pharmacological interventions against alterations of neuronal network oscillations in Alzheimer's disease: A systematic review. Exp Neurol 2021; 343:113743. [PMID: 34000250 DOI: 10.1016/j.expneurol.2021.113743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Despite the development of multiple pharmacological approaches over the years aimed at treating Alzheimer's Disease (AD) only very few have been approved for clinical use in patients. To date there still exists no disease-modifying treatment that could prevent or rescue the cognitive impairment, particularly of memory aquisition, that is characteristic of AD. One of the possibilities for this state of affairs might be that the majority of drug discovery efforts focuses on outcome measures of decreased neuropathological biomarkers characteristic of AD, without taking into acount neuronal processes essential to the generation and maintenance of memory processes. Particularly, the capacity of the brain to generate theta (θ) and gamma (γ) oscillatory activity has been strongly correlated to memory performance. Using a systematic review approach, we synthesize the existing evidence in the literature on pharmacological interventions that enhance neuronal theta (θ) and/or gamma (γ) oscillations in non-pathological animal models and in AD animal models. Additionally, we synthesize the main outcomes and neurochemical systems targeted. We propose that functional biomarkers such as cognition-relevant neuronal network oscillations should be used as outcome measures during the process of research and development of novel drugs against cognitive impairment in AD.
Collapse
Affiliation(s)
- Arturo G Isla
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Akademiska Stråket 1, J10:30, 17164 Solna, Stockholm, Sweden.
| |
Collapse
|
26
|
Sun D, Kermani M, Hudson M, He X, Unnithan RR, French C. Effects of antipsychotic drugs and potassium channel modulators on spectral properties of local field potentials in mouse hippocampus and pre-frontal cortex. Neuropharmacology 2021; 191:108572. [PMID: 33901515 DOI: 10.1016/j.neuropharm.2021.108572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 04/12/2021] [Indexed: 01/14/2023]
Abstract
Local field potentials (LFPs) recorded intracranially display a range of location-specific oscillatory spectra which have been related to cognitive processes. Although the mechanisms producing LFPs are not completely understood, it is likely that voltage-gated ion channels which produce action potentials and patterned discharges play a significant role. It is also known that antipsychotic drugs (APDs) affect LFP spectra and a direct inhibitory effect on voltage-gated potassium channels has been reported. Additionally, voltage-gated potassium channels have been implicated in the pathophysiology of schizophrenia, a disorder for which APDs are primary therapies. In this study we sought to: i) better characterise the effects of two APDs on LFPs spectra and connectivity measures and ii) examine the effects of potassium channel modulators on LFPs and potential overlap of effects with APDs. Intracranial electrodes were implanted in hippocampus (HIP) and pre-frontal cortex (PFC) of C57BL/6J mice; power spectra, coherence and phase-amplitude cross-frequency coupling were measured. Drugs tested were APDs haloperidol and clozapine as well as voltage-gated potassium channel modulators (KVMs) 4-aminopyridine (4-AP), tetraethylammonium, retigabine and E-4031. Both APDs and KVMs significantly reduced gamma power except 4-AP, which conversely increased gamma power. Clozapine and retigabine additionally reduced gamma coherence between HIP and PFC, while 4-AP demonstrated the opposite effect. Phase-amplitude coupling between theta and gamma oscillations in HIP was significantly reduced by the administration of haloperidol and retigabine. These results provide previously undescribed effects of APDs on LFP properties and demonstrate novel modulation of LFP characteristics by KVMs that intriguingly overlap with the APD effects.
Collapse
Affiliation(s)
- Dechuan Sun
- Department of Medicine, The University of Melbourne, Victoria, Australia; Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, Australia
| | - Mojtaba Kermani
- School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Matthew Hudson
- Department of Neuroscience, Monash University, Victoria, Australia
| | - Xin He
- Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, Australia
| | | | - Chris French
- Department of Medicine, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
VEGF Modulates the Neural Dynamics of Hippocampal Subregions in Chronic Global Cerebral Ischemia Rats. Neuromolecular Med 2021; 23:416-427. [PMID: 33398803 DOI: 10.1007/s12017-020-08642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Theta and gamma rhythms in hippocampus are important to cognitive performance. The cognitive impairments following cerebral ischemia is linked with the dysfunction of theta and gamma oscillations. As the primary mechanism for learning and memory, synaptic plasticity is in connection with these neural oscillations. Although vascular endothelial growth factor (VEGF) is thought to protect synaptic function in the ischemia rats to relieve cognitive impairment, little has been done on its effect of neural dynamics with this process. The present study investigated whether the alternation of neural oscillations in the hippocampus of ischemia rats is one of the potential neuroprotective mechanisms of VEGF. Rats were treated with the intranasal administration of VEGF at 72 h following chronic global cerebral ischemia procedure. Then local field potentials (LFPs) in hippocampal CA1 and CA3 regions were recorded and analyzed. Our results showed that VEGF can improve the power of theta and gamma rhythms in CA1 region after ischemia. Chronic global cerebral ischemia reduced the theta-gamma phase-amplitude coupling (PAC) not only within CA1 area but also in the pathway from CA3 to CA1, while VEGF alleviated the decreased coupling strength. Despite these notable differences, there were no obvious changes in the PAC within CA3 region. Surprisingly, the ischemia state did not affect the phase-phase interaction of hippocampus. In conclusion, our findings demonstrated that VEGF enhanced the theta-gamma PAC strength of CA3-CA1 pathway in ischemia rats, which may futher improve the information transmission within the hippocampus. These results illustrated the potential electrophysiologic mechanism of VEGF on cognitive improvement.
Collapse
|
28
|
GSK3β inhibition restores cortical gamma oscillation and cognitive behavior in a mouse model of NMDA receptor hypofunction relevant to schizophrenia. Neuropsychopharmacology 2020; 45:2207-2218. [PMID: 32859995 PMCID: PMC7784891 DOI: 10.1038/s41386-020-00819-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Cortical gamma oscillations are believed to be involved in mental processes which are disturbed in schizophrenia. For example, the magnitudes of sensory-evoked oscillations, as measured by auditory steady-state responses (ASSRs) at 40 Hz, are robustly diminished, whereas the baseline gamma power is enhanced in schizophrenia. Such dual gamma oscillation abnormalities are also present in a mouse model of N-methyl-D-aspartate receptor hypofunction (Ppp1r2cre/Grin1 knockout mice). However, it is unclear whether the abnormal gamma oscillations are associated with dysfunction in schizophrenia. We found that glycogen synthase kinase-3 (GSK3) is overactivated in corticolimbic parvalbumin-positive GABAergic interneurons in Grin1 mutant mice. Here we addressed whether GSK3β inhibition reverses both abnormal gamma oscillations and behavioral deficits with high correlation by pharmacological and genetic approach. We demonstrated that the paralog selective-GSK3β inhibitor, but not GSK3α inhibitor, normalizes the diminished ASSRs, excessive baseline gamma power, and deficits in spatial working memory and prepulse inhibition (PPI) of acoustic startle in Grin1 mutant mice. Cell-type specific GSK3B knockdown, but not GSK3A knockdown, also reversed abnormal gamma oscillations and behavioral deficits. Moreover, GSK3B knockdown, but not GSK3A knockdown, reverses the mutants' in vivo spike synchrony deficits. Finally, ex vivo patch-clamp recording from pairs of neighboring cortical pyramidal neurons showed a reduction of synchronous spontaneous inhibitory-postsynaptic-current events in mutants, which was reversed by GSK3β inhibition genetically and pharmacologically. Together, GSK3β inhibition in corticolimbic interneurons ameliorates the deficits in spatial working memory and PPI, presumably by restoration of synchronous GABA release, synchronous spike firing, and evoked-gamma power increase with lowered baseline power.
Collapse
|
29
|
Hao W, Liu S, Liu H, Mu X, Chen K, Xin Q, Zhang XD. In Vivo Neuroelectrophysiological Monitoring of Atomically Precise Au 25 Clusters at an Ultrahigh Injected Dose. ACS OMEGA 2020; 5:24537-24545. [PMID: 33015471 PMCID: PMC7528291 DOI: 10.1021/acsomega.0c03005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
Atomically precise Au25(SG)18 clusters have shown great promise in near-infrared II cerebrovascular imaging, X-ray imaging, and cancer radiotherapy due to their high atomic number, unique molecular-like electronic structure, and renal clearable properties. Therefore, it is important to study the in vivo toxicity of Au25 clusters. Unfortunately, previous toxicological investigations focused on low injected doses (<100 mg kg-1) and routine research methods, such as blood chemistry and biochemistry, which cannot reflect neurotoxicity or tiny changes in neural activity. In this work, in vivo neuroelectrophysiology of Au25 clusters at ultrahigh injected doses (200, 300, and 500 mg kg-1) was investigated. Local field potential showed that the Au25-treated mice showed a spike in delta rhythm and moved to lower frequency over time. The power spectrum showed a 38.3% reduction in the peak value at 10 h post-injection of Au25 clusters compared with 3 h post-injection, which gradually became close to the normal level, indicating no permanent damage to the nervous system. Moreover, no significant structural changes were found in both neurons and glial cells at the histological level. These results of in vivo neuroelectrophysiology will encourage scientists to make more exciting discoveries on nervous system diseases by employing Au25 clusters even at ultrahigh injected doses.
Collapse
Affiliation(s)
- Wenting Hao
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Haile Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Qi Xin
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Pathology, Tianjin Third Central Hospital, Tianjin Key Laboratory
of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin 300170, China
| | - Xiao-Dong Zhang
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
30
|
Banerjee P, Donello JE, Hare B, Duman RS. Rapastinel, an NMDAR positive modulator, produces distinct behavioral, sleep, and EEG profiles compared with ketamine. Behav Brain Res 2020; 391:112706. [PMID: 32461133 DOI: 10.1016/j.bbr.2020.112706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Rapastinel, a positive NMDAR modulator, produces rapid-acting and long-lasting antidepressant-like effects; however, unlike ketamine, the abuse potential for rapastinel is minimal. Ketamine has also been shown to induce psychotomimetic/dissociative side effects, aberrant gamma oscillations, and effects similar to sleep deprivation, which may potentially limit its clinical use. In this study, we compared the side effect profile and potential sleep-altering properties of rapastinel (3, 10, and 30 mg/kg) to ketamine (30 mg/kg) in rodents. In addition, we investigated corresponding changes in transcriptomics and proteomics. Rapastinel exhibited no effect on locomotor activity and prepulse inhibition in mice, while ketamine induced a significant increase in locomotor activity and a significant decrease in prepulse inhibition, which are indications of a psychosis-like state. The effects of rapastinel on sleep architecture were minimal, and rapastinel did not alter gamma frequency oscillations. In contrast, ketamine administration resulted in a greater latency to slow wave and REM sleep, disrupted duration of sleep, and affected duration of wakefulness during sleep. Further, ketamine increased cortical oscillations in the gamma frequency range, which is a property associated with psychosis. Rapastinel induced similar plasticity-related changes in transcriptomics to ketamine in rats but differed in several gene ontology classes, some of which may be involved in the regulation of sleep. In conclusion, rapastinel demonstrated a lower propensity than ketamine to induce CNS-related adverse side effects and sleep disturbances.
Collapse
Affiliation(s)
| | | | - Brendan Hare
- Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
31
|
Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE, Martinez A, Ehlers CL, Abbas AI, Teichert T, Lakatos P, Womelsdorf T. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 2020; 45:1411-1422. [PMID: 32375159 PMCID: PMC7360555 DOI: 10.1038/s41386-020-0697-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional "time-domain" event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies. By contrast, neuro-oscillatory responses, analyzed within the "time-frequency" domain, are relatively preserved across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory responses as translational biomarkers in neuropsychiatric treatment development.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Spencer
- Research Service, VA Boston Healthcare System, and Dept. of Psychiatry, Harvard Medical School, Boston, MA, 02130, USA
| | - Daniel H Mathalon
- VA San Francisco Healthcare System, University of California, San Francisco, San Francisco, CA, 94121, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Atheir I Abbas
- VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tobias Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Lakatos
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
32
|
A single psychotomimetic dose of ketamine decreases thalamocortical spindles and delta oscillations in the sedated rat. Schizophr Res 2020; 222:362-374. [PMID: 32507548 DOI: 10.1016/j.schres.2020.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients with psychotic disorders, sleep spindles are reduced, supporting the hypothesis that the thalamus and glutamate receptors play a crucial etio-pathophysiological role, whose underlying mechanisms remain unknown. We hypothesized that a reduced function of NMDA receptors is involved in the spindle deficit observed in schizophrenia. METHODS An electrophysiological multisite cell-to-network exploration was used to investigate, in pentobarbital-sedated rats, the effects of a single psychotomimetic dose of the NMDA glutamate receptor antagonist ketamine in the sensorimotor and associative/cognitive thalamocortical (TC) systems. RESULTS Under the control condition, spontaneously-occurring spindles (intra-frequency: 10-16 waves/s) and delta-frequency (1-4 Hz) oscillations were recorded in the frontoparietal cortical EEG, in thalamic extracellular recordings, in dual juxtacellularly recorded GABAergic thalamic reticular nucleus (TRN) and glutamatergic TC neurons, and in intracellularly recorded TC neurons. The TRN cells rhythmically exhibited robust high-frequency bursts of action potentials (7 to 15 APs at 200-700 Hz). A single administration of low-dose ketamine fleetingly reduced TC spindles and delta oscillations, amplified ongoing gamma-(30-80 Hz) and higher-frequency oscillations, and switched the firing pattern of both TC and TRN neurons from a burst mode to a single AP mode. Furthermore, ketamine strengthened the gamma-frequency band TRN-TC connectivity. The antipsychotic clozapine consistently prevented the ketamine effects on spindles, delta- and gamma-/higher-frequency TC oscillations. CONCLUSION The present findings support the hypothesis that NMDA receptor hypofunction is involved in the reduction in sleep spindles and delta oscillations. The ketamine-induced swift conversion of ongoing TC-TRN activities may have involved at least both the ascending reticular activating system and the corticothalamic pathway.
Collapse
|
33
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
34
|
Tada M, Kirihara K, Koshiyama D, Fujioka M, Usui K, Uka T, Komatsu M, Kunii N, Araki T, Kasai K. Gamma-Band Auditory Steady-State Response as a Neurophysiological Marker for Excitation and Inhibition Balance: A Review for Understanding Schizophrenia and Other Neuropsychiatric Disorders. Clin EEG Neurosci 2020; 51:234-243. [PMID: 31402699 DOI: 10.1177/1550059419868872] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Altered gamma oscillations have attracted considerable attention as an index of the excitation/inhibition (E/I) imbalance in schizophrenia and other neuropsychiatric disorders. The auditory steady-state response (ASSR) has been the most robust probe of abnormal gamma oscillatory dynamics in schizophrenia. Here, we review recent ASSR studies in patients with schizophrenia and other neuropsychiatric disorders. Preclinical ASSR research, which has contributed to the elucidation of the underlying pathophysiology of these diseases, is also discussed. The developmental trajectory of the ASSR has been explored and may show signs of the maturation and disruption of E/I balance in adolescence. Animal model studies have shown that synaptic interactions between parvalbumin-positive GABAergic interneurons and pyramidal neurons contribute to the regulation of E/I balance, which is related to the generation of gamma oscillation. Therefore, ASSR alteration may be a significant electrophysiological finding related to the E/I imbalance in neuropsychiatric disorders, which is a cross-disease feature and may reflect clinical staging. Future studies regarding ASSR generation, especially in nonhuman primate models, will advance our understanding of the brain circuit and the molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Hirosawa, Wako, Saitama, Japan
| | - Naoto Kunii
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
35
|
Toader O, von Heimendahl M, Schuelert N, Nissen W, Rosenbrock H. Suppression of Parvalbumin Interneuron Activity in the Prefrontal Cortex Recapitulates Features of Impaired Excitatory/Inhibitory Balance and Sensory Processing in Schizophrenia. Schizophr Bull 2020; 46:981-989. [PMID: 31903492 PMCID: PMC7342098 DOI: 10.1093/schbul/sbz123] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accumulating evidence supports parvalbumin expressing inhibitory interneuron (PV IN) dysfunction in the prefrontal cortex as a cause for cognitive impairment associated with schizophrenia (CIAS). PV IN decreased activity is suggested to be the culprit for many of the EEG deficits measured in patients, which correlate with deficits in working memory (WM), cognitive flexibility and attention. In the last few decades, CIAS has been recognized as a heavy burden on the quality of life of patients with schizophrenia, but little progress has been made in finding new treatment options. An important limiting factor in this process is the lack of adequate preclinical models and an incomplete understanding of the circuits engaged in cognition. In this study, we back-translated an auditory stimulation protocol regularly used in human EEG studies into mice and combined it with optogenetics to investigate the role of prefrontal cortex PV INs in excitatory/inhibitory balance and cortical processing. We also assessed spatial WM and reversal learning (RL) during inhibition of prefrontal cortex PV INs. We found significant impairments in trial-to-trial reliability, increased basal network activity and increased oscillation power at 20-60 Hz, and a decreased signal-to-noise ratio, but no significant impairments in behavior. These changes reflect some but not all neurophysiological deficits seen in patients with schizophrenia, suggesting that other neuronal populations and possibly brain regions are involved as well. Our work supports and expands previous findings and highlights the versatility of an approach that combines innovative technologies with back-translated tools used in humans.
Collapse
Affiliation(s)
- Oana Toader
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany,To whom correspondence should be addressed; Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany; tel: +49 735154188280, e-mail:
| | - Moritz von Heimendahl
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany
| | - Niklas Schuelert
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany
| | - Wiebke Nissen
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany
| | - Holger Rosenbrock
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany
| |
Collapse
|
36
|
Manzella FM, Joksimovic SM, Orfila JE, Fine BR, Dietz RM, Sampath D, Fiedler HK, Tesic V, Atluri N, Raol YH, Jevtovic-Todorovic V, Herson PS, Todorovic SM. Neonatal Ketamine Alters High-Frequency Oscillations and Synaptic Plasticity in the Subiculum But Does not Affect Sleep Macrostructure in Adolescent Rats. Front Syst Neurosci 2020; 14:26. [PMID: 32528257 PMCID: PMC7264261 DOI: 10.3389/fnsys.2020.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Exposure to sedative/hypnotic and anesthetic drugs, such as ketamine, during the critical period of synaptogenesis, causes profound neurotoxicity in the developing rodent and primate brains and is associated with poor cognitive outcomes later in life. The subiculum is especially vulnerable to acute neurotoxicity after neonatal exposure to sedative/hypnotic and anesthetic drugs. The subiculum acts as a relay center between the hippocampal complex and various cortical and subcortical brain regions and is also an independent generator of gamma oscillations. Gamma oscillations are vital in neuronal synchronization and play a role in learning and memory during wake and sleep. However, there has been little research examining long-term changes in subicular neurophysiology after neonatal exposure to ketamine. Here we explore the lasting effects of neonatal ketamine exposure on sleep macrostructure as well as subicular neuronal oscillations and synaptic plasticity in rats. During the peak of rodent synaptogenesis at postnatal day 7, rat pups were exposed to either 40 mg/kg of ketamine over 12 h or to volume matched saline vehicle. At weaning age, a subset of rats were implanted with a cortical and subicular electroencephalogram electrode, and at postnatal day 31, we performed in vivo experiments that included sleep macrostructure (divided into the wake, non-rapid eye movement, and rapid eye movement sleep) and electroencephalogram power spectra in cortex and subiculum. In a second subset of ketamine exposed animals, we conducted ex vivo studies of long-term potentiation (LTP) experiments in adolescent rats. Overall, we found that neonatal exposure to ketamine increased subicular gamma oscillations during non-rapid eye movement sleep but it did not alter sleep macrostructure. Also, we observed a significant decrease in subicular LTP. Gamma oscillations during non-rapid eye movement sleep are implicated in memory formation and consolidation, while LTP serves as a surrogate for learning and memory. Together these results suggest that lasting functional changes in subiculum circuitry may underlie neurocognitive impairments associated with neonatal exposure to anesthetic agents.
Collapse
Affiliation(s)
- Francesca M Manzella
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brier R Fine
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dayalan Sampath
- Department of Neuroscience and Experimental Therapeutics, University of Texas A&M, College Station, TX, United States
| | - Hanna K Fiedler
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vesna Tesic
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
37
|
Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020; 14:13. [PMID: 32296311 PMCID: PMC7137737 DOI: 10.3389/fncir.2020.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed “stimulus-specific adaptation” (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed “deviance detection” (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced “mismatch negativity” (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the “oddball” paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.
Collapse
Affiliation(s)
- Jordan M Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States.,Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
38
|
Honda S, Matsumoto M, Tajinda K, Mihara T. Enhancing Clinical Trials Through Synergistic Gamma Power Analysis. Front Psychiatry 2020; 11:537. [PMID: 32587536 PMCID: PMC7299152 DOI: 10.3389/fpsyt.2020.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
While the etiology of many neuropsychiatric disorders remains unknown, increasing evidence suggests that aberrant sensory processing plays a central role. For this class of disorders, which are characterized by affective, cognitive, and behavioral symptoms, electroencephalography remains the dominant tool for providing insight into the physiological and molecular underpinnings of the disease state and predicting the effectiveness of investigational new drugs. Within the spectrum of electrical activity present in the CNS, high-frequency oscillations in the gamma band are frequently altered in these patient populations. Measurement of gamma oscillation can be further classified into baseline and evoked, each of which offers a specific commentary on disease state. Baseline gamma analysis provides a surrogate of pharmacodynamics and predicting the time course effects of clinical candidate drugs, while alterations in evoked (time-locked) gamma power may serve as a disease biomarker and have utility in assessing patient response to new drugs. Together, these techniques offer complimentary methods of analysis for discrete realms of clinical and translational medicine. In terms of drug development, comprehensive analysis containing aspects of both baseline and evoked gamma oscillations may prove more useful in establishing better workflow and more accurate criteria for the testing of investigational new drugs.
Collapse
Affiliation(s)
- Sokichi Honda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Mitsuyuki Matsumoto
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Katsunori Tajinda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Takuma Mihara
- Candidate Discovery Research Labs, DDR, Astellas Pharm Inc., Tsukuba, Japan
| |
Collapse
|
39
|
Sokolenko E, Hudson MR, Nithianantharajah J, Jones NC. The mGluR 2/3 agonist LY379268 reverses NMDA receptor antagonist effects on cortical gamma oscillations and phase coherence, but not working memory impairments, in mice. J Psychopharmacol 2019; 33:1588-1599. [PMID: 31580222 DOI: 10.1177/0269881119875976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Abnormalities in neural oscillations that occur in the gamma frequency range (30-80 Hz) may underlie cognitive deficits in schizophrenia. Both cognitive impairments and gamma oscillatory disturbances can be induced in healthy people and rodents by administration of N-methyl-D-aspartate receptor (NMDAr) antagonists. AIMS We studied relationships between cognitive impairment and gamma abnormalities following NMDAr antagonism, and attempted to reverse deficits with the metabotropic glutamate receptor type 2/3 (mGluR2/3) agonist LY379268. METHODS C57/Bl6 mice were trained to perform the Trial-Unique Nonmatching to Location (TUNL) touchscreen test for working memory. They were then implanted with local field potential (LFP) recording electrodes in prefrontal cortex and dorsal hippocampus. Mice were administered either LY379268 (3 mg/kg) or vehicle followed by the NMDAr antagonist MK-801 (0.3 or 1 mg/kg) or vehicle prior to testing on the TUNL task, or recording LFPs during the presentation of an auditory stimulus. RESULTS MK-801 impaired working memory and increased perseveration, but these behaviours were not improved by LY379268 treatment. MK-81 increased the power of ongoing gamma and high gamma (130-180 Hz) oscillations in both brain regions and regional coherence between regions, and these signatures were augmented by LY379268. However, auditory-evoked gamma oscillation deficits caused by MK-801 were not affected by LY379268 pretreatment. CONCLUSIONS NMDA receptor antagonism impairs working memory in mice, but this is not reversed by stimulation of mGluR2/3. Since elevations in ongoing gamma power and regional coherence caused by MK-801 were improved by LY379268, it appears unlikely that these specific oscillatory abnormalities underlie the working memory impairment caused by NMDAr antagonism.
Collapse
Affiliation(s)
- Elysia Sokolenko
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia
| | - Matthew R Hudson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Sysoeva OV, Smirnov K, Stroganova TA. Sensory evoked potentials in patients with Rett syndrome through the lens of animal studies: Systematic review. Clin Neurophysiol 2019; 131:213-224. [PMID: 31812082 DOI: 10.1016/j.clinph.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Systematically review the abnormalities in event related potential (ERP) recorded in Rett Syndrome (RTT) patients and animals in search of translational biomarkers of deficits related to the particular neurophysiological processes of known genetic origin (MECP2 mutations). METHODS Pubmed, ISI Web of Knowledge and BIORXIV were searched for the relevant articles according to PRISMA standards. RESULTS ERP components are generally delayed across all sensory modalities both in RTT patients and its animal model, while findings on ERPs amplitude strongly depend on stimulus properties and presentation rate. Studies on RTT animal models uncovered the abnormalities in the excitatory and inhibitory transmission as critical mechanisms underlying the ERPs changes, but showed that even similar ERP alterations in auditory and visual domains have a diverse neural basis. A range of novel approaches has been developed in animal studies bringing along the meaningful neurophysiological interpretation of ERP measures in RTT patients. CONCLUSIONS While there is a clear evidence for sensory ERPs abnormalities in RTT, to further advance the field there is a need in a large-scale ERP studies with the functionally-relevant experimental paradigms. SIGNIFICANCE The review provides insights into domain-specific neural basis of the ERP abnormalities and promotes clinical application of the ERP measures as the non-invasive functional biomarkers of RTT pathophysiology.
Collapse
Affiliation(s)
- Olga V Sysoeva
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA; The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; The Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | - Kirill Smirnov
- Department of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia.
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG-Center), Moscow State University of Psychology and Education (MSUPE), Moscow, Russia; Autism Research Laboratory, Moscow State University of Psychology and Education (MSUPE), Moscow, Russia.
| |
Collapse
|
41
|
Yang J, Wang L, Wang F, Tang X, Zhou P, Liang R, Zheng C, Ming D. Low-Frequency Pulsed Magnetic Field Improves Depression-Like Behaviors and Cognitive Impairments in Depressive Rats Mainly via Modulating Synaptic Function. Front Neurosci 2019; 13:820. [PMID: 31481866 PMCID: PMC6710372 DOI: 10.3389/fnins.2019.00820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has shown great promise as a medical treatment of depression. The effectiveness of TMS treatment at high frequency has been well investigated; however, low-frequency TMS in depression treatment has rarely been investigated in depression-induced cognitive deficits. Herein, this study was carried out to assess the possible modulatory role of low-frequency pulsed magnetic field (LFPMF) on reversing cognitive impairment in a model of depression induced by chronic unpredictable stress (CUS). Wistar rats were randomly allocated into four groups as follows: a control group (CON), a control applied with LFPMF (CON + LFPMF), a CUS group, and a CUS treated with LFPMF (CUS + LFPMF) group. During 8 weeks of CUS, compared to those in the CON group, animals not only gained less weight but also exhibited anhedonia, anxiety, and cognitive decline in behavioral tests. After 2-week treatment of LFPMF, a 20 mT, 1 Hz magnetic stimulation, it reversed the impairment of spatial cognition as well as hippocampal synaptic function including long-term potentiation and related protein expression. Thus, LFPMF has shown effectively improvements on depressant behavior and cognitive dysfunction in CUS rats, possibly via regulating synaptic function.
Collapse
Affiliation(s)
- Jiajia Yang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Ling Wang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Faqi Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoxuan Tang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Peng Zhou
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Rong Liang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
42
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
43
|
Grent-'t-Jong T, Rivolta D, Gross J, Gajwani R, Lawrie SM, Schwannauer M, Heidegger T, Wibral M, Singer W, Sauer A, Scheller B, Uhlhaas PJ. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia. Brain 2019; 141:2511-2526. [PMID: 30020423 PMCID: PMC6061682 DOI: 10.1093/brain/awy175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
Hypofunction of the N-methyl-d-aspartate receptor (NMDAR) has been implicated as a possible mechanism underlying cognitive deficits and aberrant neuronal dynamics in schizophrenia. To test this hypothesis, we first administered a sub-anaesthetic dose of S-ketamine (0.006 mg/kg/min) or saline in a single-blind crossover design in 14 participants while magnetoencephalographic data were recorded during a visual task. In addition, magnetoencephalographic data were obtained in a sample of unmedicated first-episode psychosis patients (n = 10) and in patients with chronic schizophrenia (n = 16) to allow for comparisons of neuronal dynamics in clinical populations versus NMDAR hypofunctioning. Magnetoencephalographic data were analysed at source-level in the 1–90 Hz frequency range in occipital and thalamic regions of interest. In addition, directed functional connectivity analysis was performed using Granger causality and feedback and feedforward activity was investigated using a directed asymmetry index. Psychopathology was assessed with the Positive and Negative Syndrome Scale. Acute ketamine administration in healthy volunteers led to similar effects on cognition and psychopathology as observed in first-episode and chronic schizophrenia patients. However, the effects of ketamine on high-frequency oscillations and their connectivity profile were not consistent with these observations. Ketamine increased amplitude and frequency of gamma-power (63–80 Hz) in occipital regions and upregulated low frequency (5–28 Hz) activity. Moreover, ketamine disrupted feedforward and feedback signalling at high and low frequencies leading to hypo- and hyper-connectivity in thalamo-cortical networks. In contrast, first-episode and chronic schizophrenia patients showed a different pattern of magnetoencephalographic activity, characterized by decreased task-induced high-gamma band oscillations and predominantly increased feedforward/feedback-mediated Granger causality connectivity. Accordingly, the current data have implications for theories of cognitive dysfunctions and circuit impairments in the disorder, suggesting that acute NMDAR hypofunction does not recreate alterations in neural oscillations during visual processing observed in schizophrenia.
Collapse
Affiliation(s)
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Ruchika Gajwani
- Institute of Health and Wellbeing, University of Glasgow, UK
| | | | | | - Tonio Heidegger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | | | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Sauer
- MEG-Unit, Goethe University, Frankfurt am Main, Germany.,Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Bertram Scheller
- Department of Anaesthesia, Intensive Care Medicine and Pain Therapy, Goethe University, Frankfurt am Main, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
44
|
Ward KR, Featherstone RE, Naschek MJ, Melnychenko O, Banerjee A, Yi J, Gifford RL, Borgmann-Winter KE, Salter MW, Hahn CG, Siegel SJ. Src deficient mice demonstrate behavioral and electrophysiological alterations relevant to psychiatric and developmental disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:84-92. [PMID: 30826459 DOI: 10.1016/j.pnpbp.2019.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/12/2023]
Abstract
Much evidence suggests that hypofunction of the N-methyl-d-aspartate glutamate receptor (NMDAR) may contribute broadly towards a subset of molecular, cognitive and behavioral abnormalities common among psychiatric and developmental diseases. However, little is known about the specific molecular changes that lead to NMDAR dysfunction. As such, personalized approaches to remediating NMDAR dysfunction based on a specific etiology remains a challenge. Sarcoma tyrosine kinase (Src) serves as a hub for multiple signaling mechanisms affecting GluN2 phosphorylation and can be disrupted by convergent alterations of various signaling pathways. We recently showed reduced Src signaling in post mortem tissue from schizophrenia patients, despite increased MK-801 binding and NMDA receptor complex expression in the postsynaptic density (PSD). These data suggest that Src dysregulation may be an important underlying mechanism responsible for reduced glutamate signaling. Despite this evidence for a central role of Src in NMDAR signaling, little is known about how reductions in Src activity might regulate phenotypic changes in cognition and behavior. As such, the current study sought to characterize behavioral and electrophysiological phenotypes in mice heterozygous for the Src Acl gene (Src+/- mice). Src+/- mice demonstrated decreased sociability and working memory relative to Src+/+ (WT) mice while no significant differences were seen on locomotive activity and anxiety-related behavior. In relation to WT mice, Src+/- mice showed decreased mid-latency P20 auditory event related potential (aERP) amplitudes, decreased mismatch negativity (MMN) and decreased evoked gamma power, which was only present in males. These data indicate that Src+/- mice are a promising new model to help understand the pathophysiology of these electrophysiological, behavioral and cognitive changes. As such, we propose that Src+/- mice can be used in the future to evaluate potential therapeutic approaches by targeting increased Src activity as a common final pathway for multiple etiologies of SCZ and other diseases characterized by reduced glutamate function.
Collapse
Affiliation(s)
- Katelyn R Ward
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA; Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Robert E Featherstone
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA; Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA
| | - Melissa J Naschek
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Olga Melnychenko
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Janice Yi
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA
| | - Raymond L Gifford
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA
| | | | - Michael W Salter
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Steven J Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA; Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA.
| |
Collapse
|
45
|
Trace amine-associated receptor 1 agonism promotes wakefulness without impairment of cognition in Cynomolgus macaques. Neuropsychopharmacology 2019; 44:1485-1493. [PMID: 30954024 PMCID: PMC6784974 DOI: 10.1038/s41386-019-0386-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/08/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G-protein coupled receptor with affinity for the trace amines. TAAR1 agonists have pro-cognitive, antidepressant-, and antipsychotic-like properties in both rodents and non-human primates (NHPs). TAAR1 agonism also increases wakefulness and suppresses rapid-eye movement (REM) sleep in mice and rats and reduces cataplexy in two mouse models of narcolepsy. We investigated the effects of TAAR1 agonism in Cynomolgus macaques, a diurnal species that exhibits consolidated night-time sleep, and evaluated the effects of TAAR1 agonists on cognition using a working memory (WM) paradigm in this species. Adult male Cynomolgus macaques (n = 6) were surgically implanted to record the electroencephalogram (EEG), electromyogram, and locomotor activity (LMA) and the efficacy of the TAAR1 partial agonist RO5263397 (0.1,1,10 mg/kg, p.o.) on sleep/wake, EEG spectra, and LMA was determined. In a second experiment, the acute effects of RO5263397 (0.1,1,10 mg/kg, p.o.) were assessed on a delayed-match-to-sample test of WM in adult male macaques (n = 7). RO5263397 (10 mg/kg) administered at lights off, when sleep pressure was high, promoted wakefulness and reduced both REM and non-REM sleep without inducing hyperlocomotion. RO5263397 (10 mg/kg) also increased delta/theta activity during all vigilance states. RO5263397 had no effect on WM at either short (2 sec) or long (10 sec) delay intervals. The wake-enhancing and REM-suppressing effects of R05263397 shown here in a diurnal primate are consistent with previous results in nocturnal rodents. These effects and the associated alterations in EEG spectra occurred without inducing hyperlocomotion or affecting WM, encouraging further study of TAAR1 agonists as potential narcolepsy therapeutics.
Collapse
|
46
|
de la Salle S, Shah D, Choueiry J, Bowers H, McIntosh J, Ilivitsky V, Knott V. NMDA Receptor Antagonist Effects on Speech-Related Mismatch Negativity and Its Underlying Oscillatory and Source Activity in Healthy Humans. Front Pharmacol 2019; 10:455. [PMID: 31139075 PMCID: PMC6517681 DOI: 10.3389/fphar.2019.00455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Previous studies in schizophrenia have consistently shown that deficits in the generation of the auditory mismatch negativity (MMN) – a pre-attentive, event-related potential (ERP) typically elicited by changes to simple sound features – are linked to N-methyl-D-aspartate (NMDA) receptor hypofunction. Concomitant with extensive language dysfunction in schizophrenia, patients also exhibit MMN deficits to changes in speech but their relationship to NMDA-mediated neurotransmission is not clear. Accordingly, our study aimed to investigate speech MMNs in healthy humans and their underlying electrophysiological mechanisms in response to NMDA antagonist treatment. We also evaluated the relationship between baseline MMN/electrocortical activity and emergent schizophrenia-like symptoms associated with NMDA receptor blockade. Methods: In a sample of 18 healthy volunteers, a multi-feature Finnish language paradigm incorporating changes in syllables, vowels and consonant stimuli was used to assess the acute effects of the NMDA receptor antagonist ketamine and placebo on the MMN. Further, measures of underlying neural activity, including evoked theta power, theta phase locking and source-localized current density in cortical regions of interest were assessed. Subjective symptoms were assessed with the Clinician Administered Dissociative States Scale (CADSS). Results: Participants exhibited significant ketamine-induced increases in psychosis-like symptoms and depending on temporal or frontal recording region, co-occurred with reductions in MMN generation in response to syllable frequency/intensity, vowel duration, across vowel and consonant deviants. MMN attenuation was associated with decreases in evoked theta power, theta phase locking and diminished current density in auditory and inferior frontal (language-related cortical) regions. Baseline (placebo) MMN and underlying electrophysiological features associated with the processing of changes in syllable intensity correlated with the degree of psychotomimetic response to ketamine. Conclusion: Ketamine-induced impairments in healthy human speech MMNs and their underlying electrocortical mechanisms closely resemble those observed in schizophrenia and support a model of dysfunctional NMDA receptor-mediated neurotransmission of language processing deficits in schizophrenia.
Collapse
Affiliation(s)
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
47
|
Port RG, Berman JI, Liu S, Featherstone RE, Roberts TP, Siegel SJ. Parvalbumin Cell Ablation of NMDA-R1 Leads to Altered Phase, But Not Amplitude, of Gamma-Band Cross-Frequency Coupling. Brain Connect 2019; 9:263-272. [PMID: 30588822 PMCID: PMC6479236 DOI: 10.1089/brain.2018.0639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Altered gamma-band electrophysiological activity in individuals with autism spectrum disorder (ASD) is well documented, and analogous gamma-band alterations are recapitulated in several preclinical murine models relevant to ASD. Such gamma-band activity is hypothesized to underlie local circuit processes. Gamma-band cross-frequency coupling (CFC), a related though distinct metric, interrogates local neural circuit signal integration. Several recent studies have observed perturbed gamma-band CFC in individuals with ASD, although the direction of change remains unresolved. It also remains unclear whether murine models relevant to ASD recapitulate this altered gamma-band CFC. As such, this study examined whether mice with parvalbumin (PV) cell-specific ablation of NMDA-R1 (PVcre/NR1fl/fl) demonstrated altered gamma-band CFC as compared with their control littermates (PVcre/NR1+/+-mice that do not have the PV cell-specific ablation of NMDA-R1). Ten mice of each genotype had 4 min of "resting" electroencephalography recorded and analyzed. First, resting electrophysiological power was parsed into the canonical frequency bands and genotype-related differences were subsequently explored so as to provide context for the subsequent CFC analyses. PVcre/NR1fl/fl mice exhibited an increase in resting power specific to the high gamma-band, but not other frequency bands, as compared with PVcre/NR1+/+. CFC analyses then examined both the standard magnitude (strength) of CFC and the novel metric PhaseMax-which denotes the phase of the lower frequency signal at which the peak higher frequency signal power occurred. PVcre/NR1fl/fl mice exhibited altered PhaseMax, but not strength, of gamma-band CFC as compared with PVcre/NR1+/+ mice. As such, this study suggests a potential novel metric to explore when studying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Russell G. Port
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jeffrey I. Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert E. Featherstone
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Timothy P.L. Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Steven J. Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
48
|
Kim S, Jang SK, Kim DW, Shim M, Kim YW, Im CH, Lee SH. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NEUROIMAGE-CLINICAL 2019; 22:101732. [PMID: 30851675 PMCID: PMC6407311 DOI: 10.1016/j.nicl.2019.101732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Abstract
Background Abnormalities in the 40-Hz auditory steady-state response (ASSR) of the gamma range have been reported in schizophrenia (SZ) and are regarded as important pathophysiological features. Many of the previous studies reported diminished gamma oscillations in SZ, although some studies reported increased spontaneous gamma oscillations. Furthermore, brain morphological correlates of the gamma band ASSR deficits have rarely examined. We investigated different measures of the 40-Hz ASSR and their association with brain volumes and psychological measures of SZ. Methods The 40-Hz ASSR was measured for 80 dB click sounds (1 ms, 500-ms trains at 40-Hz, with 3050 to 3500 inter-train interval) using electroencephalography with 64 electrodes in 33 patients with SZ (male: 16, female: 17 (age range: 21–60)) and 30 healthy controls (HCs) (male: 13, female: 17 (age range: 23–64)). Four gamma oscillation measures (evoked power, spontaneous oscillations (baseline and total power), and inter-trial phase coherence (ITC)) were assessed. The source activities of the ASSR were also analyzed. Brain volumes were assessed using high-resolution magnetic resonance imaging and voxel-based morphometry and superior temporal gyrus (STG) volume measures were obtained. Results Patients with SZ had larger total and evoked powers and higher ITC than HCs. Both groups showed significantly different association between mean evoked power and right STG volume. In HCs but not SZ, mean evoked power showed significant positive correlation with right STG volume. In addition, the two groups showed significantly different association between verbal fluency and mean evoked power. High evoked power was significantly correlated with poor verbal fluency in SZ. Conclusions The current study found increased gamma oscillation in SZ and suggests significant involvement of the STG in gamma oscillations. SZ had larger total and evoked powers and higher ITC than HCs. Evoked power positively correlated with right STG volume in HCs. High evoked power correlated with poor verbal fluency in SZ.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seon-Kyeong Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Miseon Shim
- Department of Psychiatry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
| |
Collapse
|
49
|
Steinmann S, Leicht G, Mulert C. The interhemispheric miscommunication theory of auditory verbal hallucinations in schizophrenia. Int J Psychophysiol 2019; 145:83-90. [PMID: 30738815 DOI: 10.1016/j.ijpsycho.2019.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 01/16/2023]
Abstract
Auditory verbal hallucinations (AVH) are hallmark symptoms of schizophrenia and have been linked to abnormal activation, connectivity and integration within the auditory, language, and memory brain networks. The interhemispheric miscommunication theory of AVH is based on a steadily growing number of studies using a variety of modalities (EEG, fMRI, DTI) reporting that both altered integrity of the interhemispheric auditory pathways and disturbed functional gamma-band synchrony between right and left auditory cortices significantly contribute to abnormal auditory processing and the emergence of AVH. Moreover, initial studies using pharmacological EEG and 1H MR spectroscopy provided first insights into the underlying neurochemistry of AVH. It has been suggested that the observed interhemispheric gamma-band alterations might be mediated by an excitatory-to-inhibitory (E/I) imbalance due to dysfunction of N-methyl-d-aspartate receptor (NMDAR). In support, a potential NMDAR hypofunction is proposed to be compensated by increased levels of glutamate in prefrontal and auditory brain areas. In this mini-review paper, we used the levels of explanation approach and present how interhemispheric brain connectivity (brain-imaging level) corresponds to auditory perception (cognitive level), and eventually how these parameters are related to changes in neurotransmission (cellular level) and to the occurrence of AVH (clinical level). To the best of our knowledge, this is the first overview that overcomes traditional boundaries and presents converging evidence from different levels of knowledge that validate and support each other, and particularly point toward the role of an interhemispheric miscommunication in AVH.
Collapse
Affiliation(s)
- Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
50
|
Michelson NJ, Kozai TDY. Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. J Neurophysiol 2018; 120:2232-2245. [PMID: 30067128 PMCID: PMC6295540 DOI: 10.1152/jn.00299.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
General anesthesia is ubiquitous in research and medicine, yet although the molecular mechanisms of anesthetics are well characterized, their ultimate influence on cortical electrophysiology remains unclear. Moreover, the influence that different anesthetics have on sensory cortexes at neuronal and ensemble scales is mostly unknown and represents an important gap in knowledge that has widespread relevance for neural sciences. To address this knowledge gap, this work explored the effects of isoflurane and ketamine/xylazine, two widely used anesthetic paradigms, on electrophysiological behavior in mouse primary visual cortex. First, multiunit activity and local field potentials were examined to understand how each anesthetic influences spontaneous activity. Then, the interlaminar relationships between populations of neurons at different cortical depths were studied to assess whether anesthetics influenced resting-state functional connectivity. Lastly, the spatiotemporal dynamics of visually evoked multiunit and local field potentials were examined to determine how each anesthetic alters communication of visual information. We found that isoflurane enhanced the rhythmicity of spontaneous ensemble activity at 10-40 Hz, which coincided with large increases in coherence between layer IV with superficial and deep layers. Ketamine preferentially increased local field potential power from 2 to 4 Hz, and the largest increases in coherence were observed between superficial and deep layers. Visually evoked responses across layers were diminished under isoflurane, and enhanced under ketamine anesthesia. These findings demonstrate that isoflurane and ketamine anesthesia differentially impact sensory processing in V1. NEW & NOTEWORTHY We directly compared electrophysiological responses in awake and anesthetized (isoflurane or ketamine) mice. We also proposed a method for quantifying and visualizing highly variable, evoked multiunit activity. Lastly, we observed distinct oscillatory responses to stimulus onset and offset in awake and isoflurane-anesthetized mice.
Collapse
Affiliation(s)
- Nicholas J Michelson
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- NeuroTech Center, University of Pittsburgh Brain Institute , Pittsburgh, Pennsylvania
| |
Collapse
|