1
|
Hao XZ, Sun CF, Lin LY, Li CC, Zhao XJ, Jiang M, Yang YM, Yao ZW. Inhibition of Notch 1 signaling in the subacute stage after stroke promotes striatal astrocyte-derived neurogenesis. Neural Regen Res 2023; 18:1777-1781. [PMID: 36751805 PMCID: PMC10154486 DOI: 10.4103/1673-5374.363179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/16/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inhibition of Notch1 signaling has been shown to promote astrocyte-derived neurogenesis after stroke. To investigate the regulatory role of Notch1 signaling in this process, in this study, we used a rat model of stroke based on middle cerebral artery occlusion and assessed the behavior of reactive astrocytes post-stroke. We used the γ-secretase inhibitor N-[N-(3,5-diuorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT) to block Notch1 signaling at 1, 4, and 7 days after injury. Our results showed that only administration of DAPT at 4 days after stroke promoted astrocyte-derived neurogenesis, as manifested by recovery of white matter fiber bundle integrity on magnetic resonance imaging, which is consistent with recovery of neurologic function. These findings suggest that inhibition of Notch1 signaling at the subacute stage post-stroke mediates neural repair by promoting astrocyte-derived neurogenesis.
Collapse
Affiliation(s)
- Xiao-Zhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Cheng-Feng Sun
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu-Yi Lin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chan-Chan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xian-Jing Zhao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Jiang
- Institutes of Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Mei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-Wei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li L, Li X, Han R, Wu M, Ma Y, Chen Y, Zhang H, Li Y. Therapeutic Potential of Chinese Medicine for Endogenous Neurogenesis: A Promising Candidate for Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:ph16050706. [PMID: 37242489 DOI: 10.3390/ph16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strokes are a leading cause of morbidity and mortality in adults worldwide. Extensive preclinical studies have shown that neural-stem-cell-based treatments have great therapeutic potential for stroke. Several studies have confirmed that the effective components of traditional Chinese medicine can protect and maintain the survival, proliferation, and differentiation of endogenous neural stem cells through different targets and mechanisms. Therefore, the use of Chinese medicines to activate and promote endogenous nerve regeneration and repair is a potential treatment option for stroke patients. Here, we summarize the current knowledge regarding neural stem cell strategies for ischemic strokes and the potential effects of these Chinese medicines on neuronal regeneration.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meirong Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaolei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhao Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Liu C, Wu X, Vulugundam G, Gokulnath P, Li G, Xiao J. Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. SPORTS MEDICINE - OPEN 2023; 9:27. [PMID: 37149504 PMCID: PMC10164224 DOI: 10.1186/s40798-023-00573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinying Wu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | | | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
5
|
Baur K, Abdullah Y, Mandl C, Hölzl‐Wenig G, Shi Y, Edelkraut U, Khatri P, Hagenston AM, Irmler M, Beckers J, Ciccolini F. A novel stem cell type at the basal side of the subventricular zone maintains adult neurogenesis. EMBO Rep 2022; 23:e54078. [PMID: 35861333 PMCID: PMC9442324 DOI: 10.15252/embr.202154078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Yomn Abdullah
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Gabriele Hölzl‐Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Yan Shi
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Udo Edelkraut
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Priti Khatri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Martin Irmler
- Helmholtz Zentrum München GmbH Institute of Experimental Genetics Neuherberg Germany
| | - Johannes Beckers
- Helmholtz Zentrum München GmbH Institute of Experimental Genetics Neuherberg Germany
- Technische Universität München Chair of Experimental Genetics Weihenstephan Germany
- Deutsches Zentrum für Diabetesforschung e.V. (DZD) Neuherberg Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| |
Collapse
|
6
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
8
|
Zheng Z, Chen J, Chopp M. Mechanisms of Plasticity Remodeling and Recovery. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Huang H, Zhao C, Hu Q, Liu Q, Sun YM, Chen C, Huang H, Zhou CH, Wu YQ. Neonatal Anesthesia by Ketamine in Neonatal Rats Inhibits the Proliferation and Differentiation of Hippocampal Neural Stem Cells and Decreases Neurocognitive Function in Adulthood via Inhibition of the Notch1 Signaling Pathway. Mol Neurobiol 2021; 58:6272-6289. [PMID: 34480336 DOI: 10.1007/s12035-021-02550-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/28/2021] [Indexed: 12/28/2022]
Abstract
The Notch signaling pathway plays an important role in the regulation of neurogenesis. The objective of this study was to investigate whether the Notch signaling pathway was involved in the neurogenesis impairment and long-term neurocognitive dysfunction caused by neonatal exposure to ketamine. On postnatal day 7 (PND-7), male Sprague-Dawley (SD) rats were intraperitoneally injected with 40 mg/kg ketamine four consecutive times (40 mg/kg × 4) at 1-h intervals. Notch ligand Jagged1 (0.5 mg/kg) and lentivirus overexpressing the Notch1 intracellular domain (LV-NICD1) were microinjected into the hippocampal dentate gyrus (DG) 1 h or 4 days before ketamine administration, respectively. The expression of Notch1 signaling pathway-related proteins was detected by Western blotting 24 h after ketamine administration. The proliferation and differentiation of the neural stem cells (NSCs) in the hippocampal DG were evaluated by double immunofluorescence staining 24 h after treatment. Moreover, changes in hippocampus-dependent spatial memory of 2-month-old rats were investigated with the Morris water maze test. Ketamine anesthesia in neonatal rats decreased the expression levels of Jagged1, Notch1, NICD1, and hairy enhancer of split 1 (Hes1); inhibited the proliferation and astrocytic differentiation of NSCs; and promoted the differentiation of neurons. Neonatal exposure to ketamine caused deficits in hippocampus-dependent spatial reference memory tasks in 2-month-old rats. Microinjection of Jagged1 or LV-NICD1 reversed the inhibitory effect of ketamine on the expression of Notch1-related proteins in the hippocampal DG, attenuated the ketamine-mediated decrease in NSC proliferation and differentiation, and improved the cognitive function of 2-month-old rats after neonatal exposure to ketamine. These results suggest that neonatal exposure to ketamine in rats inhibits the proliferation and differentiation of hippocampal NSCs and impairs neurocognitive function in adulthood. The Notch1 signaling pathway may be involved in the impairment of hippocampus-dependent learning and memory during adulthood caused by neonatal exposure to ketamine. These findings contribute to further understanding the neurotoxicity induced by neonatal exposure to ketamine and the underlying mechanisms.
Collapse
Affiliation(s)
- He Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chao Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, People's Republic of China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China.
| |
Collapse
|
10
|
Gao Q, Leung A, Yang YH, Lau BWM, Wang Q, Liao LY, Xie YJ, He CQ. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia. Neural Regen Res 2021; 16:1252-1257. [PMID: 33318402 PMCID: PMC8284293 DOI: 10.4103/1673-5374.301020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extremely low frequency electromagnetic fields (ELF-EMF) can improve the learning and memory impairment of rats with Alzheimer’s disease, however, its effect on cerebral ischemia remains poorly understood. In this study, we established rat models of middle cerebral artery occlusion/reperfusion. One day after modeling, a group of rats were treated with ELF-EMF (50 Hz, 1 mT) for 2 hours daily on 28 successive days. Our results showed that rats treated with ELF-EMF required shorter swimming distances and latencies in the Morris water maze test than those of untreated rats. The number of times the platform was crossed and the time spent in the target quadrant were greater than those of untreated rats. The number of BrdU+ /NeuN+ cells, representing newly born neurons, in the hippocampal subgranular zone increased more in the treated than in untreated rats. Up-regulation in the expressions of Notch1, Hes1, and Hes5 proteins, which are the key factors of the Notch signaling pathway, was greatest in the treated rats. These findings suggest that ELF-EMF can enhance hippocampal neurogenesis of rats with cerebral ischemia, possibly by affecting the Notch signaling pathway. The study was approved by the Institutional Ethics Committee of Sichuan University, China (approval No. 2019255A) on March 5, 2019.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Aaron Leung
- Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yong-Hong Yang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qian Wang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yun-Juan Xie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| |
Collapse
|
11
|
Zhu X, Liu X, Liu Y, Chang W, Song Y, Zhu S. Uncovering the Potential Differentially Expressed miRNAs and mRNAs in Ischemic Stroke Based on Integrated Analysis in the Gene Expression Omnibus Database. Eur Neurol 2020; 83:404-414. [PMID: 32906114 DOI: 10.1159/000507364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Ischemic stroke is the third leading cause of death. There is no known treatment or cure for the disease. Moreover, the pathological mechanism of ischemic stroke remains unclear. OBJECTIVE We aimed to identify potential microRNAs (miRNAs) and mRNAs, contributing to understanding the pathology of ischemic stroke. METHODS First, the data of miRNA and mRNA were downloaded for differential expression analysis. Then, the regulatory network between miRNA and mRNAs was constructed. Third, top 100 differentially expressed mRNAs were used to construct a protein-protein interaction network followed by the function annotation of mRNAs. In addition, in vitro experiment was used to validate the expression of mRNAs. Last, receiver operating characteristic diagnostic analysis of differentially methylated genes was performed. RESULTS Totally, up to 26 differentially expressed miRNAs and 1,345 differentially expressed mRNAs were identified. Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa-miR-206-HMGCR/PICALM, hsa-miR-4491-TMEM97, hsa-miR-3622b-5p/hsa-miR-548k-KLF12, and hsa-miR-302a-3p/hsa-miR-3145-3p-CTSS. MAPK signaling pathway (involved DUSP1) and the Notch signaling pathway (involved NUMB and CREBBP) were identified. The expression validation of KLF12, ARG1, ITGAM, SIRT4, SERPINH1, and DUSP1 was consistent with the bioinformatics analysis. Interestingly, hsa-miR-206, hsa-miR-4491, hsa-miR-3622b-5p, hsa-miR-548k, hsa-miR-302a-3p, hsa-miR-3145-3p, KLF12, and ID3 had the potential diagnostic value of ischemic stroke. CONCLUSIONS The identified differentially expressed miRNAs and mRNAs may be associated with the development of ischemic stroke.
Collapse
Affiliation(s)
- Xiaotun Zhu
- Department of Neurology, Liaocheng Second Hospital Affiliated to Shandong First Medical University, Linqing City, China,
| | - Xiao Liu
- Department of Neurology, Liaocheng Second Hospital Affiliated to Shandong First Medical University, Linqing City, China
| | - Ying Liu
- Department of Neurology, Liaocheng Second Hospital Affiliated to Shandong First Medical University, Linqing City, China
| | - Wansheng Chang
- Department of Neurology, Liaocheng Second Hospital Affiliated to Shandong First Medical University, Linqing City, China
| | - Yanfeng Song
- Department of Neurology, Liaocheng Second Hospital Affiliated to Shandong First Medical University, Linqing City, China
| | - Shulai Zhu
- Department of Neurology, Liaocheng Second Hospital Affiliated to Shandong First Medical University, Linqing City, China
| |
Collapse
|
12
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
13
|
Ho DM, Artavanis-Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e358. [PMID: 31502763 DOI: 10.1002/wdev.358] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
Abstract
The role of the Notch signaling pathway in neural development has been well established over many years. More recent studies, however, have demonstrated that Notch continues to be expressed and active throughout adulthood in many areas of the central nervous system. Notch signals have been implicated in adult neurogenesis, memory formation, and synaptic plasticity in the adult organism, as well as linked to acute brain trauma and chronic neurodegenerative conditions. NOTCH3 mutations are responsible for the most common form of hereditary stroke, the progressive disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Notch has also been associated with several progressive neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Although numerous studies link Notch activity with CNS homeostasis and neurodegenerative diseases, the data thus far are primarily correlative, rather than functional. Nevertheless, the evidence for Notch pathway activity in specific neural cellular contexts is strong, and certainly intriguing, and points to the possibility that the pathway carries therapeutic promise. This article is categorized under: Nervous System Development > Flies Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience and Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
15
|
Hes1 Knockdown Exacerbates Ischemic Stroke Following tMCAO by Increasing ER Stress-Dependent Apoptosis via the PERK/eIF2α/ATF4/CHOP Signaling Pathway. Neurosci Bull 2019; 36:134-142. [PMID: 31309426 DOI: 10.1007/s12264-019-00411-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Apoptosis induced by endoplasmic reticulum (ER) stress plays a crucial role in mediating brain damage after ischemic stroke. Recently, Hes1 (hairy and enhancer of split 1) has been implicated in the regulation of ER stress, but whether it plays a functional role after ischemic stroke and the underlying mechanism remain unclear. In this study, using a mouse model of ischemic stroke via transient middle cerebral artery occlusion (tMCAO), we found that Hes1 was induced following brain injury, and that siRNA-mediated knockdown of Hes1 increased the cerebral infarction and worsened the neurological outcome, suggesting that Hes1 knockdown exacerbates ischemic stroke. In addition, mechanistically, Hes1 knockdown promoted apoptosis and activated the PERK/eIF2α/ATF4/CHOP signaling pathway after tMCAO. These results suggest that Hes1 knockdown promotes ER stress-induced apoptosis. Furthermore, inhibition of PERK with the specific inhibitor GSK2606414 markedly attenuated the Hes1 knockdown-induced apoptosis and the increased cerebral infarction as well as the worsened neurological outcome following tMCAO, implying that the protection of Hes1 against ischemic stroke is associated with the amelioration of ER stress via modulating the PERK/eIF2α/ATF4/CHOP signaling pathway. Taken together, these results unveil the detrimental role of Hes1 knockdown after ischemic stroke and further relate it to the regulation of ER stress-induced apoptosis, thus highlighting the importance of targeting ER stress in the treatment of ischemic stroke.
Collapse
|
16
|
Popa-Wagner A, Hermann D, Gresita A. Genetic conversion of proliferative astroglia into neurons after cerebral ischemia: a new therapeutic tool for the aged brain? GeroScience 2019; 41:363-368. [PMID: 31300928 DOI: 10.1007/s11357-019-00084-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke represents the 2nd leading cause of death worldwide and the leading cause for long-term disabilities, for which no cure exists. After stroke, neurons are frequently lost in the infarct core. On the other hand, other cells such as astrocytes become reactive and proliferative, disrupting the neurovascular unit in the lesioned area, especially in the aged brain. Therefore, restoring the balance between neurons and nonneuronal cells within the perilesional area is crucial for post stroke recovery. In addition, the aged post stroke brain mounts a fulminant proliferative astroglial response leading to the buildup of gliotic scars that prevent neural regeneration. Therefore, "melting" glial scars has been attempted for decades, albeit with little success. Alternative strategies include transforming inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth by genetic conversion of astrocytes into neurons. The latter idea has gained momentum following the discovery that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming nonneuronal cells into neurons. This exciting new technology emerged as a new approach to circumvent cell transplantation for stroke therapy. However, the potential of this new methodology has not been yet tested to improve restoration of structure and function in the hostile environment caused by the fulminant inflammatory reaction in the brains of aged animals.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania. .,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45122, Essen, Germany.
| | - Dirk Hermann
- Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45122, Essen, Germany
| | - Andrei Gresita
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
17
|
Zhou H, Wang X, Cheng R, Hou X, Chen Y, Feng Y, Qiu J. Analysis of long non-coding RNA expression profiles in neonatal rats with hypoxic-ischemic brain damage. J Neurochem 2019; 149:346-361. [PMID: 30802942 DOI: 10.1111/jnc.14689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) which is a common cause of acute mortality and neurological dysfunction in neonates still lacks effective therapeutic methods. Long non-coding RNAs (lncRNAs) were demonstrated to play a crucial role in many diseases. To give a foundation for subsequent functional studies of lncRNAs in HIBD, we investigated the profiling of lncRNAs and messenger RNAs (mRNAs) using neonatal HIBD rat model. Six neonatal rats were divided into sham-operated group (n = 3) and HIBD group (n = 3) randomly. Deep RNA sequencing was implemented to find out the meaningful lncRNAs and mRNAs. Quantitative real-time PCR was used to validate expressions of lncRNAs and mRNAs. The Gene Ontology (GO) and kyoto encyclopedia of genes a genomes (KEGG) database were used to predict functions of lncRNAs. A total of 328 differentially expressed lncRNAs (177 down-regulated vs 151 up-regulated) and 7157 differentially expressed mRNAs (2552 down-regulated vs 4605 up-regulated) were identified. The Quantitative real-time PCR results showed significant differential expressions of five lncRNAs and five mRNAs which were consistent with the RNA-Seq data. Gene ontology and KEGG analysis showed these lncRNAs and their expression-correlated mRNAs were closely related to the Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, calcium signaling pathway, Notch signaling pathway, mitogen activated protein kinase signaling pathway, neuroactive ligand-receptor interaction pathway and more. The results of our study identified the characterization and expression profiles of lncRNAs in neonatal HIBD and may be a basis for further therapeutic research. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/yf3da/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Han Zhou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Cheng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuewen Hou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Feng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Qiu
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Lin R, Cai J, Kenyon L, Iozzo R, Rosenwasser R, Iacovitti L. Systemic Factors Trigger Vasculature Cells to Drive Notch Signaling and Neurogenesis in Neural Stem Cells in the Adult Brain. Stem Cells 2018; 37:395-406. [PMID: 30431198 PMCID: PMC7028145 DOI: 10.1002/stem.2947] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023]
Abstract
It is well documented that adult neural stem cells (NSCs) residing in the subventricular zone (SVZ) and the subgranular zone (SGZ) are induced to proliferate and differentiate into new neurons after injury such as stroke and hypoxia. However, the role of injury‐related cues in driving this process and the means by which they communicate with NSCs remains largely unknown. Recently, the coupling of neurogenesis and angiogenesis and the extensive close contact between vascular cells and other niche cells, known as the neurovascular unit (NVU), has attracted interest. Further facilitating communication between blood and NSCs is a permeable blood‐brain‐barrier (BBB) present in most niches, making vascular cells a potential conduit between systemic signals, such as vascular endothelial growth factor (VEGF), and NSCs in the niche, which could play an important role in regulating neurogenesis. We show that the leaky BBB in stem cell niches of the intact and stroke brain can respond to circulating VEGF165 to drive induction of the Notch ligand DLL4 (one of the most important cues in angiogenesis) in endothelial cells (ECs), pericytes, and further induce significant proliferation and neurogenesis of stem cells. Stem Cells2019;37:395–406
Collapse
Affiliation(s)
- Ruihe Lin
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jingli Cai
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lawrence Kenyon
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato Iozzo
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert Rosenwasser
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Li HM, Tong Y, Xia X, Huang J, Song PW, Zhang RJ, Shen CL. Retracted: Bone Mesenchymal Stem Cell-Conditioned Medium Regulates the Differentiation of Neural Stem Cells Via Notch Pathway Activation. Cell Reprogram 2018; 21:e339-e345. [PMID: 30589560 DOI: 10.1089/cell.2018.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The online-ahead-of print e-pub version of the article entitled, Bone Mesenchymal Stem Cell-Conditioned Medium Regulates the Differentiation of Neural Stem Cells Via Notch Pathway Activation, by Li H-M, Tong Y, Xia X, Huang J, Song P-W, Zhang R-J, Shen C-L, utilizing the DOI number 10.1089/cell.2018.0042 is being officially retracted from Cellular Reprogramming. The original version of the paper was submitted to the journal for peer review on July 29, 2018, with the revised version after peer review submitted on October 21, 2018. The paper was accepted for publication on November 20, 2018 and was subsequently published online ahead of print on December 27, 2018. After the e-publication of the article, the editor received an email from the corresponding author on January 14, 2019 requesting "to withdraw the above-mentioned manuscript for further consideration, due to a technical reason (we have done a further experiment and found this article need add more results)." Though it is unclear why the authors were not able to determine these faults with the paper within the six months the manuscript was in review, revision, and production, the editorial leadership of the Journal has determined that the paper requires a full retraction from the literature as Cellular Reprogramming is committed to upholding the strictest standards and best practices of scientific publishing.
Collapse
Affiliation(s)
- Hui-Min Li
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yi Tong
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiang Xia
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jian Huang
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Pei-Wen Song
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ren-Jie Zhang
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Cai-Liang Shen
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Neuroglobin promotes neurogenesis through Wnt signaling pathway. Cell Death Dis 2018; 9:945. [PMID: 30237546 PMCID: PMC6147998 DOI: 10.1038/s41419-018-1007-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/14/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Neuroglobin (Ngb) has been demonstrated by our lab and others to be neuroprotective against neurological disorders including stroke. However, the roles of Ngb in neurogenesis remain elusive. Neurogenesis can occur in adulthood and can be induced by pathological conditions in the brain such as stroke, and significantly contributes to functional recovery, thus enhancing endogenous neurogenesis may be a promising therapeutic strategy for neurodegenerative diseases. In this study we aimed to investigate the roles of Ngb in neurogenesis using Lentivirus overexpressing Ngb (Lv-Ngb). We show that Ngb overexpression promoted the proliferation of neural progenitor cells (NPC) marked by increased neurosphere number and size. Ngb overexpression also enhanced neuronal differentiation of cultured NPC under differentiation conditions. Moreover, subventricular injection of Lv-Ngb in mice after middle cerebral artery occlusion (MCAO) increased PSA-NCAM positive neuroblasts and Tuj1 positive immature neurons, suggesting that Ngb overexpression promotes neurogenesis in mice brain after stroke. We further show that the pro-neurogenesis effect of Ngb overexpression might be mediated through Dvl1 up-regulation, and subsequent activation of Wnt signaling, indicated by increased nuclear localization of beta-catenin. These results suggest that Ngb may play an important role in promoting neurogenesis in neurodegenerative diseases such as stroke, which may eventually benefit the development of stroke therapeutics targeting neurogenesis through Ngb upregulation.
Collapse
|
21
|
Hao XZ, Yin LK, Tian JQ, Li CC, Feng XY, Yao ZW, Jiang M, Yang YM. Inhibition of Notch1 Signaling at the Subacute Stage of Stroke Promotes Endogenous Neurogenesis and Motor Recovery After Stroke. Front Cell Neurosci 2018; 12:245. [PMID: 30131677 PMCID: PMC6091141 DOI: 10.3389/fncel.2018.00245] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose: It is still not clear whether Notch1 signaling inhibition can promote functional outcomes after stroke, given that it plays time-dependent roles in the sequential process of endogenous neurogenesis. The purpose of this study was to identify the appropriate time frame for Notch1 signaling inhibition according to the temporal evolution of Notch1 signaling activation and the responses of neural stem cells (NSCs), in order to target it for therapeutic intervention and stimulate neurorestorative strategies after stroke. Methods: Sprague-Dawley (SD) rats were subjected to 90-min of middle cerebral artery occlusion (MCAO). Rats were sacrificed before, and at day 1, day 2, day 3, day 4, and day 7 after ischemia for immunohistochemical analysis of the Notch intracellular domain (NICD), Nestin and doublecortin (Dcx). Next, MCAO rats were treated with the γ-secretase inhibitor N-[N-(3,5-di uorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT) or with saline at day 4 after ischemia, and subsequently evaluated with behavioral test analysis and magnetic resonance imaging (MRI). The rat brains were then harvested for immunohistochemical analysis of Dcx, NeuN and myelin basic protein (MBP) at 2, 3, 4, and 8 weeks. Results: Notch1 signaling was maximally activated at day 3 after ischemia in parallel with the temporal evolution of NSCs. Inhibiting Notch1 signaling at day 4 after reperfusion with DAPT further promoted recovery of MRI parameters of the corticospinal tract (CST) and the functional outcomes, concomitantly with an increase in neuroblasts, their migration to the ischemic boundary, and potential differentiation to mature neurons, as well as the amelioration of axonal bundle integrity. Conclusion: Inhibition of Notch1 signaling at the subacute stage of stroke could maximally promote endogenous neurogenesis and axonal reorganization.
Collapse
Affiliation(s)
- Xiao-Zhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Le-Kang Yin
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jia-Qi Tian
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chan-Chan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Yuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-Wei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Jiang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Mei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Zuo Q, Zhang C, Jin K, Jing J, Sun C, Ahmed MF, Song J, Zhang Y, Chen G, Li B. NICD-mediated notch transduction regulates the different fate of chicken primordial germ cells and spermatogonial stem cells. Cell Biosci 2018; 8:40. [PMID: 29951200 PMCID: PMC6009047 DOI: 10.1186/s13578-018-0238-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background Notch signaling is mainly regulated by Notch1 during development of chicken germ stem cells; however, the molecular mechanisms that contribute to generation of these germ stem cells have not been thoroughly investigated. Results In our studies, Overexpression of the Notch1 NICD promoted development of the reproductive ridge, but inhibited the formation of seminiferous tubules. The formation efficiency of PGCs in the reproductive ridge following overexpression of NICD (7.5% ± 0.11) was significantly higher than that (4.9% ± 0.17, p < 0.05) following inhibition of NICD, While the formation efficiency of spermatogonial stem cells (SSCs) in the testes (12.7% ± 0.08) was significantly lower after NICD overexpression than that after inhibition of NICD (16.3% ± 0.16, p < 0.05). Using co-immunoprecipitation, we found that this anomaly stemmed from the reversal of dissociation of the Notch-regulated transcription factor CBF-1/RBP co-suppression complex during the differentiation of PGCs into SSCs. This dissociation of the CBF-1/RBP co-suppressing complex during the differentiation of ESCs into PGCs resulted in the release of HDAC1 and HDAC2 and the recruitment of mastermind-like 1 to form a coactive complex to promote the expression of the downstream transcription suppressor hairy/enhancer of split-1. Dynamic expression of transducin-like enhancer of split 3, TLE4, and C-terminal binding protein 2 during further differentiation of PGCs inhibited the dissociation of the CBF-1/RBP co-suppression complex and inhibited the expression of the downstream genes. Conclusions In summary, Notch signaling plays diametrically opposing roles during normal development of chicken PGCs and SSCs, and these functions was determined by the expression of NICD, changes in the CBF-1/RBP complex composition, and histone modification.
Collapse
Affiliation(s)
- Qisheng Zuo
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Chen Zhang
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Kai Jin
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Jin Jing
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Changhua Sun
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Mahmoud F Ahmed
- 3College of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Jiuzhou Song
- 2Department of Animal & Avian Sciences, University of Maryland, Baltimore, MD 20741 USA
| | - Yani Zhang
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Guohong Chen
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Bichun Li
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| |
Collapse
|
23
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
24
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [PMID: 28842356 PMCID: PMC11884751 DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Stroke is the number one cause of neurological dysfunction in adults and has a heavy socioeconomic burden worldwide. The etiological origins of ischemic stroke and resulting pathological processes are mediated by a multifaceted cascade of molecular mechanisms that are in part modulated by posttranscriptional activity. Accumulating evidence has revealed a role for microRNAs (miRNAs) as essential mediators of posttranscriptional gene silencing in both the physiology of brain development and pathology of ischemic stroke. In this review, we compile miRNAs that have been reported to regulate various stroke risk factors and pre-disease mechanisms, including hypertension, atherosclerosis, and diabetes, followed by an in-depth analysis of miRNAs in ischemic stroke pathogenesis, such as excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis and neurogenesis. Since promoting or suppressing expression of miRNAs by specific pharmaceutical and non-pharmaceutical therapies may be beneficial to post-stroke recovery, we also highlight the potential therapeutic value of miRNAs in clinical settings.
Collapse
Affiliation(s)
- Guangwen Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | | | - Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China; Beijing Institute for Brain Disorders and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 10053, China.
| |
Collapse
|
25
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|
27
|
Liu M, Inoue K, Leng T, Zhou A, Guo S, Xiong ZG. ASIC1 promotes differentiation of neuroblastoma by negatively regulating Notch signaling pathway. Oncotarget 2018; 8:8283-8293. [PMID: 28030818 PMCID: PMC5352400 DOI: 10.18632/oncotarget.14164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022] Open
Abstract
In neurons, up-regulation of Notch activity either inhibits neurite extension or causes retraction of neurites. Conversely, inhibition of Notch1 facilitates neurite extension. Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels, which play critical roles in synaptic plasticity, learning and memory and spine morphogenesis. Our pilot proteomics data from ASIC1a knock out mice implicated that ASIC1a may play a role in regulating Notch signaling, therefore, we explored whether or not ASIC1a regulates neurite growth during neuronal development through Notch signaling. In this study, we determined the effects of ASIC1a on neurite growth in a mouse neuroblastoma cell line, NS20Y cells, by modulating ASIC1a expression. We also determined the relationship between ASIC1a and Notch signaling on neuronal differentiation. Our results showed that down-regulation of ASIC1a in NS20Y cells inhibits CPT-cAMP induced neurite growth, while over expression of ASIC1a promotes its growth. In addition, down-regulation of ASIC1a increased the expression of Notch1 and its target gene Survivin while inhibitor of Notch significantly prevented the neurite extension induced by ASIC1a in NS20Y cells. These data indicate that Notch1 signaling may be required for ASIC1a-mediated neurite growth and neuronal differentiation.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Atlanta, GA 30310, USA
| | - Koichi Inoue
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - An Zhou
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
28
|
Li L, Chen LP, Liu QH. Effect of the Notch signaling pathway on retinal ganglion cells and its neuroprotection in rats with acute ocular hypertension. Int J Ophthalmol 2018; 11:208-215. [PMID: 29487808 DOI: 10.18240/ijo.2018.02.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023] Open
Abstract
AIM To explore the effect of the Notch signaling pathway on retinal ganglion cells (RGCs) and optic nerve in rats with acute ocular hypertension (OH). METHODS Totally 48 Sprague-Dawley (SD) rats were included, among which 36 rats were selected to establish acute OH models. OH rats received a single intravitreal injection of 2 µL phosphate buffered solution (PBS) and another group of OH rats received a single intravitreal injection of 10 µmol/L γ-secretase inhibitor (DAPT). Quantitative real-time polymerase chain reaction (qPCR) and Western blot assay were adopted to determine the mRNA level of Notch and the protein levels of Notch, Bcl-2, Bax, caspase-3, and growth-associated protein 43 (GAP-43). The RGC apoptosis conditions were assessed by TUNEL staining. RESULTS The OH rats and PBS-injected rats had increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, with severer macular edema and RGCs more loosely aligned, when compared with the normal rats. The DAPT-treated rats displayed increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, in comparison with the OH rats and PBS-injected rats. RGCs were hardly observed and macular edema became severe in the DAPT-treated rat. CONCLUSION The Notch signaling pathway may suppress the apoptosis of retinal ganglion cells and enhances the regeneration of the damaged optic nerves in rats with acute OH.
Collapse
Affiliation(s)
- Lei Li
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Li-Ping Chen
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
29
|
Liu XL, Wang G, Song W, Yang WX, Hua J, Lyu L. microRNA-137 promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke mice by targeting NR4A2 through the Notch pathway. J Cell Physiol 2018; 233:5255-5266. [PMID: 29206299 DOI: 10.1002/jcp.26312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/03/2017] [Indexed: 01/12/2023]
Abstract
Cerebral ischemic stroke (CIS) is one of the common causes of death and disability worldwide. This study aims to investigate effect of miR-137 on endothelial progenitor cells and angiogenesis in CIS by targeting NR4A2 via the Notch pathway. Brain tissues were extracted from CIS and normal mice. Immunohistochemistry was used to determine positive rate of NR4A2 expression. Serum VEGF, Ang, HGF, and IκBα levels were determined by ELISA. RT-qPCR and Western blotting were used to determine expression of related factors. Endothelial progenitor cells in CIS mice were treated and grouped into blank, NC, miR-137 mimic, miR-137 inhibitor, siRNA-NR4A2, and miR-137 inhibitor + siRNA-NR4A2 groups, and cells in normal mice into normal group. Proliferation and apoptosis were determined by MTT and flow cytometry, respectively. NR4A2 protein expression was strongly positive in CIS mice, which showed higher serum levels of VEGF, Ang, and HGF but lower IκBα than normal mice. Compared with normal group, the rest groups (endothelial progenitor cells from CIS mice) showed decreased expressions of miR-137, Hes1, Hes5, and IκBα but elevated NR4A2, Notch, Jagged1, Hey-2, VEGF, Ang, and HGF, inhibited proliferation and enhanced apoptosis. Compared with blank and NC groups, the miR-137 mimic and siRNA-NR4A2 groups exhibited increased expression of miR-137, Hes1, Hes5, and IκBα, but decreased NR4A2, Notch, Jagged1, and Hey-2, with enhanced proliferation and attenuated apoptosis. The miR-137 inhibitor group reversed the conditions. miR-137 enhances the endothelial progenitor cell proliferation and angiogenesis in CIS mice by targeting NR4A2 through the Notch signaling pathway.
Collapse
Affiliation(s)
- Xing-Li Liu
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Gang Wang
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Wei Song
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Wei-Xin Yang
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Jian Hua
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| | - Liang Lyu
- Department of Radiology, the First People's Hospital of Yunnan Province, Kunming, P.R. China.,Key Laboratory of Medical Imaging, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
30
|
Abstract
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function. In addition, we cover aberrant alterations of Notch signaling in the diseased brain. The aim of this review is to provide an insight into how Notch signaling works in different contexts to control neurogenesis and its potential effects in diagnoses and therapies of neurodegeneration, brain tumors and disorders.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
31
|
Attenuation of opioid tolerance by ET B receptor agonist, IRL-1620, is independent of an accompanied decrease in nerve growth factor in mice. Heliyon 2017. [PMID: 28626808 PMCID: PMC5466593 DOI: 10.1016/j.heliyon.2017.e00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM ETA receptor antagonists reverse opioid tolerance but the involvement of ETB receptors is unknown. In morphine or oxycodone tolerant mice we investigated (1) the effect of ETB receptor agonist, IRL-1620, on analgesic tolerance; (2) changes in expression of the brain ETA and ETB receptors; and (3) alterations in the brain VEGF, NGF, PI3K and notch-1 expression. MAIN METHODS Body weight, body temperature, and tail-flick latency were assessed before and after a challenge dose of morphine or oxycodone in vehicle or IRL-1620 treated mice. Expression studies were carried out using Western blots. KEY FINDINGS Tail flick latency to a challenge dose of opioid was significantly increased by IRL-1620 from 39% to 100% in morphine tolerant and from 8% to 83% in oxycodone tolerant mice. Morphine or oxycodone did not alter ETA or ETB receptor expression. IRL-1620 had no effect on ETA however it increased (61%) expression of ETB receptors. IRL-1620-induced increase in ETB receptor expression was attenuated by morphine (39.8%) and oxycodone (51.8%). VEGF expression was not affected by morphine or oxycodone and was unaltered by IRL-1620. However, NGF and PI3K expression was decreased (P < 0.001) by morphine and oxycodone and was unaffected by IRL-1620. Notch-1 expression was not altered by morphine, oxycodone or IRL-1620. SIGNIFICANCE ETB receptor agonist, IRL-1620, restored analgesic tolerance to morphine and oxycodone, but it did not affect morphine and oxycodone induced decrease in NGF/PI3K expression. It is concluded that IRL-1620 attenuates opioid tolerance without the involvement of NGF/PI3K pathway.
Collapse
|
32
|
Guan J, Wei X, Qu S, Lv T, Fu Q, Yuan Y. Osthole prevents cerebral ischemia-reperfusion injury via the Notch signaling pathway. Biochem Cell Biol 2017; 95:459-467. [PMID: 28257582 DOI: 10.1139/bcb-2016-0233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stroke is a common cerebrovascular disease in aging populations, and constitutes the second highest principle cause of mortality and the principle cause of permanent disability, and ischemic stroke is the primary form. Osthole is a coumarin derivative extracted from the fruits of Cnidium monnieri (L.) Cusson. In this study, we established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and found that MCAO/R caused cerebral infarction, hippocampus neuronal injury and apoptosis, and also activated the Notch 1 signaling pathway. However, treatment with osthole further enhanced the activity of Notch 1 signaling and reduced the cerebral infarction as well as the hippocampus neuronal injury and apoptosis induced by MCAO/R in a dose-dependent manner. The same results were observed in a primary neuronal oxygen glucose deficiency/reperfusion (OGD/R) model in vitro, and the effect of osthole could be blocked by an inhibitor of Notch 1 signaling, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT). Therefore, we demonstrated that osthole injection prevented rat ischemia-reperfusion injury via activating the Notch 1 signaling pathway in vivo and in vitro in a dose-dependent manner, which may be significant for clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Junhong Guan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiangtai Wei
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Tao Lv
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ye Yuan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
33
|
Kraft A, Jubal ER, von Laer R, Döring C, Rocha A, Grebbin M, Zenke M, Kettenmann H, Stroh A, Momma S. Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells. Stem Cell Reports 2017; 8:701-714. [PMID: 28216142 PMCID: PMC5355570 DOI: 10.1016/j.stemcr.2017.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 01/28/2023] Open
Abstract
Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ) to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia. Using a newly established in vitro system we show that calcium waves induced in an astrocytic monolayer spread to neural stem and progenitor cells and increase their self-renewal as well as migratory behavior. These changes are due to an upregulation of the Notch signaling pathway. This introduces the concept of propagating astrocytic calcium waves transmitting brain injury signals over long distances. gene profiling after MCAO suggests a role of calcium-binding proteins Novel in vitro system to study the effects of astrocytic calcium waves on NSPCs Astrocytic calcium waves enhance self-renewal and migration capacity of NSPCs The Notch signaling pathway mediates effects of elevated calcium levels on NSPCs
Collapse
Affiliation(s)
- Anna Kraft
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany
| | - Eduardo Rosales Jubal
- Focus Program Translational Neuroscience (FTN) and Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Faculty of Psychology, Diego Portales University, Santiago, Chile
| | - Ruth von Laer
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Frankfurt University Medical School, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 60528 Frankfurt, Germany
| | - Adriana Rocha
- Cellular Neuroscience, Max Delbrück Centre for Molecular Medicine (MDC) in the Helmholtz Society, 13092 Berlin, Germany
| | - Moyo Grebbin
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max Delbrück Centre for Molecular Medicine (MDC) in the Helmholtz Society, 13092 Berlin, Germany
| | - Albrecht Stroh
- Focus Program Translational Neuroscience (FTN) and Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany.
| |
Collapse
|
34
|
Yang X, Li S, Li B, Wang X, Sun C, Qin H, Sun H. Netrin-1 overexpression improves neurobehavioral outcomes and reduces infarct size via inhibition of the notch1 pathway following experimental stroke. J Neurosci Res 2017; 95:1850-1857. [PMID: 28084632 DOI: 10.1002/jnr.24018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/12/2023]
Abstract
Stroke is a leading cause of morbidity and mortality worldwide. Administration of Netrin-1 during the peri-infarct period has been shown to decrease infarct size in rats; however, the underlying mechanism is unclear. We addressed this question in the present study by inducing stroke in rats via middle cerebral artery occlusion (MCAO), and evaluating the effects of Netrin-1 treatment by neurobehavioral testing, immunocytochemistry, and western blotting. Netrin-1 overexpression increased neurobehavioral test scores and reduced cerebral infarct volume following MCAO via inhibition of the Notch1 signaling pathway. These results demonstrate that early administration of Netrin-1 can is an effective therapeutic approach for improving outcome after stroke. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shiting Li
- Department of Neurosurgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bin Li
- Department of Neurosurgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoqiang Wang
- Department of Neurosurgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chongran Sun
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 310009, China
| | - Haiqiang Qin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Hui Sun
- Department of Neurosurgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
35
|
Mao HF, Xie J, Chen JQ, Tang CF, Chen W, Zhou BC, Chen R, Qu HL, Wu CZ. Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury. Neural Regen Res 2017; 12:596-602. [PMID: 28553340 PMCID: PMC5436358 DOI: 10.4103/1673-5374.205099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I), a spider peptide toxin that blocks Ca2+ channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX-I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin mRNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration.
Collapse
Affiliation(s)
- Hai-Feng Mao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China.,College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Jun Xie
- College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Jia-Qin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Wei Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Bo-Cun Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Rui Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Hong-Lin Qu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China.,College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Chu-Zu Wu
- College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| |
Collapse
|
36
|
Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab 2016; 36:2034-2043. [PMID: 27742890 PMCID: PMC5363673 DOI: 10.1177/0271678x16674487] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Hypoxic/ischemic injury is the single most important cause of disabilities in infants, while stroke remains a leading cause of morbidity in children and adults around the world. The injured brain has limited repair capacity, and thereby only modest improvement of neurological function is evident post injury. In rodents, embryonic neural stem cells in the ventricular zone generate cortical neurons, and adult neural stem cells in the ventricular-subventricular zone of the lateral ventricle produce new neurons through animal life. In addition to generation of new neurons, neural stem cells contribute to oligodendrogenesis. Neurogenesis and oligodendrogenesis are essential for repair of injured brain. Much progress has been made in preclinical studies on elucidating the cellular and molecular mechanisms that control and coordinate neurogenesis and oligodendrogenesis in perinatal hypoxic/ischemic injury and the adult ischemic brain. This article will review these findings with a focus on the ventricular-subventricular zone neurogenic niche and discuss potential applications to facilitate endogenous neurogenesis and thereby to improve neurological function post perinatal hypoxic/ischemic injury and stroke.
Collapse
Affiliation(s)
- Ruilan Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, USA
- Department of Physics, Oakland University, Rochester, USA
| |
Collapse
|
37
|
Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, Li X, Li Y, Chen G. Notch signaling in cerebrovascular diseases (Review). Mol Med Rep 2016; 14:2883-98. [PMID: 27574001 PMCID: PMC5042775 DOI: 10.3892/mmr.2016.5641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bin Zhao
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanqing Deng
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shouqin Shangguan
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Faming Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenqing Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoli Li
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
38
|
Wang J, Ye Z, Zheng S, Chen L, Wan Y, Deng Y, Yang R. Lingo-1 shRNA and Notch signaling inhibitor DAPT promote differentiation of neural stem/progenitor cells into neurons. Brain Res 2016; 1634:34-44. [DOI: 10.1016/j.brainres.2015.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022]
|
39
|
Mechanisms of Plasticity, Remodeling and Recovery. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Acute Blockage of Notch Signaling by DAPT Induces Neuroprotection and Neurogenesis in the Neonatal Rat Brain After Stroke. Transl Stroke Res 2015; 7:132-40. [PMID: 26691164 DOI: 10.1007/s12975-015-0441-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023]
Abstract
Notch signaling is critically involved in various biological events. Notch undergoes cleavage by the γ-secretase enzyme to release Notch intracellular domain that will translocate into nucleus to result in expression of target gene. γ-Secretase inhibitors have been developed as potential treatments for neurological degenerative diseases, but its effects against ischemic injury remain relatively uncertain. In the present study, we demonstrated that N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor not only rescued the cerebral hypoperfusion or ischemia neonatal rats from death, reduced apoptosis in penumbra, but also reduced brain infarct size. Furthermore, DAPT elicited some morphologic hallmarks such as neurogenesis and angiogenesis that related to the brain repair and functional recovery after stroke: increased accumulations of newborn cells in the peri-infarct region with a higher fraction of them adopting immature neuronal and glial markers instead of microglial markers on 5 days, enhanced vascular densities in penumbra at 14 days, and evident regulations of the gene profiles associated with neurogenesis in penumbral tissues. The current results suggest that DAPT is a potential neuroprotectants against ischemic injury in immature brain, and future treatment strategies such as clinical trials using γ-secretase inhibitors would be an attractive therapy for perinatal ischemia.
Collapse
|
41
|
Marlier Q, Verteneuil S, Vandenbosch R, Malgrange B. Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Front Neurosci 2015; 9:458. [PMID: 26696816 PMCID: PMC4672088 DOI: 10.3389/fnins.2015.00458] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Stroke affects one in every six people worldwide, and is the leading cause of adult disability. After stroke, some limited spontaneous recovery occurs, the mechanisms of which remain largely unknown. Multiple, parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. For years, clinical studies have tried to use exogenous cell therapy as a means of brain repair, with varying success. Since the rediscovery of adult neurogenesis and the identification of adult neural stem cells in the late nineties, one promising field of investigation is focused upon triggering and stimulating this self-repair system to replace the neurons lost following brain injury. For instance, it is has been demonstrated that the adult brain has the capacity to produce large numbers of new neurons in response to stroke. The purpose of this review is to provide an updated overview of stroke-induced adult neurogenesis, from a cellular and molecular perspective, to its impact on brain repair and functional recovery.
Collapse
Affiliation(s)
- Quentin Marlier
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | | | - Renaud Vandenbosch
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| |
Collapse
|
42
|
Lindvall O, Kokaia Z. Neurogenesis following Stroke Affecting the Adult Brain. Cold Spring Harb Perspect Biol 2015; 7:7/11/a019034. [PMID: 26525150 DOI: 10.1101/cshperspect.a019034] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A bulk of experimental evidence supports the idea that the stroke-damaged adult brain makes an attempt to repair itself by producing new neurons also in areas where neurogenesis does not normally occur (e.g., the striatum and cerebral cortex). Knowledge about mechanisms regulating the different steps of neurogenesis after stroke is rapidly increasing but still incomplete. The functional consequences of stroke-induced neurogenesis and the level of integration of the new neurons into existing neural circuitries are poorly understood. To have a substantial impact on the recovery after stroke, this potential mechanism for self-repair needs to be enhanced, primarily by increasing the survival and differentiation of the generated neuroblasts. Moreover, for efficient repair, optimization of neurogenesis most likely needs to be combined with promotion of other endogenous neuroregenerative responses (e.g., protection and sprouting of remaining mature neurons, transplantation of neural stem/progenitor cells [NSPC]-derived neurons and glia cells, and modulation of inflammation).
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| |
Collapse
|
43
|
Zhao J, Sui M, Lü X, Jin D, Zhuang Z, Yan T. Electroacupuncture promotes neural stem cell proliferation and neurogenesis in the dentate gyrus of rats following stroke via upregulation of Notch1 expression. Mol Med Rep 2015; 12:6911-7. [PMID: 26328605 DOI: 10.3892/mmr.2015.4279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022] Open
Abstract
Neural stem cells (NSCs) are important in rehabilitation following stroke. Electroacupuncture (EA) treatment has been observed to promote the recovery of neurological functions subsequent to stroke, however, the effects of EA on the proliferation and differentiation of NSCs and its potential mechanisms remain to be elucidated. In the present study, rats, in which a stroke was induced through middle cerebral artery occlusion (MCAO), were treated with EA or control manipulation for 21 days. The modified Neurological Severity score and Morris water maze tests were used to assess the neurological functions of the rats. Bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP) or BrdU/neuronal marker (NeuN) double immunofluorescence staining were used to examine the proliferation and differentiation of the NSCs. Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses were performed to detect the expression levels of Notch1 and Hes1 in the dentate gyrus (DG) of the hippocampus of rats following MCAO. The results demonstrated that EA treatment significantly improved the neurological functional recovery of rats following stroke. A significant increase was observed in the number of BrdU+/GAFP+ and BrdU+/NeuN+ cells in the DG area in the EA‑treated rats compared with that of the control group. RT‑qPCR analysis revealed that EA treatment significantly increased the expression levels of Notch1 and Hes1, which may account for the enhanced proliferation and differentiation of NSCs. In conclusion, to the best of our knowledge, the present study was the first to demonstrate that EA treatment promoted NSC proliferation and neurogenesis in the DG area through the upregulation of Notch signaling following a stroke; therefore, EA may be a useful novel therapeutic strategy in future stroke treatment.
Collapse
Affiliation(s)
- Junhong Zhao
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Minghong Sui
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiao Lü
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Dongmei Jin
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhiqiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tiebin Yan
- Department of Rehabilitation Medicine, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
44
|
Zhang ZG, Chopp M. Promoting brain remodeling to aid in stroke recovery. Trends Mol Med 2015; 21:543-8. [PMID: 26278490 PMCID: PMC4567429 DOI: 10.1016/j.molmed.2015.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 12/13/2022]
Abstract
Endogenous brain repair after stroke involves a set of highly interactive processes, such as angiogenesis, neurogenesis, oligodendrogenesis, synaptogenesis, and axonal outgrowth, which together orchestrate neurological recovery. During the past several years, there have been advances in our understanding of miRNAs and histone deacetylases (HDACs) in brain repair processes after stroke. Emerging data indicate the important role of exosomes for intercellular communication in promoting coupled brain remodeling processes. These advances will likely have a major impact on the development of restorative therapies for ischemic brain repair, consequently leading to improvement of neurological function. In this review, we provide an update on our current understanding of cellular and molecular mechanisms of miRNAs, exosomes, and HDACs in brain restorative processes after stroke.
Collapse
Affiliation(s)
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
45
|
Merson TD, Bourne JA. Endogenous neurogenesis following ischaemic brain injury: insights for therapeutic strategies. Int J Biochem Cell Biol 2014; 56:4-19. [PMID: 25128862 DOI: 10.1016/j.biocel.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
Ischaemic stroke is among the most common yet most intractable types of central nervous system (CNS) injury in the adult human population. In the acute stages of disease, neurons in the ischaemic lesion rapidly die and other neuronal populations in the ischaemic penumbra are vulnerable to secondary injury. Multiple parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. Accumulating evidence indicates that cerebral ischaemia initiates an endogenous regenerative response within the adult brain that potentiates adult neurogenesis from populations of neural stem and progenitor cells. A major research focus has been to understand the cellular and molecular mechanisms that underlie the potentiation of adult neurogenesis and to appreciate how interventions designed to modulate these processes could enhance neural regeneration in the post-ischaemic brain. In this review, we highlight recent advances over the last 5 years that help unravel the cellular and molecular mechanisms that potentiate endogenous neurogenesis following cerebral ischaemia and are dissecting the functional importance of this regenerative mechanism following brain injury. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville, VIC 3010, Australia.
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Building 75, Level 1 North STRIP 1, Clayton, VIC 3800, Australia.
| |
Collapse
|
46
|
Salta E, Lau P, Sala Frigerio C, Coolen M, Bally-Cuif L, De Strooper B. A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation. Dev Cell 2014; 30:423-36. [PMID: 25132384 DOI: 10.1016/j.devcel.2014.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022]
Abstract
Radial glial progenitors play pivotal roles in the development and patterning of the spinal cord, and their fate is controlled by Notch signaling. How Notch is shaped to regulate their crucial transition from expansion toward differentiation remains, however, unknown. miR-132 in the developing zebrafish dampens Notch signaling via a cascade involving the transcriptional corepressor Ctbp2 and the Notch suppressor Sirt1. At early embryonic stages, high Ctbp2 levels sustain Notch signaling and radial glial expansion and concomitantly induce miR-132 expression via a double-negative feedback loop involving Rest inhibition. The changing balance in miR-132 and Ctbp2 interaction gradually drives the switch in Notch output and radial glial progenitor fate as part of the larger developmental program involved in the transition from embryonic to larval spinal cord.
Collapse
Affiliation(s)
- Evgenia Salta
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Pierre Lau
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Carlo Sala Frigerio
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Marion Coolen
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cédex, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cédex, France
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium; Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
47
|
Skaggs K, Goldman D, Parent JM. Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia 2014; 62:2061-79. [PMID: 25043622 DOI: 10.1002/glia.22726] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/04/2014] [Accepted: 07/03/2014] [Indexed: 12/28/2022]
Abstract
Zebrafish maintain a greater capacity than mammals for central nervous system repair after injury. Understanding differences in regenerative responses between different vertebrate species may shed light on mechanisms to improve repair in humans. Quinolinic acid is an excitotoxin that has been used to induce brain injury in rodents for modeling Huntington's disease and stroke. When injected into the adult rodent striatum, this toxin stimulates subventricular zone neurogenesis and neuroblast migration to injury. However, most new neurons fail to survive and lesion repair is minimal. We used quinolinic acid to lesion the adult zebrafish telencephalon to study reparative processes. We also used conditional transgenic lineage mapping of adult radial glial stem cells to explore survival and integration of neurons generated after injury. Telencephalic lesioning with quinolinic acid, and to a lesser extent vehicle injection, produced cell death, microglial infiltration, increased cell proliferation, and enhanced neurogenesis in the injured hemisphere. Lesion repair was more complete with quinolinic acid injection than after vehicle injection. Fate mapping of her4-expressing radial glia showed injury-induced expansion of radial glial stem cells that gave rise to neurons which migrated to injury, survived at least 8 weeks and formed long-distance projections that crossed the anterior commissure and synapsed in the contralateral hemisphere. These findings suggest that quinolinic acid lesioning of the zebrafish brain stimulates adult neural stem cells to produce robust regeneration with long-distance integration of new neurons. This model should prove useful for elucidating reparative mechanisms that can be applied to restorative therapies for mammalian brain injury.
Collapse
Affiliation(s)
- Kaia Skaggs
- Departments of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan
| | | | | |
Collapse
|
48
|
Shen J, Chen X, Chen X, Deng R. Targeting Neurogenesis: A Promising Therapeutic Strategy for Post-Stroke Treatment with Chinese Herbal Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1159/000362638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Liu Q, Fan X, Zhu J, Xu G, Li Y, Liu X. Co-culturing improves the OGD-injured neuron repairing and NSCs differentiation via Notch pathway activation. Neurosci Lett 2014; 559:1-6. [DOI: 10.1016/j.neulet.2013.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 01/19/2023]
|
50
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|