1
|
Shi K, Liu H, Hou M, Zhang M. Investigating Causal Associations Between Circulating Cytokines and Vestibular Disorders Using Mendelian Randomization: Insights from Large-Scale Genome-Wide Association Studies Data in European Populations. J Interferon Cytokine Res 2025. [PMID: 40289807 DOI: 10.1089/jir.2025.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
The presence of circulating cytokines has a significant impact on the development and progression of vestibular disorders. However, further investigation is needed to determine the direction of causation and causal effects. By applying two-sample Mendelian randomization (MR), we analyzed the potential causal connection between 41 circulating cytokines and vestibular disorders using the integrated data from genome-wide association studies (GWAS). The major analysis utilized for MR was inverse variance weighted (IVW). To examine reverse causation, we conducted reverse MR analysis. In addition, we assessed the robustness of the findings by performing pleiotropy and heterogeneity tests. Our results demonstrated that two circulating cytokines were significantly correlated with vestibular disorders risk. More specifically, vascular endothelial growth factor [IVW, odds ratio (OR) = 0.999, 95% confidence interval (CI) = 0.999-1.000, P = 0.046] and interleukin-7 (IVW, OR = 0.999, 95% CI = 0.998-1.000, P = 0.033) were negatively correlated with vestibular disorders risks, respectively. No evidence was identified to support associations between the remaining 39 circulating cytokines and vestibular disorders. These findings reveal a distinct correlation between circulating cytokines and vestibular diseases, providing a novel perspective and potential biological target for future clinical interventions for vestibular disorders.
Collapse
Affiliation(s)
- Ke Shi
- Department of Neurology, Xiangshui County People's Hospital, Yancheng, China
| | - Hongwei Liu
- Department of Neurology, Taiyuan Central Hospital, The Ninth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Miaomiao Hou
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Minheng Zhang
- Department of Gerontology, The First People's Hospital of Jinzhong, Jinzhong City, China
| |
Collapse
|
2
|
Analysis of NFKB1 and NFKB2 gene expression in the blood of patients with sudden sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2023; 166:111470. [PMID: 36773447 DOI: 10.1016/j.ijporl.2023.111470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Sudden Sensorineural Hearing Loss (SSNHL) is an increasingly common health problem today. Although the direct mortality rate of this disorder is relatively low, its impact on quality of life is enormous; this is why accurate identification of pathogenesis and influencing factors in the disease process can play an essential role in preventing and treating the disease. Acute inflammation, which leads to chronic inflammation due to aberrant expression of inflammation-mediating genes, may play a significant role in the pathogenesis of the disease. The essential Nuclear factor kappa B (NF-kB) pathway genes, NFKB1 and NFKB2, serve as prothrombotic agents when expressed abnormally, compromising the cochlea by disrupting the endolymphatic potential and causing SSNHL. METHODS This study investigates the expression levels of NFKB1 and NFKB2 in peripheral blood (PB) through a quantitative polymerase chain reaction in 50 Iranian patients with SSNHL, and 50 healthy volunteers were of the same age and sex as controls. RESULTS As a result, NFKB2 expression levels in patients were higher than in controls, regardless of sex or age (posterior beta = 0.619, adjusted P-value = 0.016), and NFKB1 expression levels did not show significant differences between patients and controls. The expression levels of NFKB1 and NFKB2 had significantly strong positive correlations in both SSNHL patients and healthy individuals (r = 0.620, P = 0.001 and r = 0.657, P 0.001, respectively), suggesting the presence of an interconnected network. CONCLUSION NFKB2 has been identified as a significant inflammatory factor in the pathophysiology of SSNHL disease. Inflammation can play an essential role in developing SSNHL, and our findings could be used as a guide for future research.
Collapse
|
3
|
Abd-Elhakim YM, Abdel-Motal SM, Malhat SM, Mostafa HI, Ibrahim WM, Beheiry RR, Moselhy AAA, Said EN. Curcumin attenuates gentamicin and sodium salicylate ototoxic effects by modulating the nuclear factor-kappaB and apoptotic pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89954-89968. [PMID: 35859240 PMCID: PMC9722864 DOI: 10.1007/s11356-022-21932-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/05/2022] [Indexed: 05/24/2023]
Abstract
This study aimed to investigate the effectiveness of curcumin (CCM) against gentamicin (GEN) and sodium salicylates (NaS)-induced ototoxic effects in rats. For 15 consecutive days, seven rat groups were given 1 mL/rat physiological saline orally, 1 mL/rat olive oil orally, 50 mg/kg bwt CCM orally, 120 mg/kg bwt GEN intraperitoneally, 300 mg/kg bwt NaS intraperitoneally, CCM+GEN, or CCM+NaS. The distortion product otoacoustic emission measurements were conducted. The rats' hearing function and balance have been behaviorally assessed using auditory startle response, Preyer reflex, and beam balance scale tests. The serum lipid peroxidation and oxidative stress biomarkers have been measured. Immunohistochemical investigations of the apoptotic marker caspase-3 and the inflammatory indicator nuclear factor kappa (NF-κB) in cochlear tissues were conducted. GEN and NaS exposure resulted in deficit hearing and impaired ability to retain balance. GEN and NaS exposure significantly decreased the reduced glutathione level and catalase activity but increased malondialdehyde content. GEN and NaS exposure evoked pathological alterations in cochlear and vestibular tissues and increased caspase-3 and NF-κB immunoexpression. CCM significantly counteracted the GEN and NaS injurious effects. These outcomes concluded that CCM could be a naturally efficient therapeutic agent against GEN and NaS-associated ototoxic side effects.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Seham M Malhat
- Department of Pharmacology, Animal health research institute, Zagazig, Egypt
| | - Hend I Mostafa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walied M Ibrahim
- Audiology unit, Otorhinolaryngology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Attia A A Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Kociszewska D, Vlajkovic S. Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. Int J Mol Sci 2022; 23:7348. [PMID: 35806352 PMCID: PMC9266910 DOI: 10.3390/ijms23137348] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as "inflammaging". Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.
Collapse
Affiliation(s)
| | - Srdjan Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand;
| |
Collapse
|
5
|
Keithley EM. Inner ear immunity. Hear Res 2022; 419:108518. [DOI: 10.1016/j.heares.2022.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
6
|
Frejo L, Lopez-Escamez JA. Cytokines and Inflammation in Meniere Disease. Clin Exp Otorhinolaryngol 2022; 15:49-59. [PMID: 35124944 PMCID: PMC8901949 DOI: 10.21053/ceo.2021.00920] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/20/2021] [Indexed: 12/05/2022] Open
Abstract
Meniere disease (MD) is a rare set of conditions associated with the accumulation of endolymph in the cochlear duct and the vestibular labyrinth with a decrease of endocochlear potential. It is considered a chronic inflammatory disorder of the inner ear with a multifactorial origin. The clinical syndrome includes several groups of patients with a core phenotype: sensorineural hearing loss, episodes of vertigo, and tinnitus with a non-predictable course. Genetic factors and the innate immune response seem to play a central role in the pathophysiology of the condition. Autoimmune MD should be diagnosed if a patient fulfills the diagnostic criteria for MD and one of the following autoimmune disorders: autoimmune thyroid disease, psoriasis, autoimmune arthritis, ankylosing spondylitis, or systemic lupus erythematosus. We summarize the evidence to support autoimmune MD as an endophenotype in bilateral MD associated with the allelic variant rs4947296 and nuclear factor-kappa B (NF-κB)-mediated inflammation, the role of cytokines (particularly interleukin-1β and tumor necrosis factor-α) in defining a subset of patients with autoinflammation, and the potential role of cytokines as biomarkers to distinguish between patients with MD and vestibular migraine. Finally, we also introduce a list of potential drugs that could regulate the immune response in MD with potential for repurposing in clinical trials.
Collapse
Affiliation(s)
- Lidia Frejo
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, PTS, Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs. Granada, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose Antonio Lopez-Escamez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, PTS, Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs. Granada, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.,Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain
| |
Collapse
|
7
|
Iinuma R, Okuda H, Obara N, Matsubara Y, Aoki M, Ogawa T. Increased Monocyte Chemotactic Protein-1 Accompanying Pro-Inflammatory Processes are Associated with Progressive Hearing Impairment and Bilateral Disability of Meniere's Disease. Audiol Neurootol 2021; 27:208-216. [PMID: 34903680 DOI: 10.1159/000518839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The progression of hearing impairment and the bilateral involvement of Meniere's disease (MD) may depend on the disease duration and aging. Recent studies reported that MD might involve dysfunction of the microvascular circulation damaged due to inflammatory changes. OBJECTIVES The aim of this study was to determine that the progress of the MD's hearing impairment and bilateral disability may be associated with the pathogenesis of several pro-inflammatory processes. PATIENTS AND METHODS We recruited 30 unilateral MD patients (56.8 ± 14.7 years old), 7 bilateral MD patients (65.3 ± 13.9 years old), and 17 age-matched control subjects (53.5 ± 14.4 years old, p > 0.05). We measured the plasma vascular endothelial growth factor (VEGF), plasma interleukin-6 (IL-6), plasma tumor-necrosis factor α (TNFα), and plasma monocyte chemotactic protein-1 (MCP-1). RESULTS The bilateral MD group and the unilateral MD group had higher plasma MCP-1 (204.7 ± 41.0 pg/mL and 169.5 ± 32.0 pg/mL) than the control group (149.2 ± 30.7 pg/mL) (p < 0.05). There was no significant difference in plasma TNFα, IL-6, and VEGF among 3 groups (p > 0.05). There was a strong correlation between the plasma MCP-1 and age in MD patients (r = 0.58, p < 0.01); however, no significant correlation between the plasma MCP-1 and age was found in control subjects (p > 0.05). The plasma MCP-1 significantly correlated with the average hearing level of 500, 1,000, 2,000, and 4,000 Hz, and the maximum slow phase eye velocity in caloric test in the better side (p < 0.05). Also, the plasma MCP-1 showed significant positive correlations with the plasma IL-6 (r = 0.49, p < 0.01) and plasma TNFα (r = 0.32, p < 0.05) in MD group. CONCLUSIONS Our results suggest that the increased plasma MCP-1 accompanying pro-inflammatory processes are associated with the progression of the hearing impairment and the bilateral disability of MD.
Collapse
Affiliation(s)
- Ryota Iinuma
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Hiroshi Okuda
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Natsuko Obara
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yoshitaka Matsubara
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan.,Medical IT Support Department, HRS Co., LTD., Nagoya City, Japan
| | - Mitsuhiro Aoki
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan.,Center for Healthcare Information Technology (C-HiT), Tokai National Higher Education and Research System, Nagoya City, Japan
| | - Takenori Ogawa
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| |
Collapse
|
8
|
Kociszewska D, Chan J, Thorne PR, Vlajkovic SM. The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. Int J Mol Sci 2021; 22:13177. [PMID: 34947974 PMCID: PMC8708400 DOI: 10.3390/ijms222413177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
This review aims to provide a conceptual and theoretical overview of the association between gut dysbiosis and hearing loss. Hearing loss is a global health issue; the World Health Organisation (WHO) estimates that 2.5 billion people will be living with some degree of hearing loss by 2050. The aetiology of sensorineural hearing loss (SNHL) is complex and multifactorial, arising from congenital and acquired causes. Recent evidence suggests that impaired gut health may also be a risk factor for SNHL. Inflammatory bowel disease (IBD), type 2 diabetes, diet-induced obesity (DIO), and high-fat diet (HFD) all show links to hearing loss. Previous studies have shown that a HFD can result in microangiopathy, impaired insulin signalling, and oxidative stress in the inner ear. A HFD can also induce pathological shifts in gut microbiota and affect intestinal barrier (IB) integrity, leading to a leaky gut. A leaky gut can result in chronic systemic inflammation, which may affect extraintestinal organs. Here, we postulate that changes in gut microbiota resulting from a chronic HFD and DIO may cause a systemic inflammatory response that can compromise the permeability of the blood-labyrinth barrier (BLB) in the inner ear, thus inducing cochlear inflammation and hearing deficits.
Collapse
Affiliation(s)
| | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand; (D.K.); (J.C.); (P.R.T.)
| |
Collapse
|
9
|
Ihler F, Freytag S, Kloos B, Spiegel JL, Haubner F, Canis M, Weiss BG, Bertlich M. Lipopolysaccharide decreases cochlear blood flow dose dependently in a guinea pig animal model via TNF signaling. Microcirculation 2021; 28:e12681. [PMID: 33501679 DOI: 10.1111/micc.12681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the effect of Lipopolysaccharide (LPS), a bacterial endotoxin on cochlear microcirculation, and its mode of action. METHODS Twenty-five Dunkin-Hartley guinea pigs were divided into five groups of five animals each. After surgical preparation, cochlear microcirculation was quantified by in vivo fluorescence microscopy. Placebo or LPS (1 mg, 10 µg, and 100 ng) was applied topically, and microcirculation was measured before and twice after application. A fifth group was pretreated with etanercept, a tumor necrosis factor (TNF) antagonist, and afterward the lowest LPS concentrations that yielded significant results (10 µg) were applied. RESULTS In the groups that had been treated with 1 mg and 10 µg LPS, a significant drop in cochlear microcirculation was observed after 30 (.791 ± .089 Arbitrary Units (AU), compared to baseline, and .888 ± .071AU) and 60 (.756 ± .101 AU and .817 ± .124 AU, respectively) minutes. The groups that had been treated with 100 ng LPS and that had been pretreated with etanercept showed no significant change in cochlear blood flow compared to placebo. CONCLUSION Lipopolysaccharide shows a dose-dependent effect on cochlear microcirculation; this effect can already be observed after 30 min. Pretreatment with etanercept can abrogate this effect, indicating that TNF mediates the effect of LPS on cochlear microcirculation.
Collapse
Affiliation(s)
- Friedrich Ihler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Saskia Freytag
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Benedikt Kloos
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Jennifer Lee Spiegel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Bernhard G Weiss
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| |
Collapse
|
10
|
Peeleman N, Verdoodt D, Ponsaerts P, Van Rompaey V. On the Role of Fibrocytes and the Extracellular Matrix in the Physiology and Pathophysiology of the Spiral Ligament. Front Neurol 2020; 11:580639. [PMID: 33193034 PMCID: PMC7653186 DOI: 10.3389/fneur.2020.580639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
The spiral ligament in the cochlea has been suggested to play a significant role in the pathophysiology of different etiologies of strial hearing loss. Spiral ligament fibrocytes (SLFs), the main cell type in the lateral wall, are crucial in maintaining the endocochlear potential and regulating blood flow. SLF dysfunction can therefore cause cochlear dysfunction and thus hearing impairment. Recent studies have highlighted the role of SLFs in the immune response of the cochlea. In contrast to sensory cells in the inner ear, SLFs (more specifically type III fibrocytes) have also demonstrated the ability to regenerate after different types of trauma such as drug toxicity and noise. SLFs are responsible for producing proteins, such as collagen and cochlin, that create an adequate extracellular matrix to thrive in. Any dysfunction of SLFs or structural changes to the extracellular matrix can significantly impact hearing function. However, SLFs may prove useful in restoring hearing by their potential to regenerate cells in the spiral ligament.
Collapse
Affiliation(s)
- Noa Peeleman
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
11
|
Doo JG, Kim D, Kim Y, Yoo MC, Kim SS, Ryu J, Yeo SG. Biomarkers Suggesting Favorable Prognostic Outcomes in Sudden Sensorineural Hearing Loss. Int J Mol Sci 2020; 21:ijms21197248. [PMID: 33008090 PMCID: PMC7583026 DOI: 10.3390/ijms21197248] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a medical emergency, making detailed examination to determine possible causes and early treatment important. However, etiological examinations in SSNHL do not always reveal a cause, and several factors have been found to affect treatment outcomes. Various studies are being performed to determine the prognosis and effects of treatment in patients who experience sudden hearing loss, and to identify biomarkers associated with this condition. Embase, PubMed, and the Cochrane database were searched using the key words SSNHL, prognostic, and biomarker. This search identified 4 articles in Embase, 28 articles in PubMed, and 36 in the Cochrane database. Of these 68 articles, 3 were duplicates and 37 were unrelated to the research topic. After excluding these articles, the remaining 28 articles were reviewed. Factors associated with SSNHL were divided into six categories: metabolic, hemostatic, inflammatory, immunologic, oxidative, and other factors. The associations between these factors with the occurrence of SSNHL and with patient prognosis were analyzed. Low monocyte counts, low neutrophil/lymphocyte ratio (NLR) and monocyte/high-density lipoproteins (HDL) cholesterol ratio (MHR), and low concentrations of fibrinogen, platelet glycoprotein (GP) IIIa, and TNF-α were found to be associated with good prognosis. However, these factors alone could not completely determine the onset of and recovery from SSNHL, suggesting the need for future basic and clinical studies.
Collapse
Affiliation(s)
- Jeon Gang Doo
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.G.D.); (J.R.)
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Yong Kim
- Department of Physical Medicine & Rehabilitation, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (Y.K.); (M.C.Y.)
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (Y.K.); (M.C.Y.)
| | - Sung Su Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Jeewon Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.G.D.); (J.R.)
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.G.D.); (J.R.)
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-958-8980; Fax: +82-2-958-8470
| |
Collapse
|
12
|
Hou Z, Neng L, Zhang J, Cai J, Wang X, Zhang Y, Lopez IA, Shi X. Acoustic Trauma Causes Cochlear Pericyte-to-Myofibroblast-Like Cell Transformation and Vascular Degeneration, and Transplantation of New Pericytes Prevents Vascular Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1943-1959. [PMID: 32562655 DOI: 10.1016/j.ajpath.2020.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
Acoustic trauma disrupts cochlear blood flow and damages sensory hair cells. Damage and regression of capillaries after acoustic trauma have long been observed, but the underlying mechanism of pathology has not been understood. We show herein that loud sound causes change of phenotype from neural/glial antigen 2 positive/α-smooth muscle actin negative to neural/glial antigen 2 positive/α-smooth muscle actin positive in some pericytes (PCs) on strial capillaries that is strongly associated with up-regulation of transforming growth factor-β1. The acoustic trauma also reduced capillary density and increased deposition of matrix proteins, particularly in the vicinity of transformed PCs. In a newly established in vitro three-dimensional endothelial cell (EC) and PC co-culture model, transformed PCs induced thicker capillary-like branches in ECs and increased collagen IV and laminin expression. Transplantation of exogenous PCs derived from neonatal day 10 mouse cochleae to acoustic traumatized cochleae, however, significantly attenuated the decreased vascular density in the stria. Transplantation of PCs pretransfected with adeno-associated virus 1-vascular endothelial growth factor-A165 under control of a hypoxia-response element markedly promotes vascular volume and blood flow, increased proliferation of PCs and ECs, and attenuated loud sound-caused loss in endocochlear potential and hearing. Our results indicate that loud sound-triggered PC transformation contributes to capillary wall thickening and regression, and young PC transplantation effectively rehabilitates the vascular regression and improves hearing.
Collapse
Affiliation(s)
- Zhiqiang Hou
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Lingling Neng
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jinhui Zhang
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jing Cai
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Xiaohan Wang
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon; Center for Life Sciences, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yunpei Zhang
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Ivan A Lopez
- Cellular and Molecular Biology of the Inner Ear Laboratory, Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Xiaorui Shi
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
13
|
Watanabe H, Sano H, Maki A, Ino T, Nakagawa T, Okamoto M, Yamashita T. Investigation of Stress Levels before the Onset of Idiopathic Sudden Sensorineural Hearing Loss. J Int Adv Otol 2020; 15:51-55. [PMID: 31058595 DOI: 10.5152/iao.2019.6197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES We hypothesized that patients with idiopathic sudden sensorineural hearing loss (ISSHL) would have experienced more stress prior to the onset than they typically did. This study investigated stress levels in patients before the onset of ISSHL. MATERIALS AND METHODS Forty-two patients with ISSHL were investigated. We used an original questionnaire to evaluate subjective stress levels in 1 week before onset. Serum hemoglobin A1c (HbA1c) and total cholesterol were examined to evaluate biochemical stress markers reflecting the preceding 1 to 2 months. The results on admission were compared with those at the follow-up visit. RESULTS Significantly more patients reported greater physical exhaustion, greater mental exhaustion, or a worse physical condition on admission than at follow-up (p<0.01, for each variable). On admission, 81% of patients reported greater than normal stress with regard to at least 1 of 3 items. The mean serum HbA1c was slightly but nonsignificantly lower at the follow-up visit (p=0.10), while the mean serum total cholesterol was significantly lower at follow-up than on admission (p<0.01). CONCLUSION The results indicate that patients were under a greater degree of stress before the onset of ISSHL, suggesting that stress plays a role in inducing ISSHL.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Otolaryngology, Head and Neck Surgery, Kitasato University, School of Medicine, Sagamihara, Japan
| | - Hajime Sano
- Kitasato University, School of Allied Health Sciences, Sagamihara, Japan
| | - Atsuko Maki
- Department of Otolaryngology, Head and Neck Surgery, Kitasato University, School of Medicine, Sagamihara, Japan
| | - Takeshi Ino
- Department of Otolaryngology, Head and Neck Surgery, Kitasato University, School of Medicine, Sagamihara, Japan
| | - Takahito Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Kitasato University, School of Medicine, Sagamihara, Japan
| | - Makito Okamoto
- Department of Otolaryngology, Head and Neck Surgery, Kitasato University, School of Medicine, Sagamihara, Japan
| | - Taku Yamashita
- Department of Otolaryngology, Head and Neck Surgery, Kitasato University, School of Medicine, Sagamihara, Japan
| |
Collapse
|
14
|
Zheng Y, McTavish J, Smith PF. Pharmacological Evaluation of Drugs in Animal Models of Tinnitus. Curr Top Behav Neurosci 2020; 51:51-82. [PMID: 33590458 DOI: 10.1007/7854_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the pressing need for effective drug treatments for tinnitus, currently, there is no single drug that is approved by the FDA for this purpose. Instead, a wide range of unproven over-the-counter tinnitus remedies are available on the market with little or no benefit for tinnitus but with potential harm and adverse effects. Animal models of tinnitus have played a critical role in exploring the pathophysiology of tinnitus, identifying therapeutic targets and evaluating novel and existing drugs for tinnitus treatment. This review summarises and compares the studies on pharmacological evaluation of tinnitus treatment in different animal models based on the pharmacological properties of the drug and provides insights into future directions for tinnitus drug discovery.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Brain Research New Zealand, Auckland, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, New Zealand. .,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| | - Jessica McTavish
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
The TLR-4/NF-κB signaling pathway activation in cochlear inflammation of rats with noise-induced hearing loss. Hear Res 2019; 379:59-68. [DOI: 10.1016/j.heares.2019.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
|
17
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
18
|
Herranen A, Ikäheimo K, Virkkala J, Pirvola U. The Stress Response in the Non-sensory Cells of the Cochlea Under Pathological Conditions-Possible Role in Mediating Noise Vulnerability. J Assoc Res Otolaryngol 2018; 19:637-652. [PMID: 30191426 DOI: 10.1007/s10162-018-00691-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022] Open
Abstract
Various stressors, such as loud sounds and the effects of aging, impair the function and viability of the cochlear sensory cells, the hair cells. Stressors trigger pathophysiological changes in the cochlear non-sensory cells as well. We have here studied the stress response mounted in the lateral wall of the cochlea during acute noise stress and during age-related chronic stress. We have used the activation of JNK/c-Jun, ERK, and NF-κB pathways as a readout of the stress response, and the expression of the FoxO3 transcription factor as a possible additional player in cellular stress. In the aging cochlea, NF-κB transcriptional activity was strongly induced in the stria vascularis of the lateral wall. This induction was linked with the atrophy of the stria vascularis, suggesting a role for NF-κB signaling in mediating age-related strial degeneration. Acutely following noise exposure, the JNK/c-Jun, ERK, and NF-κB pathways were activated in the spiral ligament of the lateral wall of CBA/Ca mice. This activation was concomitant with the morphological transformation of macrophages, suggesting that the upregulation of stress signaling leads to macrophage activation. In contrast, C57BL/6J mice lacked these responses. Only the combination of noise exposure and a systemic stressor, lipopolysaccharide, exceeded the threshold for the activation of stress signaling in the lateral wall of C57BL/6J mice. In addition, we found that, at the young adult age, outer hair cells of CBA/Ca mice are much more vulnerable to loud sounds compared to these cells of C57BL/6J mice. These results suggest that the differential stress response in the lateral wall of the two mouse strains underlies, in part, the differential noise vulnerability of their outer hair cells. Together, we propose that the molecular stress response in the lateral wall modulates the outcome of the stressed cochlea.
Collapse
Affiliation(s)
- Anni Herranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Jussi Virkkala
- Finnish Institute of Occupational Health, 00251, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland.
| |
Collapse
|
19
|
Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018; 362:14-24. [PMID: 29310977 PMCID: PMC5911222 DOI: 10.1016/j.heares.2017.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
The cochlea has an immune environment dominated by macrophages under resting conditions. When stressed, circulating monocytes enter the cochlea. These immune mediators, along with cochlear resident cells, organize a complex defense response against pathological challenges. Since the cochlea has minimal exposure to pathogens, most inflammatory conditions in the cochlea are sterile. Although the immune response is initiated for the protection of the cochlea, off-target effects can cause collateral damage to cochlear cells. A better understanding of cochlear immune capacity and regulation would therefore lead to development of new therapeutic treatments. Over the past decade, there have been many advances in our understanding of cochlear immune capacity. In this review, we provide an update and overview of the cellular components of cochlear immune capacity with a focus on macrophages in mammalian cochleae. We describe the composition and distribution of immune cells in the cochlea and suggest that phenotypic and functional characteristics of macrophages have site-specific diversity. We also highlight the response of immune cells to acute and chronic stresses and comment on the potential function of immune cells in cochlear homeostasis and disease development. Finally, we briefly review potential roles for cochlear resident cells in immune activities of the cochlea.
Collapse
Affiliation(s)
- Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
20
|
Frejo L, Requena T, Okawa S, Gallego-Martinez A, Martinez-Bueno M, Aran I, Batuecas-Caletrio A, Benitez-Rosario J, Espinosa-Sanchez JM, Fraile-Rodrigo JJ, García-Arumi AM, González-Aguado R, Marques P, Martin-Sanz E, Perez-Fernandez N, Pérez-Vázquez P, Perez-Garrigues H, Santos-Perez S, Soto-Varela A, Tapia MC, Trinidad-Ruiz G, Del Sol A, Alarcon Riquelme ME, Lopez-Escamez JA. Regulation of Fn14 Receptor and NF-κB Underlies Inflammation in Meniere's Disease. Front Immunol 2017; 8:1739. [PMID: 29326686 PMCID: PMC5733484 DOI: 10.3389/fimmu.2017.01739] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
Meniere’s disease (MD) is a rare disorder characterized by episodic vertigo, sensorineural hearing loss, tinnitus, and aural fullness. It is associated with a fluid imbalance between the secretion of endolymph in the cochlear duct and its reabsorption into the subarachnoid space, leading to an accumulation of endolymph in the inner ear. Epidemiological evidence, including familial aggregation, indicates a genetic contribution and a consistent association with autoimmune diseases (AD). We conducted a case–control study in two phases using an immune genotyping array in a total of 420 patients with bilateral MD and 1,630 controls. We have identified the first locus, at 6p21.33, suggesting an association with bilateral MD [meta-analysis leading signal rs4947296, OR = 2.089 (1.661–2.627); p = 1.39 × 10−09]. Gene expression profiles of homozygous genotype-selected peripheral blood mononuclear cells (PBMCs) demonstrated that this region is a trans-expression quantitative trait locus (eQTL) in PBMCs. Signaling analysis predicted several tumor necrosis factor-related pathways, the TWEAK/Fn14 pathway being the top candidate (p = 2.42 × 10−11). This pathway is involved in the modulation of inflammation in several human AD, including multiple sclerosis, systemic lupus erythematosus, or rheumatoid arthritis. In vitro studies with genotype-selected lymphoblastoid cells from patients with MD suggest that this trans-eQTL may regulate cellular proliferation in lymphoid cells through the TWEAK/Fn14 pathway by increasing the translation of NF-κB. Taken together; these findings suggest that the carriers of the risk genotype may develop an NF-κB-mediated inflammatory response in MD.
Collapse
Affiliation(s)
- Lidia Frejo
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Teresa Requena
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Universite du Luxembourg, Belval, Luxembourg
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Manuel Martinez-Bueno
- Group of Genetics of Complex Diseases, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | | | - Jesus Benitez-Rosario
- Department of Otolaryngology, Hospital Universitario de Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Juan M Espinosa-Sanchez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Ana María García-Arumi
- Department of Otorhinolaryngology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Rocío González-Aguado
- Department of Otorhinolaryngology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Pedro Marques
- Department of Otorhinolaryngology, Centro Hospitalar de S.João, EPE, University of Porto Medical School, Porto, Portugal
| | - Eduardo Martin-Sanz
- Department of Otolaryngology, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | | | - Paz Pérez-Vázquez
- Department of Otorhinolaryngology, Hospital Universitario de Cabueñes, Gijón, Asturias, Spain
| | | | - Sofía Santos-Perez
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Maria C Tapia
- Department of Otorhinolaryngology, Instituto Antolí Candela, Madrid, Spain
| | - Gabriel Trinidad-Ruiz
- Division of Otoneurology, Department of Otorhinolaryngology, Complejo Hospitalario Badajoz, Badajoz, Spain
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Universite du Luxembourg, Belval, Luxembourg
| | - Marta E Alarcon Riquelme
- Group of Genetics of Complex Diseases, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Unit of Chronic Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jose A Lopez-Escamez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine - Centre for Genomics and Oncological Research - Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Luxembourg Centre for System Biomedicine (LCSB), Universite du Luxembourg, Belval, Luxembourg
| |
Collapse
|
21
|
The Genomic Basis of Noise-induced Hearing Loss: A Literature Review Organized by Cellular Pathways. Otol Neurotol 2017; 37:e309-16. [PMID: 27518140 DOI: 10.1097/mao.0000000000001073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Using Reactome, a curated Internet database, noise-induced hearing loss studies were aggregated into cellular pathways for organization of the emerging genomic and epigenetic data in the literature. DATA SOURCES PubMed and Reactome.org, a relational data base program systematizing biological processes into interactive pathways and subpathways based on ontology, cellular constituents, gene expression, and molecular components. STUDY SELECTION Peer-reviewed population and laboratory studies for the previous 15 years relating genomics and noise and hearing loss were identified in PubMed. Criteria included p values <0.05 with correction for multiple genes, a fold change of >1.5, or duplicated studies. DATA EXTRACTION AND SYNTHESIS One-hundred fifty-eight unique HGNC identifiers from 77 articles met the selection criteria, and were uploaded into the analysis program at http://reactome.org. These genes participated in a total of 621 cellular interactions in 21 of 23 pathways. Cellular response to stress with its attenuation phase, particularly in response to heat stress, detoxification of ROS, and specific areas of the immune system are predominant pathways identified as significantly 'overrepresented' (p values <0.1e-5 and false discovery rates <0.01). CONCLUSION Twenty-one of 23 of the designated pathways in Reactome have significant influence on noise-induced hearing loss, signifying a confluence of molecular pathways in reaction to acoustic trauma; however, cellular response to stress, including heat shock response, and other small areas of immune response were highly overrepresented. Yet-to-be-explored genomics areas include miRNA, lncRNA, copy number variations, RNA sequencing, and human genome-wide association study.
Collapse
|
22
|
Jahani L, Mehrparvar AH, Esmailidehaj M, Rezvani ME, Moghbelolhossein B, Razmjooei Z. The Effect of Atorvastatin on Preventing Noise-Induced Hearing Loss: An Experimental Study. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2016; 7:15-21. [PMID: 26772594 PMCID: PMC6816516 DOI: 10.15171/ijoem.2016.627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/29/2015] [Indexed: 12/17/2022]
Abstract
Background: Noise-induced hearing loss (NIHL) is a common, irreversible occupational disease. Statins have recently been proposed to prevent NIHL. Objective: To assess the effect of atorvastatin for the prevention of NIHL in rats. Methods: In this experimental study, forty 2–3-month-old Wistar male rats were divided into 5 groups of 8 animals. 3 groups of rats received atorvastatin at doses of 5, 25, and 50 mg/kg daily for 14 days. The 4th group of rats received normal saline; another group was the control group. After 2 weeks of treatment, the rats were exposed to broad-band noise (125– 20 000 Hz) at 110 dB-SPL intensity for 2 hours. Response amplitude of all ears at 5 frequencies was assessed by distortion product otoacoustic emissions (DP-OAE) at baseline, 2 hours, and 2 weeks after the exposure. Results: Response amplitude was significantly decreased at all frequencies immediately after exposure to noise in all studied groups. The amplitude increased after 72 hours to a level higher than temporary threshold shift (TTS); this change was only significant in the group received 5 mg/kg atorvastatin. Conclusion: Low dose atorvastatin (5 mg/kg) used before exposure to noise can probably prevent NIHL in rats. This effect was not observed with higher doses of the drug.
Collapse
Affiliation(s)
- L Jahani
- Department of Occupational Medicine, Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | | | | | | | | |
Collapse
|
23
|
Groth JB, Kao SY, Briët MC, Stankovic KM. Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy. Dev Neurobiol 2016; 76:1374-1386. [PMID: 27112738 DOI: 10.1002/dneu.22399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 01/12/2023]
Abstract
Noise-induced hearing loss (NIHL) is a problem of profound clinical significance and growing magnitude. Alarmingly, even moderate noise levels, previously assumed to cause only temporary shifts in auditory thresholds ("temporary" NIHL), are now known to cause cochlear synaptopathy and subsequent neuropathy. To uncover molecular mechanisms of this neuropathy, a network analysis of genes reported to have significantly altered expression after temporary threshold shift-inducing noise exposure was performed. The transcription factor Hepatocyte Nuclear Factor-4 alpha (HNF4α), which had not previously been studied in the context of cochlear response to noise, was identified as a hub of a top-ranking network. Hnf4α expression and localization using quantitative RT-PCR and in situ hybridization, respectively, were described in adolescent and adult mice exposed to neuropathic noise levels in adolescence. Isoforms α3 and α12 in the cochlea were also identified. At every age examined, Hnf4α mRNA expression in the cochlear apex was similar to expression in the base. Hnf4α expression was evident in select cochlear cells, including spiral ganglion neurons (SGNs) and hair cells, and was significantly upregulated from 6 to 70 weeks of age, especially in SGNs. This age-related Hnf4α upregulation was inhibited by neuropathic noise exposure in adolescence. Hnf4α silencing with shRNA transfection into auditory neuroblast cells (VOT-33) reduced cell viability, as measured with the MTT assay, suggesting that Hnf4α may be involved in SGN survival. Our results motivate future studies of HNF4α in cochlear pathophysiology, especially because HNF4α mutations and polymorphisms are associated with human diseases that may include hearing loss. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1374-1386, 2016.
Collapse
Affiliation(s)
- Jane Bjerg Groth
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Shyan-Yuan Kao
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Martijn C Briët
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otorhinolaryngology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
24
|
Macrophage Migration Inhibitory Factor Deficiency Causes Prolonged Hearing Loss After Acoustic Overstimulation. Otol Neurotol 2016; 36:1103-8. [PMID: 25853607 DOI: 10.1097/mao.0000000000000755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HYPOTHESIS Macrophage migration inhibitory factor plays an important role in noise-induced hearing loss. BACKGROUND Macrophage migration inhibitory factor is an essential factor in axis formation and neural development. Macrophage migration inhibitory factor is expressed in the inner ear, but its function remains to be elucidated. METHODS Macrophage migration inhibitory factor-deficient mice (MIF(-/-) mice) were used in this study. Wild-type and MIF(-/-) mice received noise exposure composed of octave band noise. Auditory brainstem response thresholds were examined before (control) and at 0, 12, and 24 hours and 2 weeks after the intense noise exposure. Morphological findings of cochlear hair cells were investigated using scanning electron microscopy. Histopathological examination with hematoxylin and eosin staining and TUNEL assay were also performed. RESULTS In both the wild-type and MIF(-/-) mice, acoustic overstimulation induced significant hearing loss compared with the control level. Two weeks after the intense noise exposure, the MIF(-/-) mice had an increased hearing threshold compared with the wild-type mice. Scanning electron microscopy demonstrated that the outer hair cells in the MIF(-/-) mice were affected 2 weeks after noise exposure compared with the wild-type mice. TUNEL-positive cells were identified in the organ of Corti of the MIF(-/-) mice. CONCLUSION The MIF(-/-) mice had prolonged hearing loss and significant loss of cochlear hair cells after intense noise exposure. Macrophage migration inhibitory factor may play an important role in recovery from acoustic trauma. Management of macrophage migration inhibitory factor may be a novel therapeutic option for noise-induced hearing loss.
Collapse
|
25
|
Zheng Y, McPherson K, Reid P, Smith PF. The anti-inflammatory selective melanocortin receptor subtype 4 agonist, RO27-3225, fails to prevent acoustic trauma-induced tinnitus in rats. Eur J Pharmacol 2015; 761:206-10. [PMID: 25977231 DOI: 10.1016/j.ejphar.2015.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
In preliminary studies we have observed a massive microglial activation in the cochlear nucleus following acoustic trauma-induced tinnitus in rats, which suggests that inflammatory responses within the central auditory system may be involved in the development and maintenance of tinnitus. Recently, the anti-inflammatory properties of melanocortins (MCs), have gained increasing interest in pharmacology due to their promising therapeutic potential in the treatment of inflammatory-mediated diseases. Among the five subtypes of the MC receptor, MC3 and MC4 receptors are the predominant brain receptors and are thought to play an important role in brain inflammation and neuroprotection. Importantly, MC4 receptors have been found in the mouse and rat central auditory systems. In this study we investigated whether the MC4 receptor agonist, RO27-3225, injected s.c at a dose of 90 or 180µg/kg, 30min before acoustic trauma and then every 12h for 10 days, could prevent the development of acoustic trauma-induced tinnitus in rats, using a conditioned behavioural suppression model. Although evidence of tinnitus developed in the exposed-vehicle group compared to the sham-vehicle group (P≤0.03), in response to a 32kHz tone, there were no significant drug effects from treatment with RO27-3225, indicating that it did not confer any protection against the development of tinnitus in this animal model. This result suggests that the anti-inflammatory effects of MC4 receptor agonists may not be sufficient to prevent tinnitus.
Collapse
Affiliation(s)
- Yiwen Zheng
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - Kate McPherson
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter Reid
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Paul F Smith
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Yang CH, Hwang CF, Yang MY, Lin PM, Chuang JH. Expression of toll-like receptor genes in leukocytes of patients with sudden sensorineural hearing loss. Laryngoscope 2015; 125:E382-7. [PMID: 25809471 DOI: 10.1002/lary.25241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/11/2015] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS Sudden sensorineural hearing loss (SNNHL) is a disease entity that could be caused by multiple etiologies in which the innate immunity status of the patients might be involved. The aim of this study is to investigate the expression of Toll-like receptor (TLR) genes in peripheral blood leukocytes of SNNHL patients. STUDY DESIGN Basic research. METHODS We examined the expression of six TLR genes in the peripheral blood leukocytes of SNNHL patients and normal controls using real-time quantitative reverse transcriptase-polymerase chain reaction. RESULTS We found significantly higher expression of TLR2, TLR3, TLR4, TLR7, TLR8, and TLR9 genes in SNNHL patients as compared with normal controls (P < 0.05). Higher expression of the TLR2 gene was found in patients with profound hearing loss compared with those with less severe hearing loss (P < 0.05). The result was validated by the positively stained leukocytes for TLR2 protein in SNNHL patients using the immunocytochemical study. In addition, the percentage of CD14(+) monocytes expressing TLR2 in SNNHL patients was higher than in normal controls assessed by flow cytometry and significantly correlated with the hearing thresholds of the affected ear (P < 0.05). CONCLUSION Our study implies a role for TLRs in SNNHL. The expression of TLR2 in particular correlates with the severity of the disease. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Division of Otology, Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine
| | - Chung-Feng Hwang
- Division of Otology, Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Ming-Yu Yang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine
| | - Pai-Mei Lin
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine
| |
Collapse
|
27
|
Woo JI, Kil SH, Oh S, Lee YJ, Park R, Lim DJ, Moon SK. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3953-61. [PMID: 25780042 DOI: 10.4049/jimmunol.1402751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
Cochlear inflammatory diseases, such as tympanogenic labyrinthitis, are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aimed to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on IL-10 and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10Rs are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line was found to inhibit nontypeable Haemophilus influenzae (NTHi)-induced upregulation of monocyte chemotactic protein-1 (MCP-1; CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt Protoporphyrin IX and CO-releasing molecule-2. In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced rat SLF cell line-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 upregulation. Chromatin immunoprecipitation assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying a therapeutic potential for a CO-based approach for inflammation-associated cochlear diseases.
Collapse
Affiliation(s)
- Jeong-Im Woo
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sejo Oh
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, CA 90057; and
| | - Yoo-Jin Lee
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Raekil Park
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, South Korea
| | - David J Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095;
| |
Collapse
|
28
|
Sudden sensorineural hearing loss and polymorphisms in iron homeostasis genes: new insights from a case-control study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834736. [PMID: 25789325 PMCID: PMC4348611 DOI: 10.1155/2015/834736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022]
Abstract
Background. Even if various pathophysiological events have been proposed as explanations, the putative cause of sudden hearing loss remains unclear. Objectives. To investigate and to reveal associations (if any) between the main iron-related gene variants and idiopathic sudden sensorineural hearing loss. Study Design. Case-control study. Materials and Methods. A total of 200 sudden sensorineural hearing loss patients (median age 63.65 years; range 10-92) were compared with 400 healthy control subjects. The following genetic variants were investigated: the polymorphism c.-8CG in the promoter of the ferroportin gene (FPN1; SLC40A1), the two isoforms C1 and C2 (p.P570S) of the transferrin protein (TF), the amino acidic substitutions p.H63D and p.C282Y in the hereditary hemochromatosis protein (HFE), and the polymorphism c.-582AG in the promoter of the HEPC gene, which encodes the protein hepcidin (HAMP). Results. The homozygous genotype c.-8GG of the SLC40A1 gene revealed an OR for ISSNHL risk of 4.27 (CI 95%, 2.65-6.89; P = 0.001), being overrepresented among cases. Conclusions. Our study indicates that the homozygous genotype FPN1 -8GG was significantly associated with increased risk of developing sudden hearing loss. These findings suggest new research should be conducted in the field of iron homeostasis in the inner ear.
Collapse
|
29
|
Fibrinogen is not a prognostic factor for response to HELP-apheresis in sudden sensorineural hearing loss (SSHL). Eur Arch Otorhinolaryngol 2014; 272:3693-703. [DOI: 10.1007/s00405-014-3449-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
30
|
Intronic variants in the NFKB1 gene may influence hearing forecast in patients with unilateral sensorineural hearing loss in Meniere's disease. PLoS One 2014; 9:e112171. [PMID: 25397881 PMCID: PMC4232390 DOI: 10.1371/journal.pone.0112171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/13/2014] [Indexed: 12/24/2022] Open
Abstract
Meniere's disease is an episodic vestibular syndrome associated with sensorineural hearing loss (SNHL) and tinnitus. Patients with MD have an elevated prevalence of several autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and psoriasis), which suggests a shared autoimmune background. Functional variants of several genes involved in the NF-κB pathway, such as REL, TNFAIP3, NFKB1 and TNIP1, have been associated with two or more immune-mediated diseases and allelic variations in the TLR10 gene may influence bilateral affectation and clinical course in MD. We have genotyped 716 cases of MD and 1628 controls by using the ImmunoChip, a high-density genotyping array containing 186 autoimmune loci, to explore the association of immune system related-loci with sporadic MD. Although no single nucleotide polymorphism (SNP) reached a genome-wide significant association (p<10−8), we selected allelic variants in the NF-kB pathway for further analyses to evaluate the impact of these SNPs in the clinical outcome of MD in our cohort. None of the selected SNPs increased susceptibility for MD in patients with uni or bilateral SNHL. However, two potential regulatory variants in the NFKB1 gene (rs3774937 and rs4648011) were associated with a faster hearing loss progression in patients with unilateral SNHL. So, individuals with unilateral MD carrying the C allele in rs3774937 or G allele in rs4648011 had a shorter mean time to reach hearing stage 3 (>40 dB HL) (log-rank test, corrected p values were p = 0.009 for rs3774937 and p = 0.003 for rs4648011, respectively). No variants influenced hearing in bilateral MD. Our data support that the allelic variants rs3774937 and rs4648011 can modify hearing outcome in patients with MD and unilateral SNHL.
Collapse
|
31
|
Wilson T, Omelchenko I, Foster S, Zhang Y, Shi X, Nuttall AL. JAK2/STAT3 inhibition attenuates noise-induced hearing loss. PLoS One 2014; 9:e108276. [PMID: 25275304 PMCID: PMC4183445 DOI: 10.1371/journal.pone.0108276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023] Open
Abstract
Signal transducers and activators of transcription 3 (STAT3) is a stress responsive transcription factor that plays a key role in oxidative stress-mediated tissue injury. As reactive oxygen species (ROS) are a known source of damage to tissues of the inner ear following loud sound exposure, we examined the role of the Janus kinase 2 (JAK2)/STAT3 signaling pathway in noise induce hearing loss using the pathway specific inhibitor, JSI-124. Mice were exposed to a moderately damaging level of loud sound revealing the phosphorylation of STAT3 tyrosine 705 residues and nuclear localization in many cell types in the inner ear including the marginal cells of the stria vascularis, type II, III, and IV fibrocytes, spiral ganglion cells, and in the inner hair cells. Treatment of the mice with the JAK2/STAT3 inhibitor before noise exposure reduced levels of phosphorylated STAT3 Y705. We performed auditory brain stem response and distortion product otoacoustic emission measurements and found increased recovery of hearing sensitivity at two weeks after noise exposure with JAK2/STAT3 inhibition. Performance of cytocochleograms revealed improved outer hair cell survival in JSI-124 treated mice relative to control. Finally, JAK2/STAT3 inhibition reduced levels of ROS detected in outer hair cells at two hours post noise exposure. Together, these findings demonstrate that inhibiting the JAK2/STAT3 signaling pathway is protective against noise-induced cochlear tissue damage and loss of hearing sensitivity.
Collapse
MESH Headings
- Animals
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/physiopathology
- Epithelium/metabolism
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression Regulation
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Inflammation Mediators/metabolism
- Janus Kinase 2/antagonists & inhibitors
- Janus Kinase 2/metabolism
- Male
- Mice
- Otoacoustic Emissions, Spontaneous
- Phosphorylation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Teresa Wilson
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Irina Omelchenko
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
| | - Sarah Foster
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Yuan Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaorui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alfred L. Nuttall
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
32
|
Tan WJT, Thorne PR, Vlajkovic SM. Noise-induced cochlear inflammation. World J Otorhinolaryngol 2013; 3:89-99. [DOI: 10.5319/wjo.v3.i3.89] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disability with considerable social and economic implications. According to recent World Health Organization estimates, 360 million people worldwide suffer from moderate to profound hearing loss. Exposure to excessive noise is one of the major causes of sensorineural hearing loss, secondary only to age-related hearing loss (presbyacusis). Since cochlear tissues have limited abilities of repair and regeneration, this damage can be irreversible, leading to cochlear dysfunction and permanent hearing loss. Recent studies have shown that cochlear inflammation can be induced by noise exposure and contribute to the overall pathogenesis of cochlear injury and hearing loss. The cochlea is separated from the systemic circulation by the blood-labyrinth barrier, which is physiologically similar to the blood-brain barrier of the central nervous system. Because of this feature, the cochlea was originally considered an immunologically privileged organ. However, this postulate has been challenged by the evidence of an inflammatory response in the cochlea in the presence of bacterial or viral pathogens or antigens that can cause labyrinthitis. Although the main purpose of the inflammatory reaction is to protect against invading pathogens, the inflammatory response can also cause significant bystander injury to the delicate structures of the cochlea. The cochlear inflammatory response is characterised by the generation of proinflammatory mediators (cytokines, chemokines and adhesion molecules), and the recruitment of inflammatory cells (leukocytes). Here, we present an overview of the current research on cochlear inflammation, with particular emphasis on noise-induced cochlear inflammation. We also discuss treatment strategies aimed at the suppression of inflammation, which may potentially lead to mitigation of hearing loss.
Collapse
|
33
|
Inner ear tissue remodeling and ion homeostasis gene alteration in murine chronic otitis media. Otol Neurotol 2013; 34:338-46. [PMID: 23269288 DOI: 10.1097/mao.0b013e31827b4d0a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Studies were designed to ascertain the impact of chronic middle ear infection on the numerous ion and water channels, transporters, and tissue remodeling genes in the inner and middle ear. BACKGROUND Permanent sensorineural hearing loss is a significant problem resulting from chronic middle ear disease, although the inner ear processes involved are poorly defined. Maintaining a balanced ionic composition of endolymph in the inner ear is crucial for hearing; thus, it was hypothesized that this may be at risk with inflammation. METHODS Inner and middle ear RNA collected separately from 6-month-old C3H/HeJ mice with prolonged middle ear disease were subjected to qRT-PCR for 8 common inflammatory cytokine genes, 24 genes for channels controlling ion (sodium, potassium, and chloride) and water (aquaporin) transport, tight junction claudins, and gap junction connexins, and 32 tissue remodeling genes. Uninfected Balb/c mice were used as controls. RESULTS Significant increase in inner ear inflammatory and ion homeostasis (claudin, aquaporin, and gap junction) gene expression, and both upregulation and downregulation of tissue remodeling gene expression occurred. Alteration in middle ear ion homeostasis and tissue remodeling gene expression was noted in the setting of uniform upregulation of cytokine genes. CONCLUSION Chronic inflammatory middle ear disease can impact inner ear ion and water transport functions and induce tissue remodeling. Recognizing these inner ear mechanisms at risk may identify potential therapeutic targets to maintain hearing during prolonged otitis media.
Collapse
|
34
|
Masuda M, Kanzaki S, Minami S, Kikuchi J, Kanzaki J, Sato H, Ogawa K. Correlations of inflammatory biomarkers with the onset and prognosis of idiopathic sudden sensorineural hearing loss. Otol Neurotol 2013; 33:1142-50. [PMID: 22872174 DOI: 10.1097/mao.0b013e3182635417] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS We investigated whether inflammatory biomarkers and stress are involved in the pathophysiology of idiopathic sensorineural hearing loss (ISHL). STUDY DESIGN Individual cohort study. SETTING Two tertiary centers. PATIENTS Forty-three ISHL and 10 non-ISHL patients seen in our ENT departments from 2004 to 2010 within a week from the onset of new symptoms and without steroid administration before visiting our departments. INTERVENTION Multiple audiologic evaluations, blood tests including leukocyte counts, natural killer cell activity (NKCA), interleukin 6 (IL-6), tumor necrosis factor, high-sensitivity CRP (hCRP), and the General Health Questionnaire were used to evaluate the systemic stress and inflammatory response. MAIN OUTCOME MEASURES Correlations between biomarkers and ISHL severity and prognosis were evaluated by statistical analysis. RESULTS In the ISHL patients, a neutrophil count above the reference range was associated with severe hearing loss and poor prognosis, and was accompanied by low NKCA and high IL-6. In the non-ISHL patients, these associations were not present. The abnormal neutrophil count was independent of preexisting vascular diseases. The abnormal counts responded to treatment and decreased into the reference range. CONCLUSION Neutrophil counts above the reference range of a facility will be a useful indicator of poor prognosis of ISHL. Synchronism of different types of NF-κB activation pathways could be required to cause severe ISHL. An NKCA decrease, an acute neutrophil count increase, and an IL-6 increase can induce NF-κB activation in the cochlea and cause severe ISHL. Further epidemiologic surveys should be conducted to evaluate whether stressful life events increase the risk of severe ISHL onset.
Collapse
Affiliation(s)
- Masatsugu Masuda
- Department of Otolaryngology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kanzaki J, Masuda M. Correlation between stress and acute sensorineural hearing loss: stress and sudden deafness. ACTA ACUST UNITED AC 2013. [DOI: 10.4295/audiology.56.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Trune DR, Canlon B. Corticosteroid therapy for hearing and balance disorders. Anat Rec (Hoboken) 2012; 295:1928-43. [PMID: 23044978 PMCID: PMC3999710 DOI: 10.1002/ar.22576] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
This review addresses the current status of steroid therapies for hearing and vestibular disorders and how certain misconceptions may be undermining the efficacy in restoring normal ear function, both experimentally and clinically. Specific misconceptions addressed are that steroid therapy is not effective, steroid-responsive hearing loss proves an underlying inflammatory problem in the ear, and steroids only have application to the hearing disorders listed below. Glucocorticoid therapy for hearing and balance disorders has been employed for over 60 years. It is recommended in cases of sudden hearing loss, Meniére's disease, immune-mediated hearing loss, and any vestibular dysfunction suspected of having an inflammatory etiology. The predominant steroids employed today are dexamethasone, prednisone, prednisolone, and methylprednisolone. Despite years of use, little is known of the steroid responsive mechanisms in the ear that are influenced by glucocorticoid therapy. Furthermore, meta-analyses and clinical study reviews occasionally question whether steroids offer any benefit at all. Foremost in the minds of clinicians is the immune suppression and anti-inflammatory functions of steroids because of their efficacy for autoimmune hearing loss. However, glucocorticoids have a strong binding affinity for the mineralocorticoid (aldosterone) and glucocorticoid receptors, both of which are prominent in the ear. Because the auditory and vestibular end organs require tightly regulated endolymph and perilymph fluids, this ion homeostasis role of the mineralocorticoid receptor cannot be overlooked in both normal and pathologic functions of the ear. The function of the glucocorticoid receptor is to provide anti-inflammatory and antiapoptotic signals by mediating survival factors.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| | | |
Collapse
|
37
|
Histopathologic markers of hearing loss in intralabyrinthine schwannomas: implications for management. Otol Neurotol 2012; 32:1542-7. [PMID: 22072265 DOI: 10.1097/mao.0b013e318238fc63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to review the clinical history and management of patients with intralabyrinthine schwannomas and evaluate the histopathologic features of these tumors. STUDY DESIGN A retrospective case review of 24 patients and 7 temporal bone specimens. SETTING An otologic tertiary referral private practice. PATIENTS Patients with magnetic resonance imaging-confirmed intralabyrinthine schwannoma diagnosed after 1995 and non-Neurofibromatosis type 2 temporal bone specimens with schwannomas confined to the bony labyrinth. MAIN OUTCOME MEASURES Clinical data including history, imaging and audiometry were evaluated. The histopathologic features of temporal bone specimens including tumor location and degenerative changes were analyzed. RESULTS The intralabyrinthine location of the tumor does not predict the degree or time to progression of hearing loss. Both sensorineural and conductive hearing loss can occur. Mechanisms of hearing loss include hair cell, spiral ganglion, and stria vascularis degeneration in addition to mechanical obstruction. CONCLUSION Hearing loss is the most common symptom with intralabyrinthine schwannomas. Histopathology reveals that multiple mechanisms of degeneration may occur within the labyrinth to induce hearing loss. Observation provides the most reliable hearing preservation strategy.
Collapse
|
38
|
Park J, Kim S, Park K, Choung Y, Jou I, Park S. Pravastatin attenuates noise-induced cochlear injury in mice. Neuroscience 2012; 208:123-32. [DOI: 10.1016/j.neuroscience.2012.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
39
|
Oh S, Woo JI, Lim DJ, Moon SK. ERK2-dependent activation of c-Jun is required for nontypeable Haemophilus influenzae-induced CXCL2 upregulation in inner ear fibrocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:3496-505. [PMID: 22379036 DOI: 10.4049/jimmunol.1103182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inner ear, composed of the cochlea and the vestibule, is a specialized sensory organ for hearing and balance. Although the inner ear has been known as an immune-privileged organ, there is emerging evidence indicating an active immune reaction of the inner ear. Inner ear inflammation can be induced by the entry of proinflammatory molecules derived from middle ear infection. Because middle ear infection is highly prevalent in children, middle ear infection-induced inner ear inflammation can impact the normal development of language and motor coordination. Previously, we have demonstrated that the inner ear fibrocytes (spiral ligament fibrocytes) are able to recognize nontypeable Haemophilus influenzae, a major pathogen of middle ear infection, and upregulate a monocyte-attracting chemokine through TLR2-dependent NF-κB activation. In this study, we aimed to determine the molecular mechanism involved in nontypeable H. influenzae-induced cochlear infiltration of polymorphonuclear cells. The rat spiral ligament fibrocytes were found to release CXCL2 in response to nontypeable H. influenzae via activation of c-Jun, leading to the recruitment of polymorphonuclear cells to the cochlea. We also demonstrate that MEK1/ERK2 signaling pathway is required for nontypeable H. influenzae-induced CXCL2 upregulation in the rat spiral ligament fibrocytes. Two AP-1 motifs in the 5'-flanking region of CXCL2 appeared to function as a nontypeable H. influenzae-responsive element, and the proximal AP-1 motif was found to have a higher binding affinity to nontypeable H. influenzae-activated c-Jun than that of the distal one. Our results will enable us better to understand the molecular pathogenesis of middle ear infection-induced inner ear inflammation.
Collapse
Affiliation(s)
- Sejo Oh
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, CA 90057, USA
| | | | | | | |
Collapse
|