1
|
Chen C, Xu X, Lu J, Xiang Y, Shi L, Liu D. Hyperglycemia-induced blood-brain barrier dysfunction: Mechanisms and therapeutic interventions. Microvasc Res 2025; 160:104820. [PMID: 40393562 DOI: 10.1016/j.mvr.2025.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The blood-brain barrier (BBB) serves as a highly selective interface that regulates the transport of molecules between the blood and the brain. Its integrity is essential for maintaining neuronal homeostasis and preventing neuroinflammation. Hyperglycemia, a hallmark of diabetes, is linked to cognitive deficits and central nervous system (CNS) pathologies, including vascular dementia, stroke, and Alzheimer's disease, with BBB damage as a potential contributing factor. As the global prevalence of diabetes rises, understanding the connection between hyperglycemia and BBB dysfunction may facilitate the development of novel treatments that protect or restore BBB integrity, thereby alleviating the neurological complications of diabetes. Furthermore, it may aid in the development of targeted therapies for diabetes-related neurological complications. This literature review examines the emerging insights into the relationship between hyperglycemia and BBB dysfunction. It focuses on the mechanisms underlying BBB dysfunction, the clinical manifestations of this dysfunction in diabetes and cerebrovascular diseases, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Changsheng Chen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China.
| | - Xi Xu
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Jiahao Lu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China
| | - Yuqing Xiang
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China
| | - Linsheng Shi
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, Jiangsu Province, China; Medical College of Nantong University, Nantong, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China.
| |
Collapse
|
2
|
Kimura S, Iwata M, Takase H, Lo EH, Arai K. Oxidative stress and chronic cerebral hypoperfusion: An overview from preclinical rodent models. J Cereb Blood Flow Metab 2025; 45:381-395. [PMID: 39663901 PMCID: PMC11635795 DOI: 10.1177/0271678x241305899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is an important clinical condition characterized by a prolonged reduction in cerebral blood flow that contributes to several neurodegenerative diseases, including vascular dementia and Alzheimer's disease. A number of rodent models of CCH have been developed that mimic the human pathological conditions of reduced cerebral perfusion. These models have been instrumental in elucidating the molecular and cellular mechanisms involved in CCH-induced brain damage. Oxidative stress is induced by perturbations in cellular pathways caused by CCH, including mitochondrial dysfunction, ion pump dysfunction, and adenosine triphosphate (ATP) depletion. The deleterious stress leads to the accumulation of reactive oxygen species (ROS) and exacerbates damage to neuronal structures, significantly impairing cognitive function. Among the various therapeutic strategies being evaluated, edaravone, a potent antioxidant, is emerging as a promising drug due to its neuroprotective properties against oxidative stress. Initially approved for use in ischemic stroke, research using rodent CCH models has shown that edaravone has significant efficacy in scavenging free radicals and ameliorating oxidative stress-induced neuronal damage under CCH conditions. This mini-review summarizes the current literature on the rodent models of CCH and then discusses the therapeutic potential of edaravone to reduce neuronal and vascular damage caused by CCH-induced oxidative stress.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Maho Iwata
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Developmental Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Wang N, Guo W, Liu T, Chen X, Lin M. Toll-like receptors (TLR2 and TLR4) antagonist mitigates the onset of cerebral small vessel disease through PI3K/Akt/GSK3β pathway in stroke-prone renovascular hypertensive rats. Biotechnol Genet Eng Rev 2024; 40:519-539. [PMID: 36877597 DOI: 10.1080/02648725.2023.2184961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
To examine the effect and mechanism of Toll-Like Receptors (TLR2, TLR4) antagonist in CSVD. The rat model of stroke-induced renovascular hypertension (RHRSP) was constructed. TLR2 and TLR4 antagonist was administrated by Intracranial injection. Morris water maze was used to observe the behavioral changes of rat models. HE staining, TUNEL staining and Evens Blue staining were performed to evaluate the permeability of the blood-brain barrier (BBB) and examine the CSVD occurrence and neuronal apoptosis. The inflammation and oxidative stress factors were detected by ELISA. Hypoxia-glucose-deficiency (OGD) ischemia model was constructed in cultured neurons. Western blot and ELISA were used to examine the related protein expression in TLR2/TLR4 signaling pathway and PI3K/Akt/GSK3β signaling pathway. The RHRSP rat model was successfully constructed, and the blood well and BBB permeability were altered. The RHRSP rats showed cogitative impairment and excessive immune response. After TLR2/TLR4 antagonist administration, the behavior of model rats were improved, cerebral white matter injury was reduced, and the expression of several key inflammatory factors including TLR4, TLR2, Myd88 and NF-kB were decreased, as well as the ICAM-1, VCAM-1, inflammation and oxidative stress factors. In vitro experiments showed that TLR4 and TLR2 antagonist increased the cell viability, inhibited the apoptosis, and decreased p-Akt and p-GSK3β expression. Moreover, the PI3K inhibitors resulted in decreased anti-apoptotic and anti-inflammatory effects of TLR4 and TLR2 antagonist. These results suggested that TLR4 and TLR2 antagonist achieved protective effect on the RHRSP through the PI3K/Akt/GSK3β pathway.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurology inspection, the people's Hospital of Liaoning Province, Liaoning, P.R, China
| | - Wanshu Guo
- Department of Neurology inspection, the people's Hospital of Liaoning Province, Liaoning, P.R, China
| | - Tongtong Liu
- Department of Neurology inspection, the people's Hospital of Liaoning Province, Liaoning, P.R, China
| | - Xiaohong Chen
- Department of Neurology inspection, the Jinqiu Hospital of Liaoning Province, Liaoning, P.R, China
| | - Muhui Lin
- Department of Neurology inspection, the people's Hospital of Liaoning Province, Liaoning, P.R, China
| |
Collapse
|
4
|
Matsui Y, Muramatsu F, Nakamura H, Noda Y, Matsumoto K, Kishima H, Takakura N. Brain-derived endothelial cells are neuroprotective in a chronic cerebral hypoperfusion mouse model. Commun Biol 2024; 7:338. [PMID: 38499610 PMCID: PMC10948829 DOI: 10.1038/s42003-024-06030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.
Collapse
Affiliation(s)
- Yuichi Matsui
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimi Noda
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kinnosuke Matsumoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Yamashita T, Abe K. Update on Antioxidant Therapy with Edaravone: Expanding Applications in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2945. [PMID: 38474192 PMCID: PMC10932469 DOI: 10.3390/ijms25052945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| |
Collapse
|
6
|
UENO YUJI. Mechanism of Post-stroke Axonal Outgrowth and Functional Recovery. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:364-369. [PMID: 38845728 PMCID: PMC10984353 DOI: 10.14789/jmj.jmj23-0025-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 06/09/2024]
Abstract
Axonal outgrowth after stroke plays an important role in tissue repair and is critical for functional recovery. In the peri-infarct area of a rat middle cerebral artery occlusion model, we found that the axons and dendrites that had fallen off in the acute phase of stroke (7 days) were regenerated in the chronic phase of stroke (56 days). In vitro, we showed that phosphatase tensin homolog deleted on chromosome 10/Akt/Glycogen synthase kinase 3β signaling is implicated in postischemic axonal regeneration. In a rat model of chronic cerebral hypoperfusion, oral administration of L-carnitine induced axonal and oligodendrocyte regeneration in the cerebral white matter, resulting in myelin thickening, and it improved cognitive impairment in rats with chronic cerebral ischemia. Recently, it has been shown that exosomes enhanced functional recovery after stroke. Exosome treatment has less tumorigenicity, does not occlude the microvascular system, has low immunogenicity, and does not require a host immune response compared to conventional cell therapy. Several studies demonstrated specific microRNA in exosomes, which regulated signaling pathways related to neurogenesis after stroke. Collectively, there are various mechanisms of axonal regeneration and functional recovery after stroke, and it is expected that new therapeutic agents for stroke with the aim of axonal regeneration will be developed and used in real-world clinical practice in the future.
Collapse
Affiliation(s)
- YUJI UENO
- Corresponding author: Yuji Ueno, Department of Neurology, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi 409-3898, Japan, TEL/FAX: +81-55-273-9896 E-mail: ,
| |
Collapse
|
7
|
Xu W, Bai Q, Dong Q, Guo M, Cui M. Blood–Brain Barrier Dysfunction and the Potential Mechanisms in Chronic Cerebral Hypoperfusion Induced Cognitive Impairment. Front Cell Neurosci 2022; 16:870674. [PMID: 35783093 PMCID: PMC9243657 DOI: 10.3389/fncel.2022.870674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a major cause of vascular cognitive impairment and dementia (VCID). Although the underlying mechanisms have not been fully elucidated, the emerging data suggest that blood–brain barrier (BBB) dysfunction is one of the pivotal pathological changes in CCH. BBB dysfunction appears early in CCH, contributing to the deterioration of white matter and the development of cognitive impairment. In this review, we summarize the latest experimental and clinical evidence implicating BBB disruption as a major cause of VCID. We discuss the mechanisms of BBB dysfunction in CCH, focusing on the cell interactions within the BBB, as well as the potential role of APOE genotype. In summary, we provide novel insights into the pathophysiological mechanisms underlying BBB dysfunction and the potential clinical benefits of therapeutic interventions targeting BBB in CCH.
Collapse
Affiliation(s)
- WenQing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingke Bai
- Department of Neurology, Pudong People’s Hospital, Shanghai, China
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Min Guo,
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Mei Cui,
| |
Collapse
|
8
|
Berger ND, Brownlee PM, Chen MJ, Morrison H, Osz K, Ploquin NP, Chan JA, Goodarzi AA. High replication stress and limited Rad51-mediated DNA repair capacity, but not oxidative stress, underlie oligodendrocyte precursor cell radiosensitivity. NAR Cancer 2022; 4:zcac012. [PMID: 35425901 PMCID: PMC9004414 DOI: 10.1093/narcan/zcac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this. Here, however, we demonstrate that antioxidants fail to improve OPC viability after irradiation, despite suppressing oxidative stress, suggesting an alternative etiology for OPC radiosensitivity. Using systematic approaches, we find that OPCs have higher irradiation-induced and endogenous γH2AX foci compared to neural stem cells, neurons, astrocytes and mature oligodendrocytes, and these correlate with replication-associated DNA double strand breakage. Furthermore, OPCs are reliant upon ATR kinase and Mre11 nuclease-dependent processes for viability, are more sensitive to drugs increasing replication fork collapse, and display synthetic lethality with PARP inhibitors after irradiation. This suggests an insufficiency for homology-mediated DNA repair in OPCs-a model that is supported by evidence of normal RPA but reduced RAD51 filament formation at resected lesions in irradiated OPCs. We therefore propose a DNA repair-centric mechanism of OPC radiosensitivity, involving chronically-elevated replication stress combined with 'bottlenecks' in RAD51-dependent DNA repair that together reduce radiation resilience.
Collapse
Affiliation(s)
- N Daniel Berger
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Myra J Chen
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hali Morrison
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Katalin Osz
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicolas P Ploquin
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Goodarzi
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Villar-Delfino PH, Gomes NAO, Christo PP, Nogueira-Machado JA, Volpe CMO. Edaravone Inhibits the Production of Reactive Oxygen Species in Phagocytosis- and PKC-Stimulated Granulocytes from Multiple Sclerosis Patients Edaravone Modulate Oxidative Stress in Multiple Sclerosis. J Cent Nerv Syst Dis 2022; 14:11795735221092524. [PMID: 35599854 PMCID: PMC9121512 DOI: 10.1177/11795735221092524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Oxidative stress is associated with the pathogenesis of MS. Edaravone (EDV)
has been proposed as a therapeutic resource for central nervous system
diseases, and it was effective in reducing oxidative stress. However, the
antioxidant mechanisms of EDV are poorly studied. Objective This study aimed to evaluate the effects of EDV on resting, phagocytosis, and
PKC-activated granulocytes derived from MS patients and a healthy control
group. Methods The effects of EDV on ROS production in phagocytosis (ROS production in the
presence of opsonized particles) and PKC-stimulated granulocytes were
evaluated in a luminol-dependent chemiluminescence method. Calphostin C was
used in some experiments to compare with those of EDV. Results EDV inhibited ROS production in phagocytosis of opsonized particles and
PKC-stimulated granulocytes from MS patients and healthy control group. In
the presence of calphostin C, the inhibition of ROS production was similar
to that observed with EDV. Conclusion These findings suggest the involvement of EDV on the ROS-PKC-NOX signaling
pathways modulating oxidative stress in MS. EDV represents a promising
treatment option to control oxidative innate immune response for MS.
Collapse
Affiliation(s)
- Pedro Henrique Villar-Delfino
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - Nathália Augusta Oliveira Gomes
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Pereira Christo
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Nogueira-Machado
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline Maria Oliveira Volpe
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Yin YL, Liu YH, Zhu ML, Wang HH, Qiu Y, Wan GR, Li P. Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway. Physiol Behav 2022; 249:113777. [PMID: 35276121 DOI: 10.1016/j.physbeh.2022.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VD) is the second largest type of dementia after Alzheimer's disease. At present, the pathogenesis is complex and there is no effective treatment. Floralozone has been shown to reduce atherosclerosis in rats caused by a high-fat diet. However, whether it plays a role in VD remains elusive. In the present study, the protective activities and relevant mechanisms of Floralozone were evaluated in rats with cognitive impairment, which were induced by bilateral occlusion of the common carotid arteries (BCCAO) in rats. Cognitive function, pathological changes and oxidative stress condition in the brains of VD rats were assessed using Neurobehavioral tests, Morris water maze tests, hematoxylin-eosin staining, Neu N staining, TUNEL staining, Golgi staining, Western blot assay and antioxidant assays (MDA, SOD, GSH), respectively. The results indicated that VD model was established successfully and BCCAO caused a decline in spatial learning and memory and hippocampal histopathological abnormalities of rats. Floralozone (50, 100, 150 mg/kg) dose-dependently alleviated the pathological changes, decreased oxidative stress injury, which eventually reduced cognitive impairment in BCCAO rats. The same results were shown in further experiments with neurobehavioral tests. At the molecular biological level, Floralozone decreased the protein level of transient receptor potential melastatin-related 2 (TRPM2) in VD and normal rats, and increased the protein level of NR2B in hippocampus of N-methyl-D-aspartate receptor (NMDAR). Notably, Floralozone could markedly improved learning and memory function of BCCAO rats in Morris water maze (MWM) and improved neuronal cell loss, synaptic structural plasticity. In conclusion, Floralozone has therapeutic potential for VD, increased synaptic structural plasticity and alleviating neuronal cell apoptosis, which may be related to the TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Ya-Ling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yan-Hua Liu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Mo-Li Zhu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Huan-Huan Wang
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yue Qiu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Guang-Rui Wan
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Peng Li
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| |
Collapse
|
11
|
Valori CF, Neumann M. Contribution of RNA/DNA Binding Protein Dysfunction in Oligodendrocytes in the Pathogenesis of the Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration Spectrum Diseases. Front Neurosci 2021; 15:724891. [PMID: 34539339 PMCID: PMC8440855 DOI: 10.3389/fnins.2021.724891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders, often considered as the extreme manifestations of a disease spectrum, as they share similar pathomechanisms. In support of this, pathological aggregation of the RNA/DNA binding proteins trans-activation response element DNA-binding protein 43 (TDP-43) or fused in sarcoma (FUS) is the pathological hallmark found in neurons and glial cells of subsets of patients affected by either condition (i.e., ALS/FTLD—TDP-43 or ALS/FTLD—FUS, respectively). Among glia, oligodendrocytes are the most abundant population, designated to ensheath the axons with myelin and to provide them with metabolic and trophic support. In this minireview, we recapitulate the neuropathological evidence for oligodendroglia impairment in ALS/FTLD. We then debate how TDP-43 and FUS target oligodendrocyte transcripts, thereby controlling their homeostatic abilities toward the axons. Finally, we discuss cellular and animal models aimed at investigating the functional consequences of manipulating TDP-43 and FUS in oligodendrocytes in vivo. Taken together, current data provide increasing evidence for an important role of TDP-43 and FUS-mediated oligodendroglia dysfunction in the pathogenesis of ALS/FTLD. Thus, targeting disrupted oligodendroglial functions may represent a new treatment approach for these conditions.
Collapse
Affiliation(s)
- Chiara F Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
13
|
Takase H, Hamanaka G, Ohtomo R, Ishikawa H, Chung KK, Mandeville ET, Lok J, Fornage M, Herrup K, Tse KH, Lo EH, Arai K. Transcriptome Profiling of Mouse Corpus Callosum After Cerebral Hypoperfusion. Front Cell Dev Biol 2021; 9:685261. [PMID: 34222254 PMCID: PMC8248229 DOI: 10.3389/fcell.2021.685261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023] Open
Abstract
White matter damage caused by cerebral hypoperfusion is a major hallmark of subcortical ischemic vascular dementia (SIVD), which is the most common subtype of vascular cognitive impairment and dementia (VCID) syndrome. In an aging society, the number of SIVD patients is expected to increase; however, effective therapies have yet to be developed. To understand the pathological mechanisms, we analyzed the profiles of the cells of the corpus callosum after cerebral hypoperfusion in a preclinical SIVD model. We prepared cerebral hypoperfused mice by subjecting 2-month old male C57BL/6J mice to bilateral carotid artery stenosis (BCAS) operation. BCAS-hypoperfusion mice exhibited cognitive deficits at 4 weeks after cerebral hypoperfusion, assessed by novel object recognition test. RNA samples from the corpus callosum region of sham- or BCAS-operated mice were then processed using RNA sequencing. A gene set enrichment analysis using differentially expressed genes between sham and BCAS-operated mice showed activation of oligodendrogenesis pathways along with angiogenic responses. This database of transcriptomic profiles of BCAS-hypoperfusion mice will be useful for future studies to find a therapeutic target for SIVD.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Human Genetics Center, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karl Herrup
- Department of Neurobiology and ADRC, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
14
|
Feng T, Yamashita T, Sasaki R, Tadokoro K, Matsumoto N, Hishikawa N, Abe K. Protective effects of edaravone on white matter pathology in a novel mouse model of Alzheimer's disease with chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2021; 41:1437-1448. [PMID: 33106078 PMCID: PMC8142121 DOI: 10.1177/0271678x20968927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
White matter lesions (WMLs) caused by cerebral chronic hypoperfusion (CCH) may contribute to the pathophysiology of Alzheimer's disease (AD). However, the underlying mechanisms and therapeutic approaches have yet to be totally identified. In the present study, we investigated a potential therapeutic effect of the free radical scavenger edaravone (EDA) on WMLs in our previously reported novel mouse model of AD (APP23) plus CCH with motor and cognitive deficits. Relative to AD with CCH mice at 12 months (M) of age, EDA strongly improved CCH-induced WMLs in the corpus callosum of APP23 mice at 12 M by improving the disruption of white matter integrity, enhancing the proliferation of oligodendrocyte progenitor cells, attenuating endothelium/astrocyte unit dysfunction, and reducing neuroinflammation and oxidative stress. The present study demonstrates that the long-term administration of EDA may provide a promising therapeutic approach for WMLs in AD plus CCH disease with cognitive deficits.
Collapse
Affiliation(s)
- Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
15
|
Ueno Y, Saito A, Nakata J, Kamagata K, Taniguchi D, Motoi Y, Io H, Andica C, Shindo A, Shiina K, Miyamoto N, Yamashiro K, Urabe T, Suzuki Y, Aoki S, Hattori N. Possible Neuroprotective Effects of l-Carnitine on White-Matter Microstructural Damage and Cognitive Decline in Hemodialysis Patients. Nutrients 2021; 13:nu13041292. [PMID: 33919810 PMCID: PMC8070822 DOI: 10.3390/nu13041292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/31/2023] Open
Abstract
Although l-carnitine alleviated white-matter lesions in an experimental study, the treatment effects of l-carnitine on white-matter microstructural damage and cognitive decline in hemodialysis patients are unknown. Using novel diffusion magnetic resonance imaging (dMRI) techniques, white-matter microstructural changes together with cognitive decline in hemodialysis patients and the effects of l-carnitine on such disorders were investigated. Fourteen hemodialysis patients underwent dMRI and laboratory and neuropsychological tests, which were compared across seven patients each in two groups according to duration of l-carnitine treatment: (1) no or short-term l-carnitine treatment (NSTLC), and (2) long-term l-carnitine treatment (LTLC). Ten age- and sex-matched controls were enrolled. Compared to controls, microstructural disorders of white matter were widely detected on dMRI of patients. An autopsy study of one patient in the NSTLC group showed rarefaction of myelinated fibers in white matter. With LTLC, microstructural damage on dMRI was alleviated along with lower levels of high-sensitivity C-reactive protein and substantial increases in carnitine levels. The LTLC group showed better achievement on trail making test A, which was correlated with amelioration of disorders in some white-matter tracts. Novel dMRI tractography detected abnormalities of white-matter tracts after hemodialysis. Long-term treatment with l-carnitine might alleviate white-matter microstructural damage and cognitive impairment in hemodialysis patients.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (D.T.); (Y.M.); (A.S.); (K.S.); (N.M.); (N.H.)
- Correspondence: ; Tel.: +81-3-3813-3111; Fax: +81-3-5800-0547
| | - Asami Saito
- Department of Radiology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (A.S.); (K.K.); (C.A.); (S.A.)
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Junichiro Nakata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (J.N.); (Y.S.)
| | - Koji Kamagata
- Department of Radiology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (A.S.); (K.K.); (C.A.); (S.A.)
| | - Daisuke Taniguchi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (D.T.); (Y.M.); (A.S.); (K.S.); (N.M.); (N.H.)
| | - Yumiko Motoi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (D.T.); (Y.M.); (A.S.); (K.S.); (N.M.); (N.H.)
| | - Hiroaki Io
- Department of Nephrology, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan;
| | - Christina Andica
- Department of Radiology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (A.S.); (K.K.); (C.A.); (S.A.)
| | - Atsuhiko Shindo
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (D.T.); (Y.M.); (A.S.); (K.S.); (N.M.); (N.H.)
| | - Kenta Shiina
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (D.T.); (Y.M.); (A.S.); (K.S.); (N.M.); (N.H.)
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (D.T.); (Y.M.); (A.S.); (K.S.); (N.M.); (N.H.)
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan; (K.Y.); (T.U.)
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan; (K.Y.); (T.U.)
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (J.N.); (Y.S.)
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (A.S.); (K.K.); (C.A.); (S.A.)
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (D.T.); (Y.M.); (A.S.); (K.S.); (N.M.); (N.H.)
| |
Collapse
|
16
|
Kuang H, Zhou ZF, Zhu YG, Wan ZK, Yang MW, Hong FF, Yang SL. Pharmacological Treatment of Vascular Dementia: A Molecular Mechanism Perspective. Aging Dis 2021; 12:308-326. [PMID: 33532143 PMCID: PMC7801279 DOI: 10.14336/ad.2020.0427] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 11/01/2022] Open
Abstract
Vascular dementia (VaD) is a neurodegenerative disease, with cognitive dysfunction attributable to cerebrovascular factors. At present, it is the second most frequently occurring type of dementia in older adults (after Alzheimer's disease). The underlying etiology of VaD has not been completely elucidated, which limits its management. Currently, there are no approved standard treatments for VaD. The drugs used in VaD are only suitable for symptomatic treatment and cannot prevent or reduce the occurrence and progression of VaD. This review summarizes the current status of pharmacological treatment for VaD, from the perspective of the molecular mechanisms specified in various pathogenic hypotheses, including oxidative stress, the central cholinergic system, neuroinflammation, neuronal apoptosis, and synaptic plasticity. As VaD is a chronic cerebrovascular disease with multifactorial etiology, combined therapy, targeting multiple pathophysiological factors, may be the future trend in VaD.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Kai Wan
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi, China.
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| |
Collapse
|
17
|
Feng T, Yamashita T, Shang J, Shi X, Nakano Y, Morihara R, Tsunoda K, Nomura E, Sasaki R, Tadokoro K, Matsumoto N, Hishikawa N, Ohta Y, Abe K. Clinical and Pathological Benefits of Edaravone for Alzheimer's Disease with Chronic Cerebral Hypoperfusion in a Novel Mouse Model. J Alzheimers Dis 2020; 71:327-339. [PMID: 31403949 DOI: 10.3233/jad-190369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) and chronic cerebral hypoperfusion (CCH) often coexist in dementia patients in aging societies. The hallmarks of AD including amyloid-β (Aβ)/phosphorylated tau (pTau) and pathology-related events such as neural oxidative stress and neuroinflammation play critical roles in pathogenesis of AD with CCH. A large number of lessons from failures of drugs targeting a single target or pathway on this so complicated disease indicate that disease-modifying therapies targeting multiple key pathways hold potent potential in therapy of the disease. In the present study, we used a novel mouse model of AD with CCH to investigate a potential therapeutic effect of a free radical scavenger, Edaravone (EDA) on AD with CCH via examining motor and cognitive capacity, AD hallmarks, neural oxidative stress, and neuroinflammation. Compared with AD with CCH mice at 12 months of age, EDA significantly improved motor and cognitive deficits, attenuated neuronal loss, reduced Aβ/pTau accumulation, and alleviated neural oxidative stress and neuroinflammation. These findings suggest that EDA possesses clinical and pathological benefits for AD with CCH in the present mouse model and has a potential as a therapeutic agent for AD with CCH via targeting multiple key pathways of the disease pathogenesis.
Collapse
Affiliation(s)
- Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Keiichiro Tsunoda
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama, Japan
| |
Collapse
|
18
|
Inaba T, Miyamoto N, Hira K, Ueno Y, Yamashiro K, Watanabe M, Shimada Y, Hattori N, Urabe T. Protective Role of Levetiracetam Against Cognitive Impairment And Brain White Matter Damage in Mouse prolonged Cerebral Hypoperfusion. Neuroscience 2019; 414:255-264. [PMID: 31302262 DOI: 10.1016/j.neuroscience.2019.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
White matter lesions due to cerebral hypoperfusion may be an important pathophysiology in vascular dementia and stroke, although the inherent mechanisms remain to be fully elucidated. The present study, using a mouse model of chronic cerebral hypoperfusion, examined the white matter protective effects of levetiracetam, an anticonvulsant, via the signaling cascade from the activation of cAMP-responsive element binding protein (CREB) phosphorylation. Mice underwent bilateral common carotid artery stenosis (BCAS), and were separated into the levetiracetam group (injected once only after BCAS [LEV1] or injected on three consecutive days [LEV3]), the vehicle group, or the anti-epileptic drugs with different action mechanisms phenytoin group (PHT3; injected on three consecutive days with the same condition as in LEV3). Cerebral blood flow analysis, Y-maze spontaneous alternation test, novel object recognition test, immunohistochemical and Western blot analyses, and protein kinase A assay were performed after BCAS. In the LEV3 group, SV2A expression was markedly increased, which preserved learning and memory after BCAS. Moreover, as the protein kinase A level was significantly increased, pCREB expression was also increased. The activation of microglia and astrocytes was markedly suppressed, although the number of oligodendrocyte precursor cells (OPCs) and GST-pi-positive-oligodendrocytes was markedly higher in the cerebral white matter. Moreover, oxidative stress was significantly reduced. We found that 3-day treatment with levetiracetam maintained SV2A protein expression via interaction with astrocytes, which influenced the OPC lineage through activation of CREB to protect white matter from ischemia.
Collapse
Affiliation(s)
- Toshiki Inaba
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Kenichiro Hira
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masao Watanabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yoshiaki Shimada
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan; Department of Neurological Science, Yokohama Tsurugamine Hospital, Yokohama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| |
Collapse
|
19
|
Brain white matter lesions and postoperative cognitive dysfunction: a review. J Anesth 2019; 33:336-340. [DOI: 10.1007/s00540-019-02613-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/13/2019] [Indexed: 12/18/2022]
|
20
|
Takase H, Lok J, Arai K. A radical scavenger edaravone and oligodendrocyte protection/regeneration. Neural Regen Res 2018; 13:1550-1551. [PMID: 30127114 PMCID: PMC6126124 DOI: 10.4103/1673-5374.237116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator. PLoS One 2018; 13:e0198039. [PMID: 29795667 PMCID: PMC5993064 DOI: 10.1371/journal.pone.0198039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 01/21/2023] Open
Abstract
Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are injured following tPA injections.
Collapse
|
22
|
Blood-Brain Barrier Damage as the Starting Point of Leukoaraiosis Caused by Cerebral Chronic Hypoperfusion and Its Involved Mechanisms: Effect of Agrin and Aquaporin-4. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2321797. [PMID: 29682525 PMCID: PMC5846350 DOI: 10.1155/2018/2321797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022]
Abstract
White matter lesion (WML) is popular in the patients aged over 65. Brain edema and blood-brain barrier (BBB) dysfunction due to cerebral chronic hypoperfusion (CCH) contributed to WML. Preserving astrocyte polarity is vital for BBB integrity. In our experiment, CCH model is established by bilateral carotid arteries occlusion (2VO). Leukoaraiosis was verified by fiber density stain, and brain edema was evaluated using brain water content measuring. The expressions of agrin and aquaporin-4 (AQP4) were evaluated, as well as the integrity of BBB. Astrocyte polarity was assessed by visualizing the distribution of AQP4 on astrocyte end-feet membranes. The results showed that expression of AQP4 firstly increased and then decreased, as agrin expression decreased gradually. At 3 days after 2VO, AQP4 and agrin displayed the most opposite expression with the former increasing and the latter decreasing; at the same time, brain edema reached high point as well as BBB permeability, and astrocyte polarity was degeneration. In the later phase, brain edema and BBB permeability were getting recovered, but WML was getting more evident. In accordance with that, agrin and AQP4 expression decreased significantly with astrocyte polarity reducing. We speculated that agrin and AQP4 played key roles in development of WML by mediating BBB damage in CCH, and BBB dysfunction due to reduced astrocyte polarity is the starting point of WMH.
Collapse
|
23
|
Zhou D, Meng R, Li S, Ya J, Ding J, Shang S, Ding Y, Ji X. Advances in chronic cerebral circulation insufficiency. CNS Neurosci Ther 2018; 24:5-17. [PMID: 29143463 PMCID: PMC6489997 DOI: 10.1111/cns.12780] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) may not be an independent disease; rather, it is a pervasive state of long-term cerebral blood flow insufficiency caused by a variety of etiologies, and considered to be associated with either occurrence or recurrence of ischemic stroke, vascular cognitive impairment, and development of vascular dementia, resulting in disability and mortality worldwide. This review summarizes the features and recent progress of CCCI, mainly focusing on epidemiology, experimental research, pathophysiology, etiology, clinical manifestations, imaging presentation, diagnosis, and potential therapeutic regimens. Some research directions are briefly discussed as well.
Collapse
Affiliation(s)
- Da Zhou
- Departments of Neurology and NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Department of China‐America Institute of NeuroscienceXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ran Meng
- Departments of Neurology and NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Department of China‐America Institute of NeuroscienceXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Si‐Jie Li
- Departments of Neurology and NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jing‐Yuan Ya
- Departments of Neurology and NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Department of China‐America Institute of NeuroscienceXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia‐Yue Ding
- Departments of Neurology and NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Department of China‐America Institute of NeuroscienceXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Shu‐Ling Shang
- Departments of Neurology and NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yu‐Chuan Ding
- Department of China‐America Institute of NeuroscienceXuanwu HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryWayne State University School of MedicineDetroitMIUSA
| | - Xun‐Ming Ji
- Departments of Neurology and NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Department of China‐America Institute of NeuroscienceXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
24
|
Ueno Y, Tanaka R, Yamashiro K, Miyamoto N, Hira K, Kurita N, Sakurai M, Urabe T, Shimada K, Miyazaki T, Daida H, Hattori N. Age Stratification and Impact of Eicosapentaenoic Acid and Docosahexaenoic Acid to Arachidonic Acid Ratios in Ischemic Stroke Patients. J Atheroscler Thromb 2017; 25:593-605. [PMID: 29199200 PMCID: PMC6055034 DOI: 10.5551/jat.40691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim: We focused on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to arachidonic acid (AA) and explored the significance of these ratios relative to clinical characteristics by age in ischemic stroke patients. Methods: We enrolled patients with acute ischemic stroke who underwent radiological investigations and laboratory examinations, including measurement of serum EPA, DHA, and AA levels, and controls. Patients were classified according to age (< 65, 65–74, and ≥ 75 years) and the tertile of EPA/AA and DHA/AA ratios, and clinical aspects were compared with these factors. Results: We analyzed 373 patients (age 70.2 ± 13.4 years; 245 males) and 105 controls. Among stroke patients, patients aged < 65 years had the lowest EPA/AA (0.35 ± 0.23, p = 0.006) and DHA/AA (0.73 ± 0.27, p < 0.001) ratios. Compared with controls, patients aged < 65 years showed lower EPA/AA (vs. 0.49 ± 0.25, p < 0.001) and DHA/AA (vs. 0.82 ± 0.26, p = 0.009) ratios. From logistic regression analysis, the EPA/AA (odds ratio 0.18, 95% confidence interval 0.04–0.81, p = 0.026) and DHA/AA (odds ratio 0.09, 95% confidence interval 0.02–0.33, p < 0.001) ratios were inversely related to patients aged < 65 years. According to age-stratified analyses, we found an association of aortic arch calcification with a lower EPA/AA ratio for patients aged ≥ 75 years and an association of multiple infarctions and cerebral white matter lesions with a lower EPA/AA ratio for patients aged 65–74 years (p < 0.05). Conclusions: The ratios of EPA/AA and DHA/AA could be specific markers for younger stroke patients. The EPA/AA ratio may be related to aortic arch calcification for elderly stroke patients and to multiple infarctions and cerebral white matter disease for middle-aged stroke patients.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine
| | - Ryota Tanaka
- Department of Neurology, Juntendo University Faculty of Medicine
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University Faculty of Medicine
| | | | - Kenichiro Hira
- Department of Neurology, Juntendo University Faculty of Medicine
| | - Naohide Kurita
- Department of Neurology, Juntendo University Faculty of Medicine
| | - Mayu Sakurai
- Department of Neurology, Juntendo University Faculty of Medicine
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Faculty of Medicine
| | - Tetsuro Miyazaki
- Department of Cardiovascular Medicine, Juntendo University Faculty of Medicine
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Faculty of Medicine
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine
| |
Collapse
|
25
|
Zhang D, Xiao Y, Lv P, Teng Z, Dong Y, Qi Q, Liu Z. Edaravone attenuates oxidative stress induced by chronic cerebral hypoperfusion injury: role of ERK/Nrf2/HO-1 signaling pathway. Neurol Res 2017; 40:1-10. [PMID: 29125058 DOI: 10.1080/01616412.2017.1376457] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objectives The potential protective effects and mechanisms of edaravone have not been well elucidated in vascular dementia (VaD) induced by chronic cerebral hypoperfusion (CCH). The aim of this study was to investigate whether edaravone could improve cognitive damage in rats induced by CCH, and whether the effects of edaravone were associated with ERK/Nrf2/HO-1 signaling pathway. Methods CCH was induced by bilateral common carotid arteries occlusion (BCCAO). Sprague-Dawley (SD) rats were randomly divided into four groups: sham (sham-operated) group, vehicle (BCCAO + normal saline) group, edaravone3.0 group and edaravone6.0 group. The edaravone3.0 and edaravone6.0 group rats were provided 3.0 mg/kg and 6.0 mg/kg of edaravone, respectively, intraperitoneal (i.p.) injection twice daily following the first day after BCCAO. In this experiment, the spatial learning and memory were assessed using the Morris water maze. The malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the hippocampus were measured biochemically. And, the levels of total ERK1/2 (t-ERK1/2), Phospho-ERK1/2 (p-ERK1/2), total Nrf2 (t-Nrf2), nuclear Nrf2 (n-Nrf2), and HO-1 were assessed by western blot. Results The results showed that the treatment with edaravone significantly improved CCH-induced cognitive damage, and boosted endogenous antioxidants SOD activity and HO-1 level, decreased MDA contents in the hippocampus by activating Nrf2 signaling pathway which was related to ERK1/2. We also found that the neuronal morphology of the hippocampal CA1 area significantly improved and the number of Nrf2 positive cells markedly increased in the edaravone treatment groups. Conclusion Our results demonstrated a neuroprotective effect of edaravone on hippocampus against oxidative stress and cognitive deficit induced by CCH. The mechanism may be related to the enhancement of antioxidant defense system by activating ERK/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Yining Xiao
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Peiyuan Lv
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Zhenjie Teng
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Yanhong Dong
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Qianqian Qi
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Zhijuan Liu
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| |
Collapse
|
26
|
Ohtomo R, Bannai T, Ohtomo G, Shindo A, Tomimoto H, Tsuji S, Iwata A. Cilostazol alleviates white matter degeneration caused by chronic cerebral hypoperfusion in mice: Implication of its mechanism from gene expression analysis. Neurosci Lett 2017; 662:247-252. [PMID: 29080698 DOI: 10.1016/j.neulet.2017.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
Cilostazol is known to alleviate white matter demyelination due to chronic cerebral hypoperfusion in rodent models, although their pharmacological mechanisms remain unclear. In this study, we investigated the protective effect of cilostazol in relation to gene expression profile. Bilateral common carotid artery stenosis (BCAS) mice were treated with oral administration of cilostazol or placebo starting from a week after the surgery. Demyelination of the cingulum was compared between the 2 groups 2, 6, and 10 weeks after initial drug administration. Also, to examine temporal gene expression change during demyelination, DNA microarray analysis was conducted using samples from the corpus callosum of 2nd and 6th week BCAS mice. For genes that showed more than 2-fold up-regulation, their increase was validated by qPCR. Finally, to determine the effect of cilostazol towards those genes, their expression in the corpus callosum of 6-week placebo-treated and cilostazol-treated BCAS mice was compared by qPCR. Amelioration of myelin loss was observed in cilostazol-treated group, showing significant difference with those observed in placebo group after 10-week treatment. Gene ontology analysis of the 17 up-regulated (FDR<0.01) genes showed that majority of the genes were related to cell development processes. Among the validated genes, expression of Btg2 was significantly promoted in the corpus callosum of BCAS mice by administration of cilostazol. Results of this study suggest that activation of Btg2 may be one of the key pharmacological effects of cilostazol towards the white matter during chronic ischemia.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan.
| | - Taro Bannai
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| | - Gaku Ohtomo
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| | - Atsushi Iwata
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| |
Collapse
|
27
|
Tsai TH, Lin CJ, Chua S, Chung SY, Yang CH, Tong MS, Hang CL. Melatonin attenuated the brain damage and cognitive impairment partially through MT2 melatonin receptor in mice with chronic cerebral hypoperfusion. Oncotarget 2017; 8:74320-74330. [PMID: 29088788 PMCID: PMC5650343 DOI: 10.18632/oncotarget.20382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
Background Vascular cognitive impairment (VCI) is a spectrum of cognitive impairment caused by various chronic diseases including aging, hypertension, and diabetes mellitus. Oxidative and inflammatory reactions induced by chronic cerebral hypoperfusion (CHP) are believed to cause VCI. Melatonin is reported to possess anti-oxidation and anti-inflammation effects. This study was designed to investigate the effect and mechanisms of melatonin in CHP mice model. Results The behavioral function results revealed that CHP mice were significantly impaired when compared with the control. Melatonin improved the cognitive function, but the addition of MT2 receptor antagonist reversed the improvement. The IHC staining showed melatonin significantly improved WM lesions and gliosis in CHP mice. Again, the addition of MT2 receptor antagonist to melatonin worsened the WM lesion and gliosis. Similar results were also found for mRNA and protein expressions of oxidative reaction and inflammatory cytokines. Materials and Method Forty C57BL/6 mice were divided into four groups: Group 1: sham control; Group 2: CHP mice; Group 3: CHP with melatonin treatment; Group 4: CHP-melatonin and MT2 receptor antagonist (all groups n = 10). Working memory was assessed with Y–arm test at day-28 post-BCAS (bilateral carotid artery stenosis). All mice were sacrificed at day-30 post-BCAS. The immunohistochemical (IHC) staining was used for white matter (WM) damage and gliosis. The expression of mRNA and proteins about inflammatory and oxidative reaction were measured and compared between groups. Conclusions Partially through MT2 receptor, melatonin is effective for CHP-induced brain damage.
Collapse
Affiliation(s)
- Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Jei Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sarah Chua
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsu Yang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Shen Tong
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ling Hang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Zhang T, Gu J, Wu L, Li N, Sun Y, Yu P, Wang Y, Zhang G, Zhang Z. Neuroprotective and axonal outgrowth-promoting effects of tetramethylpyrazine nitrone in chronic cerebral hypoperfusion rats and primary hippocampal neurons exposed to hypoxia. Neuropharmacology 2017; 118:137-147. [DOI: 10.1016/j.neuropharm.2017.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
|
29
|
Mori MA, Meyer E, Soares LM, Milani H, Guimarães FS, de Oliveira RMW. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:94-105. [PMID: 27889412 DOI: 10.1016/j.pnpbp.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
30
|
Yang T, Sun Y, Lu Z, Leak RK, Zhang F. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 2017; 34:15-29. [PMID: 27693240 DOI: 10.1016/j.arr.2016.09.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
As human life expectancy rises, the aged population will increase. Aging is accompanied by changes in tissue structure, often resulting in functional decline. For example, aging within blood vessels contributes to a decrease in blood flow to important organs, potentially leading to organ atrophy and loss of function. In the central nervous system, cerebral vascular aging can lead to loss of the integrity of the blood-brain barrier, eventually resulting in cognitive and sensorimotor decline. One of the major of types of cognitive dysfunction due to chronic cerebral hypoperfusion is vascular cognitive impairment and dementia (VCID). In spite of recent progress in clinical and experimental VCID research, our understanding of vascular contributions to the pathogenesis of VCID is still very limited. In this review, we summarize recent findings on VCID, with a focus on vascular age-related pathologies and their contribution to the development of this condition.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhengyu Lu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese, Shanghai 200437, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China.
| |
Collapse
|
31
|
Bi MJ, Sun XN, Zou Y, Ding XY, Liu B, Zhang YH, Guo DD, Li Q. N-Butylphthalide Improves Cognitive Function in Rats after Carbon Monoxide Poisoning. Front Pharmacol 2017; 8:64. [PMID: 28232802 PMCID: PMC5298996 DOI: 10.3389/fphar.2017.00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Cognitive impairment is the most common neurologic sequelae after carbon monoxide (CO) poisoning, and the previous investigations have demonstrated that N-Butylphthalide (NBP) could exert a broad spectrum of neuroprotective properties. The current study aimed to investigate the effect of NBP on cognitive dysfunction in rats after acute severe CO poisoning. Rats were randomly divided into a normal control group, a CO poisoning group and a CO+NBP group. The animal model of CO poisoning was established by exposure to CO in a chamber, and then all rats received hyperbaric oxygen therapy once daily, while rats in CO+NBP group were administered orally NBP (6 mg/ 100g) by gavage twice a day additionally. The results indicated that CO poisoning could induce cognitive impairment. The ultrastructure of hippocampus was seriously damaged under transmission electron microscopy, and the expressions of calpain 1 and CaMK II proteins were significantly elevated after CO exposure according to the analysis of immunofluorescence staining and western blot. NBP treatment could evidently improve cognitive function, and maintain ultrastructure integrity of hippocampus. The expression levels of both calpain 1 and CaMK II proteins in CO+NBP group were considerably lower than that of CO poisoning group (P < 0.05). Taken together, this study highlights the molecular mechanism of cognitive dysfunction in rats after CO exposure via the upregulation of both calpain 1 and CaMK II proteins. The administration of NBP could balance the expressions of calpain 1 and CaMK II proteins and improve cognitive function through maintaining ultrastructural integrity of hippocampus, and thus may play a neuroprotective role in brain tissue in rats with CO poisoning.
Collapse
Affiliation(s)
- Ming-Jun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China
| | - Xian-Ni Sun
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Xiao-Yu Ding
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Department of Integration of Chinese and Western Clinical Medicine, Qingdao University Medical CollegeQingdao, China
| | - Bin Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Yue-Heng Zhang
- Department of Clinical Medicine, Binzhou Medical University Yantai, China
| | - Da-Dong Guo
- Eye Institute, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| |
Collapse
|
32
|
Aso Y, Nakamura K, Kimura N, Takemaru M, Arakawa R, Fujiki M, Hirano T, Kumamoto T, Matsubara E. Induction of Genes Expressed in Endothelial Cells of the Corpus Callosum in the Chronic Cerebral Hypoperfusion Rat Model. Pathobiology 2016; 84:25-37. [PMID: 27458816 DOI: 10.1159/000446876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebrovascular white matter lesions (WMLs) are associated with cognitive impairment in patients with subcortical vascular dementia. We performed a comprehensive gene expression analysis to elucidate genes associated with WML development in a chronic cerebral hypoperfusion rat model. METHODS Brains of rats with bilateral carotid ligation (2VO, n = 10) and sham-operated rats (n = 5-10/group) were removed on days 1, 7, or 28 after surgery. Total RNA isolated from the corpus callosum was evaluated by microarray analysis and quantitative reverse transcription-polymerase chain reaction. RESULTS On days 7 and 28, WMLs exhibited histologic changes. On day 7, 16 genes were differentially expressed between groups. mRNA levels of Ptprb, Kcnj8, Crispld2, Bcl6b, and Gja5 were differentially expressed in 2VO rats on day 7, but then returned to normal, whereas mRNA levels of Vwf and Trappc6a were upregulated after day 7. Immunohistochemistry showed that GJA5 and vWF were detected in endothelial cells, KCNJ8 in endothelial cells and astrocytes, CRISPLD2 in neurons and astrocytes, and TRAPPC6A in neurons. CONCLUSION Our findings indicate novel genes that may be associated with WML development in the chronic cerebral hypoperfusion rat model, and suggest an important role of neurovascular dysfunction in the pathophysiology.
Collapse
Affiliation(s)
- Yasuhiro Aso
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6927328. [PMID: 26925194 PMCID: PMC4748094 DOI: 10.1155/2016/6927328] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/26/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022]
Abstract
Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.
Collapse
|
35
|
Edrissi H, Schock SC, Hakim AM, Thompson CS. Microparticles generated during chronic cerebral ischemia increase the permeability of microvascular endothelial barriers in vitro. Brain Res 2015; 1634:83-93. [PMID: 26723565 DOI: 10.1016/j.brainres.2015.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 10/25/2022]
Abstract
Numbers of circulating microparticles (MPs) are elevated in a variety of cardiovascular disorders, and recent studies indicate that they are involved in inflammatory intercellular signaling. In the present study the signaling properties of MPs were assessed in an in vitro model of the blood brain barrier. MPs isolated from the plasma of rats exposed to chronic cerebral ischemia caused a significant reduction in the transendothelial electrical resistance (TEER) when applied to in vitro endothelial barriers, while MPs isolated from an equal volume of plasma from unoperated or sham operated rats did not. The reduction in TEER was attenuated by treating endothelial barriers prior to exposure to MPs with the caspase 3 inhibitor AC-DEVD-CHO, the TNF-α inhibitor SPD304, the tumor necrosis factor alpha-converting enzyme (TACE, ADAM 17) inhibitor TAPI-0-1 and the Rho kinase (ROCK) inhibitor Y-27632, and by treating the MPs themselves with these inhibitors prior to applying them to cultured cells. This observation indicates that MPs generated during cerebral ischemia contain pro-TNF-α, active TACE and active ROCK. ROCK and Ras homolog gene family member A (RhoA) were detected in MPs by western blot. The growth factor VEGF stimulated transcellular transport in endothelial barriers while exposure to MPs did not. We conclude that the increase in permeability of artificial barriers induced by MPs is primarily due to enhanced apoptosis induced by activation of the TNF-α pathway and activated caspase 3 and Rho kinases delivered to endothelial cells by MPs.
Collapse
Affiliation(s)
- Hamidreza Edrissi
- University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Sarah C Schock
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Antoine M Hakim
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Charlie S Thompson
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5.
| |
Collapse
|
36
|
Fan Y, Lan L, Zheng L, Ji X, Lin J, Zeng J, Huang R, Sun J. Spontaneous white matter lesion in brain of stroke-prone renovascular hypertensive rats: a study from MRI, pathology and behavior. Metab Brain Dis 2015; 30:1479-86. [PMID: 26387009 DOI: 10.1007/s11011-015-9722-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
Hypertension is considered one of the most important controllable risk factors for white matter lesion (WML). Our previous work found that stroke-prone renovascular hypertensive rats (RHRSP) displayed a high rate of WML. This study aimed to investigate the WML in RHRSP from MRI, pathology and behavior. RHRSP model was established by two-kidney, two-clipmethod and kept for 20 weeks. WML was decteted by magnetic resonance imaging (MRI) and loyez staining. Cognition was tested by morris water maze (MWM). Vascular changes were observed by HE staining on brain and carotid sections. Ultrastucture of blood brain barrier (BBB) were observed by transmission electron microscope. Immunofluorescence was used to detect albumin leakage and cell proliferation. T(2)-weighted MRI scans of RHRSP displayed diffuse, confluent white-matter hyperintensities. Pathological examination of the same rat showed marked vacuoles, disappearence of myelin and nerve fibers in white matter, supporting the neuroimaging findings. Spatial learning and memory impairment were observed in RHRSP. The small arteries in brain exhibited fibrinoid necrosis, hyalinosis and vascular remodeling. BBB disruption and plasma albumin leakage into vascular wall was observed in RHRSP. Increased cell proliferation in subventricular zone was seen in RHRSP. RHRSP demonstrated spontaneous WML and cognitive impairment. Hypertensive small vessel lesions and BBB disruption might paly causative factors for the onset and development of WML. The characteristic features of WML in RHRSP suggested it a valid animal model for WML.
Collapse
Affiliation(s)
- Yuhua Fan
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China.
| | - Linfang Lan
- Department of Medicine and Therapeutics, Chinese University of Hongkong, Hongkong, China
| | - Lu Zheng
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Xiaotan Ji
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Jing Lin
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Jinsheng Zeng
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Ruxun Huang
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Jian Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Palomares JA, Tummala S, Wang DJJ, Park B, Woo MA, Kang DW, St Lawrence KS, Harper RM, Kumar R. Water Exchange across the Blood-Brain Barrier in Obstructive Sleep Apnea: An MRI Diffusion-Weighted Pseudo-Continuous Arterial Spin Labeling Study. J Neuroimaging 2015; 25:900-5. [PMID: 26333175 DOI: 10.1111/jon.12288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Obstructive sleep apnea (OSA) subjects show brain injury in sites that control autonomic, cognitive, and mood functions that are deficient in the condition. The processes contributing to injury may include altered blood-brain barrier (BBB) actions. Our aim was to examine BBB function, based on diffusion-weighted pseudo-continuous arterial spin labeling (DW-pCASL) procedures, in OSA compared to controls. METHODS We performed DW-pCASL imaging in nine OSA and nine controls on a 3.0-Tesla MRI scanner. Global mean gray and white matter arterial transient time (ATT, an index of large artery integrity), water exchange rate across the BBB (Kw, BBB function), DW-pCASL ratio, and cerebral blood flow (CBF) values were compared between OSA and control subjects. RESULTS Global mean gray and white matter ATT (OSA vs. controls; gray matter, 1.691 ± .120 vs. 1.658 ± .109 second, P = .49; white matter, 1.700 ± .115 vs. 1.650 ± .114 second, P = .44), and CBF values (gray matter, 57.4 ± 15.8 vs. 58.2 ± 10.7 ml/100 g/min, P = .67; white matter, 24.2 ± 7.0 vs. 24.6 ± 6.7 ml/100 g/min, P = .91) did not differ significantly, but global gray and white matter Kw (gray matter, 158.0 ± 28.9 vs. 220.8 ± 40.6 min(-1) , P = .002; white matter, 177.5 ± 57.2 vs. 261.1 ± 51.0 min(-1) , P = .006), and DW-pCASL ratio (gray matter, .727 ± .076 vs. .823 ± .069, P = .011; white matter, .722 ± .144 vs. .888 ± .100, P = .004) values were significantly reduced in OSA over controls. CONCLUSIONS OSA subjects show compromised BBB function, but intact large artery integrity. The BBB alterations may introduce neural damage contributing to abnormal functions in OSA, and suggest a need to repair BBB function with strategies commonly used in other fields.
Collapse
Affiliation(s)
- Jose A Palomares
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Sudhakar Tummala
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Bumhee Park
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Mary A Woo
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA
| | - Daniel W Kang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Ronald M Harper
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
38
|
Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2033-40. [PMID: 26255114 DOI: 10.1016/j.nano.2015.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/23/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. FROM THE CLINICAL EDITOR Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.
| |
Collapse
|
39
|
Su SH, Wu YF, Lin Q, Yu F, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 suppress chronic cerebral hypoperfusion-induced neuronal apoptosis by inhibiting c-Jun N-terminal kinase signaling. Neuroscience 2015; 301:563-75. [DOI: 10.1016/j.neuroscience.2015.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Accepted: 03/11/2015] [Indexed: 11/15/2022]
|
40
|
Ozacmak VH, Sayan-Ozacmak H, Barut F. Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion. Nutr Neurosci 2015; 19:176-86. [PMID: 26005194 DOI: 10.1179/1476830515y.0000000027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Resveratrol appears to have neuroprotective potential in various animal models of brain disorders including cerebral ischemia and neurodegenerative diseases. Chronic cerebral hypoperfusion is a well-known pathological condition contributing to the neurodegenerative diseases such as vascular dementia. Purpose of the present study is to evaluate the possible therapeutic potential of resveratrol in a model of vascular dementia of ovariectomized female rats. Assessment of the potential was based on the determination of brain oxidative status, caspase-3 level, glial fibrillary acidic protein (GFAP), and neuronal damage on hippocampus and cerebral cortex. METHODS For creating the model of chronic cerebral hypoperfusion, ovariectomized female Wistar rats were subjected to the modified two vessel occlusion method, with the right common carotid artery being occluded first and the left one a week later. RESULTS At the 15th day following the ligation, neuronal damage was accompanied by the increased immunoreactivities of both GFAP and caspase-3, and significant neurodegeneration was evident in the hippocampus and cortex, all of which were significantly alleviated with resveratrol treatment (10 mg/kg). Biochemical analysis revealed that the resveratrol treatment decreased lipid peroxidation and restored reduced glutathione level as well. DISCUSSION The collected data of the present study suggest that the administration of resveratrol may provide a remarkable therapeutic benefit for vascular dementia, which is most likely related to the prevention of both apoptotic cell death and oxidative stress. We believe that therapeutic efficacy of resveratrol deserves to be tested for potential clinical application in postmenopausal elderly women suffering from vascular dementia.
Collapse
Affiliation(s)
- Veysel Haktan Ozacmak
- a Department of Physiology , Bulent Ecevit University Medical School , Kozlu Zonguldak 67600 , Turkey
| | - Hale Sayan-Ozacmak
- a Department of Physiology , Bulent Ecevit University Medical School , Kozlu Zonguldak 67600 , Turkey
| | - Figen Barut
- a Department of Physiology , Bulent Ecevit University Medical School , Kozlu Zonguldak 67600 , Turkey
| |
Collapse
|
41
|
Godinho J, de Oliveira JN, Ferreira EDF, Zaghi GGD, Bacarin CC, de Oliveira RMW, Milani H. Cilostazol but not sildenafil prevents memory impairment after chronic cerebral hypoperfusion in middle-aged rats. Behav Brain Res 2015; 283:61-8. [DOI: 10.1016/j.bbr.2015.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
|
42
|
L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain. J Cereb Blood Flow Metab 2015; 35:382-91. [PMID: 25465043 PMCID: PMC4348379 DOI: 10.1038/jcbfm.2014.210] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/28/2022]
Abstract
Chronic cerebral hypoperfusion causes white-matter lesions (WMLs) with oxidative stress and cognitive impairment. However, the biologic mechanisms that regulate axonal plasticity under chronic cerebral hypoperfusion have not been fully investigated. Here, we investigated whether L-carnitine, an antioxidant agent, enhances axonal plasticity and oligodendrocyte expression, and explored the signaling pathways that mediate axonal plasticity in a rat chronic hypoperfusion model. Adult male Wistar rats subjected to ligation of the bilateral common carotid arteries (LBCCA) were treated with or without L-carnitine. L-carnitine-treated rats exhibited significantly reduced escape latency in the Morris water maze task at 28 days after chronic hypoperfusion. Western blot analysis indicated that L-carnitine increased levels of phosphorylated high-molecular weight neurofilament (pNFH), concurrent with a reduction in phosphorylated phosphatase tensin homolog deleted on chromosome 10 (PTEN), and increased phosphorylated Akt and mammalian target of rapamycin (mTOR) at 28 days after chronic hypoperfusion. L-carnitine reduced lipid peroxidation and oxidative DNA damage, and enhanced oligodendrocyte marker expression and myelin sheath thickness after chronic hypoperfusion. L-carnitine regulates the PTEN/Akt/mTOR signaling pathway, and enhances axonal plasticity while concurrently ameliorating oxidative stress and increasing oligodendrocyte myelination of axons, thereby improving WMLs and cognitive impairment in a rat chronic hypoperfusion model.
Collapse
|
43
|
Abstract
Intraventricular hemorrhage (IVH) is a severity factor and treatment target in intracerebral hemorrhage. This study aimed to investigate whether systemic edaravone, a free-radical scavenger, could attenuate the brain injury after IVH in a rat model. Our findings showed that an intraventricular injection of autologous whole blood resulted in acute brain edema, increased malondialdehyde level, and decreased superoxide dismutase enzyme activity. Immediate edaravone treatment after IVH can reduce IVH-induced brain edema and elevated lipid peroxidation. Furthermore, repeated edaravone treatment (immediately, 24 h, and 48 h after IVH) improved the IVH-induced learning and memory damage. These effects suggest that edaravone may be a potential therapeutic agent for IVH, especially those intracerebral hemorrhage patients with ventricular extension.
Collapse
|
44
|
Miyamoto N, Pham LDD, Maki T, Liang AC, Arai K. A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion. Neurosci Lett 2014; 573:40-45. [PMID: 24820542 DOI: 10.1016/j.neulet.2014.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays key roles in the brain pathophysiology, especially in blood-brain barrier (BBB) breakdown. Therefore, inhibiting MMP-9 activity may be a promising therapy for protecting brains in cerebrovascular diseases. Here we show that in a mouse prolonged cerebral hypoperfusion model, a clinically proven radical scavenger edaravone suppressed MMP-9 and reduced BBB damage in cerebral white matter. Prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in male adult C57BL/6J mice (10 weeks old). After 7 days of cerebral hypoperfusion, white matter region (e.g. corpus callosum) exhibited significant BBB leakage, assessed by IgG staining. Correspondingly, immunostaining and western blotting showed that MMP-9 was upregulated in the white matter. Edaravone treatment (3mg/kg, i.p. at days 0 and 3) inhibited both BBB leakage and MMP-9 increase. Under the early phase of cerebral hypoperfusion conditions, oligodendrocyte precursor cells (OPCs) mainly contribute to the MMP-9 increase, but our immunostaining data showed that very little OPCs expressed MMP-9 in the edaravone-treated animals at day 7. Therefore, in vitro studies with primary rat OPCs were conducted to examine whether edaravone would directly suppressed MMP-9 expressions in OPCs. OPC cultures were exposed to sub-lethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Prolonged chemical hypoxic stress increased MMP-9 expression in OPCs, and radical scavenging with edaravone (10μM for 7 days) ameliorated the increase. Taken together, our proof-of-concept study demonstrates that radical scavengers may provide a potential therapeutic approach for white matter injury by suppressing BBB damage.
Collapse
Affiliation(s)
- Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| |
Collapse
|
45
|
Abstract
Brain white matter lesions (WMLs), which are often observed in patients with ischemic cerebrovascular diseases, contribute to cognitive decline. We analyzed the pathologic and regenerative processes in brain white matter lesions of patients diagnosed with vascular dementia. There was a significant increase in the number of oligodendrocyte progenitor cells (OPCs) in the brains of patients with vascular dementia as well as in rats with cerebral hypoperfusion. WMLs can be induced experimentally by bilateral common carotid artery ligation (BCCAL) of rats to cause chronic cerebral ischemia. After chronic cerebral hypoperfusion injury, oxygen free radicals and activated microglia acting as inflammatory elements contribute to chronic cerebral hypoperfusion-induced WMLs. The cell death of oligodendrocytes (OLGs) contributes directly to WMLs. The activation for intracellular signaling pathway of cAMP responsive element binding protein (CREB) phosphorylation in the white matter was suppressed after BCCAL. Type III phosphodiesterase inhibitor (PDE3-I) has potential therapeutic and brain-protective effects based on multitarget mechanism through cell signaling pathway of CREB phosphorylation. The OPCs subsequently underwent cell death and the number of OLGs decreased. In the rat model, PDE3-I prevented cell death, markedly increased the mature OLGs, and promoted restoration of white matter and recovery of cognitive decline.
Collapse
Affiliation(s)
- Takao Urabe
- Department of Neurology, Juntendo University
| |
Collapse
|
46
|
Tomimoto H, Wakita H. Animal models of vascular dementia: translational potential at the present time and in 2050. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Vascular dementia is a heterogeneous syndrome, and includes subcortical ischemic vascular dementia. For translational research, subcortical ischemic vascular dementia is an appropriate target since this is the most prevalent subtype and exhibits relatively uniform clinical and neuropathological changes. These changes consist of hypertensive arteriolar changes, lacunar infarctions, hypertensive hemorrhage and white matter lesions. Among various species, rodents are most frequently used, but their small volume of white matter may impede analysis of white matter lesions. Primate models have a larger volume, but the degree of white matter lesions is inconsistent. Animal models should accommodate the effect of aging and comorbidities, and in the case of primate models, low accessibility should be overcome by repeated and quantitative examinations using modern neuroimaging techniques and functional measures, especially for memory and motor function. There is no model that replicates all features of subcortical ischemic vascular dementia and, therefore, rodent and primate models should be selected appropriately for translational research.
Collapse
Affiliation(s)
- Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City 514-8507, Japan
| | - Hideaki Wakita
- Department of Internal Medicine, Nanakuri Sanatorium, Fujita Health University, Otoricho 424-1, Tsu City 514-12957, Japan
| |
Collapse
|
47
|
Ueno Y, Okuzumi A, Watanabe M, Tanaka Y, Shimada Y, Yamashiro K, Tanaka R, Hattori N, Urabe T. Cerebral Small Artery Diseases may be Associated with Aortic Arch Calcification in Stroke Patients. J Atheroscler Thromb 2014; 21:1011-21. [DOI: 10.5551/jat.22483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Abstract
Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer's disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic signaling that inextricably links the well-being of neurons and glia to that of cerebrovascular cells. This review will examine how vascular damage disrupts these vital homeostatic interactions, focusing on the hemispheric white matter, a region at heightened risk for vascular damage, and on the interplay between vascular factors and Alzheimer's disease. Finally, preventative and therapeutic prospects will be examined, highlighting the importance of midlife vascular risk factor control in the prevention of late-life dementia.
Collapse
Affiliation(s)
- Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
49
|
Comparison of neurite density measured by MRI and histology after TBI. PLoS One 2013; 8:e63511. [PMID: 23717439 PMCID: PMC3661595 DOI: 10.1371/journal.pone.0063511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023] Open
Abstract
Background Functional recovery after brain injury in animals is improved by marrow stromal cells (MSC) which stimulate neurite reorganization. However, MRI measurement of neurite density changes after injury has not been performed. In this study, we investigate the feasibility of MRI measurement of neurite density in an animal model of traumatic brain injury (TBI) with and without MSC treatment. Methods Fifteen male Wistar rats, were treated with saline (n = 6) or MSCs (n = 9) and were sacrificed at 6 weeks after controlled cortical impact (CCI). Healthy non-CCI rats (n = 5), were also employed. Ex-vivo MRI scans were performed two days after the rats were sacrificed. Multiple-shell hybrid diffusion imaging encoding scheme and spherical harmonic expansion of a two-compartment water diffusion displacement model were used to extract neurite related parameters. Bielshowski and Luxol Fast blue was used for staining axons and myelin, respectively. Modified Morris water maze and neurological severity score (mNSS) test were performed for functional evaluation. The treatment effects, the correlations between neurite densities measured by MRI and histology, and the correlations between MRI and functional variables were calculated by repeated measures analysis of variance, the regression correlation analysis tests, and spearman correlation coefficients. Results Neurite densities exhibited a significant correlation (R2>0.80, p<1E−20) between MRI and immuno-histochemistry measurements with 95% lower bound of the intra-correlation coefficient (ICC) as 0.86. The conventional fractional anisotropy (FA) correlated moderately with histological neurite density (R2 = 0.59, P<1E−5) with 95% lower bound of ICC as 0.76. MRI data revealed increased neurite reorganization with MSC treatment compared with saline treatment, confirmed by histological data from the same animals. mNSS were significantly correlated with MRI neurite density in the hippocampus region. Conclusions The present studies demonstrated that neurite density can be estimated by MRI after TBI and MRI measurement of neurite density is a sensitive marker to MSC treatment response.
Collapse
|
50
|
Alhaider IA. Effects of Edaravone on Scopolamine Induced-dementia in Experimental Rats. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.271.276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|