1
|
Al Yacoub ON, Awwad HO, Standifer KM. Recovery from Traumatic Brain Injury Is Nociceptin/Orphanin FQ Peptide Receptor Genotype-, Sex-, and Injury Severity-Dependent. J Pharmacol Exp Ther 2024; 389:136-149. [PMID: 37442620 DOI: 10.1124/jpet.123.001664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, and survivors often experience mental and physical health consequences that reduce quality of life. We previously reported that blockade of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor reduced tissue damage markers produced by blast TBI. The goal of this study was to determine the extent to which N/OFQ and NOP receptor levels change following mild (mTBI) and moderate TBI (modTBI) and whether the absence of the NOP receptor attenuates TBI-induced sequelae. Male and female NOP receptor knockout (KO) or wild-type (WT) rats received craniotomy-only (sham) or craniotomy plus mTBI, or modTBI impact to the left cerebral hemisphere. Neurologic and vestibulomotor deficits and nociceptive hyperalgesia and allodynia found in WT male and female rats following mTBI and modTBI were greatly reduced or absent in NOP receptor KO rats. NOP receptor levels increased in brain tissue from injured males but remained unchanged in females. Neurofilament light chain (NF-L) and glial fibrillary acidic protein (GFAP) expression were reduced in NOP receptor KO rats compared with WT following TBI. Levels of N/OFQ in injured brain tissue correlated with neurobehavioral outcomes and GFAP in WT males, but not with KO male or WT and KO female rats. This study reveals a significant contribution of the N/OFQ-NOP receptor system to TBI-induced deficits and suggests that the NOP receptor should be regarded as a potential therapeutic target for TBI. SIGNIFICANCE STATEMENT: This study revealed that nociceptin/orphanin FQ peptide (NOP) receptor knockout animals experienced fewer traumatic brain injury (TBI)-induced deficits than their wild-type counterparts in a sex- and injury severity-dependent manner, suggesting that NOP receptor antagonists may be a potential therapy for TBI.
Collapse
Affiliation(s)
- Omar N Al Yacoub
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy (O.N.A., H.O.A., K.M.S.), and the Neuroscience Program (K.M.S., H.O.A.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hibah O Awwad
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy (O.N.A., H.O.A., K.M.S.), and the Neuroscience Program (K.M.S., H.O.A.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy (O.N.A., H.O.A., K.M.S.), and the Neuroscience Program (K.M.S., H.O.A.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
2
|
Al Yacoub ON, Zhang Y, Patankar PS, Standifer KM. Traumatic Brain Injury Induces Nociceptin/Orphanin FQ and Nociceptin Opioid Peptide Receptor Expression within 24 Hours. Int J Mol Sci 2024; 25:1658. [PMID: 38338936 PMCID: PMC10855772 DOI: 10.3390/ijms25031658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.
Collapse
Affiliation(s)
| | | | | | - Kelly M. Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (O.N.A.Y.); (Y.Z.); (P.S.P.)
| |
Collapse
|
3
|
Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel) 2022; 12:262. [PMID: 36004833 PMCID: PMC9405013 DOI: 10.3390/bs12080262] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In modern society, there has been a rising trend of depression and anxiety. This trend heavily impacts the population's mental health and thus contributes significantly to morbidity and, in the worst case, to suicides. Modern medicine, with many antidepressants and anxiolytics at hand, is still unable to achieve remission in many patients. The pathophysiology of depression and anxiety is still only marginally understood, which encouraged researchers to focus on neuropeptides, as they are a vast group of signaling molecules in the nervous system. Neuropeptides are involved in the regulation of many physiological functions. Some act as neuromodulators and are often co-released with neurotransmitters that allow for reciprocal communication between the brain and the body. Most studied in the past were the antidepressant and anxiolytic effects of oxytocin, vasopressin or neuropeptide Y and S, or Substance P. However, in recent years, more and more novel neuropeptides have been added to the list, with implications for the research and development of new targets, diagnostic elements, and even therapies to treat anxiety and depressive disorders. In this review, we take a close look at all currently studied neuropeptides, their related pathways, their roles in stress adaptation, and the etiology of anxiety and depression in humans and animal models. We will focus on the latest research and information regarding these associated neuropeptides and thus picture their potential uses in the future.
Collapse
Affiliation(s)
- Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Ivan Grgac
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| |
Collapse
|
4
|
Clark TP. The history and pharmacology of buprenorphine: New advances in cats. J Vet Pharmacol Ther 2022; 45 Suppl 1:S1-S30. [DOI: 10.1111/jvp.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022]
|
5
|
Domi A, Lunerti V, Petrella M, Domi E, Borruto AM, Ubaldi M, Weiss F, Ciccocioppo R. Genetic deletion or pharmacological blockade of nociceptin/orphanin FQ receptors in the ventral tegmental area attenuates nicotine-motivated behaviour. Br J Pharmacol 2022; 179:2647-2658. [PMID: 34854073 PMCID: PMC9081114 DOI: 10.1111/bph.15762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The nociceptin/orphanin FQ (N/OFQ)-nociceptin opioid-like peptide (NOP) receptor system is widely distributed in the brain and pharmacological activation of this system revealed therapeutic potential in animal models of substance use disorder. Studies also showed that genetic deletion or pharmacological blockade of NOP receptors confer resistance to the development of alcohol abuse. Here, we have used a genetic and pharmacological approach to evaluate the therapeutic potential of NOP antagonism in smoking cessation. EXPERIMENTAL APPROACH Constitutive NOP receptor knockout rats (NOP-/- ) and their wild-type counterparts (NOP+/+ ) were tested over a range of behaviours to characterize their motivation for nicotine. We next explored the effects of systemic administration of the NOP receptor antagonist LY2817412 (1.0 & 3.0 mg·kg-1 ) on nicotine self-administration. NOP receptor blockade was further evaluated at the brain circuitry level, by microinjecting LY2817412 (3.0 & 6.0 μg·μl-1 ) into the ventral tegmental area (VTA), nucleus accumbens (NAc) and central amygdala (CeA). KEY RESULTS Genetic NOP receptor deletion resulted in decreased nicotine intake, decreased motivation to self-administer and attenuation of cue-induced nicotine reinstatement. LY2817412 reduced nicotine intake in NOP+/+ but not in NOP-/- rats, confirming that its effect is mediated by inhibition of NOP transmission. Finally, injection of LY2817412 into the VTA but not into the NAc or CeA decreased nicotine self-administration. CONCLUSIONS AND IMPLICATIONS These findings indicate that inhibition of NOP transmission attenuates the motivation for nicotine through mechanisms involving the VTA and suggest that NOP receptor antagonism may represent a potential treatment for smoking cessation.
Collapse
Affiliation(s)
- Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Michele Petrella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Esi Domi
- Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping 58183, Sweden
| | - Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Ferrari F, Rizzo S, Ruzza C, Calo G. Detailed In Vitro Pharmacological Characterization of the Clinically Viable Nociceptin/Orphanin FQ Peptide Receptor Antagonist BTRX-246040. J Pharmacol Exp Ther 2020; 373:34-43. [PMID: 31937563 DOI: 10.1124/jpet.119.262865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
The peptide nociceptin/orphanin FQ (N/OFQ) is the natural ligand of the N/OFQ receptor (NOP), which is widely expressed in the central and peripheral nervous system. Selective NOP antagonists are worthy of testing as innovative drugs to treat depression, Parkinson disease, and drug abuse. The aim of this study was to perform a detailed in vitro characterization of BTRX-246040 (also known as LY2940094, [2-[4-[(2-chloro-4,4-difluoro-spiro[5H-thieno[2,3-c]pyran-7,4'-piperidine]-1'-yl)methyl]-3-methyl-pyrazol-1-yl]-3-pyridyl]methanol), a novel NOP antagonist that has been already studied in humans. BTRX-246040 has been tested in vitro in the following assays: calcium mobilization in cells expressing NOP and classic opioid receptors and chimeric G proteins, bioluminescence resonance energy transfer assay measuring NOP interaction with G proteins and β-arrestins, the label-free dynamic mass redistribution assay, and the electrically stimulated mouse vas deferens. BTRX-246040 was systematically compared with the standard NOP antagonist SB-612111. In all assays, BTRX-246040 behaves as a pure and selective antagonist at human recombinant and murine native NOP receptors displaying 3-10-fold higher potency than the standard antagonist SB-612111. BTRX-246040 is an essential pharmacological tool to further investigate the therapeutic potential of NOP antagonists in preclinical and clinical studies. SIGNIFICANCE STATEMENT: NOP antagonists may be innovative antidepressant drugs. In this research, the novel clinically viable NOP antagonist BTRX-246040 has been deeply characterized in vitro in a panel of assays. BTRX-246040 resulted a pure, potent, and selective NOP antagonist.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| | - Sabrina Rizzo
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| |
Collapse
|
7
|
Caputi FF, Romualdi P, Candeletti S. Regulation of the Genes Encoding the ppN/OFQ and NOP Receptor. Handb Exp Pharmacol 2019; 254:141-162. [PMID: 30689088 DOI: 10.1007/164_2018_196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the years, the ability of N/OFQ-NOP receptor system in modulating several physiological functions, including the release of neurotransmitters, anxiety-like behavior responses, modulation of the reward circuitry, inflammatory signaling, nociception, and motor function, has been examined in several brain regions and at spinal level. This chapter collects information related to the genes encoding the ppN/OFQ and NOP receptor, their regulation, and relative transcriptional control mechanisms. Furthermore, genetic manipulations, polymorphisms, and epigenetic alterations associated with different pathological conditions are discussed. The evidence here collected indicates that the study of ppN/OFQ and NOP receptor gene expression may offer novel opportunities in the field of personalized therapies and highlights this system as a good "druggable target" for different pathological conditions.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Calo G, Lambert DG. Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br J Anaesth 2018; 121:1105-1114. [PMID: 30336855 PMCID: PMC6208290 DOI: 10.1016/j.bja.2018.06.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
Opioids are characterised as classical (mu, delta, and kappa) along with the non-classical nociceptin/orphanin FQ (N/OFQ) receptor or NOP. Targeting NOP has therapeutic indications in control of the cardiovascular and respiratory systems and micturition, and a profile as an antidepressant. For all of these indications, there are translational human data. Opioids such as morphine and fentanyl (activating the mu receptor) are the mainstay of pain treatment in the perioperative period, despite a challenging side-effect profile. Opioids in general have poor efficacy in neuropathic pain. Moreover, longer term use is associated with tolerance. There is good evidence interactions between opioid receptors, and receptor co-activation can reduce side-effects without compromising analgesia; this is particularly true for mu and NOP co-activation. Recent pharmaceutical development has produced a mixed opioid/NOP agonist, cebranopadol. This new chemical entity is effective in animal models of nociceptive and neuropathic pain with greater efficacy in the latter. In animal models, there is little evidence for respiratory depression, and tolerance (compared with morphine) only develops after long treatment periods. There is now early phase clinical development in diabetic neuropathy, cancer pain, and low back pain where cebranopadol displays significant efficacy. In 1996, N/OFQ was formally identified with an innovative analgesic profile. Approximately 20 yr later, cebranopadol as a clinical ligand is advancing through the human trials process.
Collapse
Affiliation(s)
- G Calo
- Section of Pharmacology, Department of Medical Sciences, National Institute of Neurosciences, University of Ferrara, Ferrara, Italy.
| | - D G Lambert
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
9
|
Malfacini D, Simon K, Trapella C, Guerrini R, Zaveri NT, Kostenis E, Calo’ G. NOP receptor pharmacological profile - A dynamic mass redistribution study. PLoS One 2018; 13:e0203021. [PMID: 30161182 PMCID: PMC6117024 DOI: 10.1371/journal.pone.0203021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The Nociceptin/Orphanin FQ (N/OFQ) peptide NOP receptor is coupled to pertussis toxin (PTX)-sensitive G proteins (Gi/o) whose activation leads to the inhibition of both cAMP production and calcium channel activity, and to the stimulation of potassium currents. The label free dynamic mass redistribution (DMR) approach has been demonstrated useful for investigating the pharmacological profile of G protein-coupled receptors. Herein, we employ DMR technology to systematically characterize the pharmacology of a large panel of NOP receptor ligands. These are of peptide and non-peptide nature and display varying degrees of receptor efficacy, ranging from full agonism to pure antagonism. Using Chinese hamster ovary (CHO) cells expressing the human NOP receptor we provide rank orders of potency for full and partial agonists as well as apparent affinities for selective antagonists. We find the pharmacological profile of NOP receptor ligands to be similar but not identical to values reported in the literature using canonical assays for Gi/o-coupled receptors. Our data demonstrate that holistic label-free DMR detection can be successfully used to investigate the pharmacology of the NOP receptor and to characterize the cellular effects of novel NOP receptor ligands.
Collapse
Affiliation(s)
- Davide Malfacini
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy
- * E-mail:
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | | | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Girolamo Calo’
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Micheli L, Lucarini E, Corti F, Ciccocioppo R, Calò G, Rizzi A, Ghelardini C, Di Cesare Mannelli L. Involvement of the N/OFQ-NOP system in rat morphine antinociceptive tolerance: Are astrocytes the crossroad? Eur J Pharmacol 2018; 823:79-86. [PMID: 29378191 PMCID: PMC6064644 DOI: 10.1016/j.ejphar.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023]
Abstract
The development of tolerance to the antinociceptive effect is a main problem associated with the repeated administration of opioids. The progressively higher doses required to relieve pain reduce safety and exacerbate the side effects of classical opioid receptor agonists like morphine. Nociceptin/orphanin FQ (N/OFQ) and its NOP receptor constitute the fourth endogenous opioid system that is involved in the control of broad spectrum of biological functions, including pain transmission. Aim of this work was to evaluate the relevance of the N/OFQ-NOP system in morphine antinociceptive action and in the development of morphine tolerance in the rat. Continuous spinal intrathecal infusion of morphine (1-3 nmol/h) evoked analgesic effects for 5 days in wild type animals. The same doses infused in NOP(-/-) rats showed a lower analgesic efficacy, while the onset of tolerance was delayed to day 9. N/OFQ (1-3 nmol/h), continuously infused in NOP(+/+) animals, showed an analgesic profile similar to morphine. Immunohistochemical analysis of the dorsal horn of the spinal cord of morphine tolerant NOP(+/+) rats showed an increased number of Iba1- and GFAP-positive cells (microglia and astrocytes, respectively). Interestingly, microglia but not astrocyte activation was observed in NOP(-/-) morphine tolerant rat. A selective activation of astrocytes was observed in the dorsal horn of wild type N/OFQ tolerant rats. The antinociceptive effect of morphine partially depends by the N/OFQ-NOP system that participates in the development of morphine tolerance. In particular, NOP receptors are involved in morphine-induced astrocyte activation, and N/OFQ per se increases astrocyte density.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Francesca Corti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Italy
| | - Anna Rizzi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
11
|
Maldonado R, Baños JE, Cabañero D. Usefulness of knockout mice to clarify the role of the opioid system in chronic pain. Br J Pharmacol 2018; 175:2791-2808. [PMID: 29124744 DOI: 10.1111/bph.14088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Several lines of knockout mice deficient in the genes encoding each component of the endogenous opioid system have been used for decades to clarify the specific role of the different opioid receptors and peptide precursors in many physiopathological conditions. The use of these genetically modified mice has improved our knowledge of the specific involvement of each endogenous opioid component in nociceptive transmission during acute and chronic pain conditions. The present review summarizes the recent advances obtained using these genetic tools in understanding the role of the opioid system in the pathophysiological mechanisms underlying chronic pain. Behavioural data obtained in these chronic pain models are discussed considering the peculiarities of the behavioural phenotype of each line of knockout mice. These studies have identified the crucial role of specific components of the opioid system in different manifestations of chronic pain and have also opened new possible therapeutic approaches, such as the development of opioid compounds simultaneously targeting several opioid receptors. However, several questions still remain open and require further experimental effort to be clarified. The novel genetic tools now available to manipulate specific neuronal populations and precise genome editing in mice will facilitate in a near future the elucidation of the role of each component of the endogenous opioid system in chronic pain. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Josep Eladi Baños
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Zhang Y, Schalo I, Durand C, Standifer KM. Sex Differences in Nociceptin/Orphanin FQ Peptide Receptor-Mediated Pain and Anxiety Symptoms in a Preclinical Model of Post-traumatic Stress Disorder. Front Psychiatry 2018; 9:731. [PMID: 30670988 PMCID: PMC6331409 DOI: 10.3389/fpsyt.2018.00731] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a neuropeptide that modulates pain transmission, learning/memory, stress, anxiety, and fear responses via activation of the N/OFQ peptide (NOP or ORL1) receptor. Post-traumatic stress disorder (PTSD) is an anxiety disorder that may arise after exposure to a traumatic or fearful event, and often is co-morbid with chronic pain. Using an established animal model of PTSD, single-prolonged stress (SPS), we were the first to report that NOP receptor antagonist treatment reversed traumatic stress-induced allodynia, thermal hyperalgesia, and anxiety-like behaviors in male Sprague-Dawley rats. NOP antagonist treatment also reversed SPS-induced serum and CSF N/OFQ increase and circulating corticosterone decrease. The objective of this study was to examine the role of the NOP receptor in male and female rats subjected to traumatic stress using Wistar wild type (WT) and NOP receptor knockout (KO) rats. The severity of co-morbid allodynia was assessed as change in paw withdrawal threshold (PWT) to von Frey and paw withdrawal latency (PWL) to radiant heat stimuli, respectively. PWT and PWL decreased in male and female WT rats within 7 days after SPS, and remained decreased through day 28. Baseline sensitivity did not differ between genotypes. However, while male NOP receptor KO rats were protected from SPS-induced allodynia and thermal hypersensitivity, female NOP receptor KO rats exhibited tactile allodynia and thermal hypersensitivity to the same extent as WT rats. Male NOP receptor KO rats had a lower anxiety index (AI) than WT, but SPS did not increase AI in WT males. In contrast, SPS significantly increased AI in WT and NOP receptor KO female rats. SPS increased circulating N/OFQ levels in male WT, but not in male NOP receptor KO, or WT or KO female rats. These results indicate that the absence of the NOP receptor protects males from traumatic-stress-induced allodynia and hyperalgesia, consistent with our previous findings utilizing a NOP receptor antagonist. However, female NOP receptor KO rats experience allodynia, hyperalgesia and anxiety-like symptoms to the same extent as WT females following SPS. This suggests that endogenous N/OFQ-NOP receptor signaling plays an important, but distinct, role in males and females following exposure to traumatic stress.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ian Schalo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Cindy Durand
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Kallupi M, Scuppa G, de Guglielmo G, Calò G, Weiss F, Statnick MA, Rorick-Kehn LM, Ciccocioppo R. Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction. Neuropsychopharmacology 2017; 42:695-706. [PMID: 27562376 PMCID: PMC5240182 DOI: 10.1038/npp.2016.171] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/14/2022]
Abstract
The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the NOP/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal, and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin, and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125, or 0.5 mg/infusion) both under a fixed ratio 1 and a progressive ratio schedule of reinforcement compared with wild-type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showed significantly lower drug intake compared with Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.
Collapse
Affiliation(s)
- Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Giulia Scuppa
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Giordano de Guglielmo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Girolamo Calò
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Statnick
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN USA
| | | | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032 Italy, Tel: +39 07 3740 3313, Fax: +39 07 3740 3325, E-mail:
| |
Collapse
|
14
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
15
|
Statnick MA, Chen Y, Ansonoff M, Witkin JM, Rorick-Kehn L, Suter TM, Song M, Hu C, Lafuente C, Jiménez A, Benito A, Diaz N, Martínez-Grau MA, Toledo MA, Pintar JE. A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder. J Pharmacol Exp Ther 2016; 356:493-502. [PMID: 26659925 DOI: 10.1124/jpet.115.228221] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity.
Collapse
Affiliation(s)
- Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Yanyun Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Michael Ansonoff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Linda Rorick-Kehn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Todd M Suter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Min Song
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Charlie Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Celia Lafuente
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Alma Jiménez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Ana Benito
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Nuria Diaz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Maria Angeles Martínez-Grau
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Miguel A Toledo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - John E Pintar
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| |
Collapse
|
16
|
Andero R. Nociceptin and the nociceptin receptor in learning and memory. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:45-50. [PMID: 25724763 PMCID: PMC4458422 DOI: 10.1016/j.pnpbp.2015.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/21/2022]
Abstract
There are many processes in which the neuropeptide nociceptin/orphanin FQ (N/OFQ or nociceptin) is involved in the brain. The role of nociceptin in learning and memory holds promise in modulating these processes in health and disease in the human brain. This review summarizes the body of research focused on N/OFQ and its specific receptor, the nociceptin receptor (NOP receptor), in learning and memory, and its potential mechanisms of action, in which acetylcholine, NMDA receptor, and noradrenaline may be critical. Finally, the association between NOP receptor and posttraumatic stress disorder (PTSD), a psychiatric disorder with altered fear learning, is examined as one of the potential outcomes resulting from pathological consequences of dysregulation of N/OFQ-NOP receptor in the brain.
Collapse
Affiliation(s)
- Raül Andero
- Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
17
|
Micheli L, Di Cesare Mannelli L, Guerrini R, Trapella C, Zanardelli M, Ciccocioppo R, Rizzi A, Ghelardini C, Calò G. Acute and subchronic antinociceptive effects of nociceptin/orphanin FQ receptor agonists infused by intrathecal route in rats. Eur J Pharmacol 2015; 754:73-81. [PMID: 25704616 DOI: 10.1016/j.ejphar.2015.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022]
Abstract
Severe pain occurs in the context of many diseases and conditions and is a leading cause of disability. Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the N/OFQ peptide (NOP) receptor. This peptidergic system controls pain transmission and in particular spinally administered N/OFQ has robust antinociceptive properties. The aim of this study was to investigate the spinal antinociceptive properties of NOP peptide agonists after acute and subchronic treatment in rats. Doses unable to alter motor coordination were selected. UFP-112 (full NOP agonist) and UFP-113 (partial NOP agonist) were administered intrathecally (i.t.) by spinal catheterization. Acute injection of UFP-112 induced antinociceptive response at lower dosages (0.03-1nmol i.t.) compared to morphine and similar to N/OFQ. UFP-113 was effective in a 0.001-1nmol i.t. dose range. The antinociceptive effects of NOP ligands were no longer evident in rats knockout for the NOP gene, while those of morphine were maintained. The continuous spinal infusion (by osmotic pumps) of 0.1nmol/h UFP-112 and UFP-113 showed antinociceptive action comparable to 1-3nmol/h morphine or N/OFQ. The antinociceptive effect of morphine progressively decreased and was no longer significant after 6 days of treatment. Similar results were obtained with N/OFQ, UFP-112, and UFP-113. The acute i.t. injection of morphine in animals tolerant to N/OFQ and UFP-112 evoked analgesic effects. Neither morphine nor N/OFQ induced antinociceptive effects in morphine- and UFP-113-tolerant rats. In conclusion this study highlights the analgesic efficacy and potency of UFP-112 and UFP-113 underlining the relevance of NOP system in analgesia.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Anna Rizzi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Italy
| |
Collapse
|
18
|
Grandi D, Becchi G, Guerrini R, Calò G, Morini G. Nociceptin/orphanin FQ and stress regulate synaptophysin expression in the rat fundic and colonic mucosa. Tissue Cell 2015; 47:147-51. [PMID: 25697061 DOI: 10.1016/j.tice.2015.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the N/OFQ peptide (NOP) receptor, is a neuropeptide regulating gastrointestinal functions. The present study investigated the influence of acute cold-restraint stress and of short- and long-lasting peripheral infusion of N/OFQ on the level of synaptophysin, an exocytotic protein involved in neural plasticity. Exposure to cold-restraint stress for 3h or subcutaneous infusion of N/OFQ, 1 μg/kg/h for 4h, induced a significant increase of the area of synaptophysin-immunoreactive nerve fibers in the fundic mucosa, while prolonged subcutaneous infusion of N/OFQ, 1 μg/kg/h for 52 h and for 14 days, did not modify the synaptophysin-immunostained fibers. In the colonic mucosa stress exposure and subcutaneous infusion of N/OFQ, at any time point considered, had no significant effect on the area of synaptophysin-immunoreactive nerve fibers. Synaptophysin immunoreactive nerve fibers were decreased in knockout rats for the NOP receptor gene both in the fundic and colonic mucosa. Synaptophysin-immunoreactivity was demonstrated in cells located in the basal portion of the fundic mucosa. Our study is the first to show that the N/OFQ/NOP receptor system influences the expression of synaptophysin and hence the process of exocytosis both in nerve terminals and in cells.
Collapse
Affiliation(s)
- Daniela Grandi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Gabriella Becchi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy; National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
19
|
Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M. Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 2014; 34:12953-62. [PMID: 25253844 PMCID: PMC6608339 DOI: 10.1523/jneurosci.4677-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
δ opioid peptide (DOP) receptors are considered a therapeutic target in Parkinson's disease, although the use of DOP agonists may be limited by side effects, including convulsions. To circumvent this issue, we evaluated whether blockade of nociceptin/orphanin FQ (N/OFQ) tone potentiated the antiparkinsonian effects of DOP agonists, thus allowing for reduction of their dosage. Systemic administration of the N/OFQ receptor (NOP) antagonist J-113397 [(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one] and the DOP receptor agonist SNC-80 [(+)-4-[(αR)-α-(2S,5R)-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N-N-diethylbenzamide] revealed synergistic attenuation of motor deficits in 6-hydroxydopamine hemilesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. In this model, repeated administration of the combination produced reproducible antiparkinsonian effects and was not associated with rescued striatal dopamine terminals. Microdialysis studies revealed that either systemic administration or local intranigral perfusion of J-113397 and SNC-80 led to the enhancement of nigral GABA, reduction of nigral Glu, and reduction of thalamic GABA levels, consistent with the view that NOP receptor blockade and DOP receptor stimulation caused synergistic overinhibition of nigro-thalamic GABA neurons. Whole-cell recording of GABA neurons in nigral slices confirmed that NOP receptor blockade enhanced the DOP receptor-induced effect on IPSCs via presynaptic mechanisms. Finally, SNC-80 more potently stimulated stepping activity in mice lacking the NOP receptor than wild-type controls, confirming the in vivo occurrence of an NOP-DOP receptor interaction. We conclude that endogenous N/OFQ functionally opposes DOP transmission in substantia nigra reticulata and that NOP receptor antagonists might be used in combination with DOP receptor agonists to reduce their dosage while maintaining their full therapeutic efficacy.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy, Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genoa, Italy
| | - Mattia Volta
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Ada Ledonne
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Nicola Mercuri
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| |
Collapse
|
20
|
Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, Tucker RC, Ciccocioppo R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 2014; 141:283-99. [PMID: 24189487 PMCID: PMC5098338 DOI: 10.1016/j.pharmthera.2013.10.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995. The generation of specific agonists, antagonists and receptor deficient mice and rats has enabled progress in elucidating the biological functions of N/OFQ. Additionally, radio-imaging technologies have been advanced for investigation of this system in animals and humans. Together with traditional neurobehavioral techniques, these tools have been utilized to identify the biological significance of the N/OFQ system and its interacting partners. The present review focuses on the role of N/OFQ in the regulation of feeding, body weight homeostasis, stress, the stress-related psychiatric disorders of depression and anxiety, and in drug and alcohol dependence. Critical evaluation of the current scientific preclinical literature suggests that small molecule modulators of nociceptin opioid peptide receptors (NOP) might be useful in the treatment of diseases related to these biological functions. In particular, the literature data suggest that antagonism of NOP receptors will produce anti-obesity and antidepressant activities in humans. However, there are also contradictory data discussed. The current literature on the role of N/OFQ in anxiety and addiction, on the other hand points primarily to a role of agonist modulation being potentially therapeutic. Some drug-like molecules that function either as agonists or antagonists of NOP receptors have been optimized for human clinical study to test some of these hypotheses. The discovery of PET ligands for NOP receptors, combined with the pharmacological tools and burgeoning preclinical data set discussed here bodes well for a rapid advancement of clinical understanding and potential therapeutic benefit.
Collapse
Key Words
- (1S,3aS)-8- (2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one, a NOP receptor agonist
- (±)trans-1-[1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, a NOP receptor antagonist
- 2-{3-[1-((1R)-acenaphthen-1-yl)piperidin-4-yl]-2,3-dihydro-2-oxo-benzimidazol-1-yl}-N-methylacetamide, a NOP receptor agonist
- 5-HT
- 5-hydroxytryptamine or serotonin
- 8-[bis(2-methylphenyl)-methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol
- ACTH
- Alcohol-preferring rats
- Anxiety
- BED
- BNST
- CGRP
- CPP
- CRF
- CTA
- Calcitonin gene related peptide
- CeA
- DA
- Depression
- Drug dependence
- EPSC
- FST
- G-protein activated, inwardly rectifying K(+) channel
- G-protein-coupled receptor
- GIRK
- GPCR
- HPA
- J-113397
- JTC-801
- KO
- MDD
- Marchigian Sardinian Alcohol-Preferring
- N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide hydrochloride, a NOP receptor antagonist
- N/OFQ
- NAcc
- NE
- NOP
- NPY
- Nociceptin opioid peptide or Nociceptin opioid peptide receptor
- Nociceptin/Orphanin FQ
- Nociceptin/Orphanin FQ (F: phenylalanine, Q: glutamine, the amino acids that begin and end the peptide sequence)
- ORL
- Obesity
- P rats
- POMC
- Pro-opiomelanocortin
- Ro 64-6198
- SB-612111
- SCH 221510
- SCH 655842
- Stress
- TST
- UFP-101
- VTA
- W212393
- [(–)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol, a NOP receptor antagonist
- [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2), a NOP receptor antagonist
- adrenocorticotropic hormone
- bed nucleus of stria terminalis
- binge eating disorder
- central nucleus of the amygdala
- conditioned place preference
- conditioned taste aversion
- corticotrophin-releasing factor
- dopamine
- endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxamide, a NOP receptor agonist
- excitatory post-synaptic current
- forced-swim test
- hypothalamic–pituitary axis
- knockout
- mPFC
- major depressive disorder
- medial prefrontal cortex
- msP
- neuropeptide Y
- norepinephrine
- nucleus accumbens
- opioid-receptor-like
- tail-suspension test
- ventral tegmental area
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | | | | | - John E Pintar
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Michael Ansonoff
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yanyun Chen
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - R Craig Tucker
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
21
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
22
|
Donica CL, Awwad HO, Thakker DR, Standifer KM. Cellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ. Mol Pharmacol 2013; 83:907-18. [PMID: 23395957 PMCID: PMC3629824 DOI: 10.1124/mol.112.084632] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/08/2013] [Indexed: 11/22/2022] Open
Abstract
The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is the fourth and most recently discovered member of the opioid receptor superfamily that also includes μ, δ, and κ opioid receptor subtypes (MOR, DOR, and KOR, respectively). The widespread anatomic distribution of the NOP receptor enables the modulation of several physiologic processes by its endogenous agonist, N/OFQ. Accordingly, the NOP receptor has gained a lot of attention as a potential target for the development of ligands with therapeutic use in several pathophysiological states. NOP receptor activation frequently results in effects opposing classic opioid receptor action; therefore, regulation of the NOP receptor and conditions affecting its modulatory tone are important to understand. Mounting evidence reveals a heterologous interaction of the NOP receptor with other G protein-coupled receptors, including MOR, DOR, and KOR, which may subsequently influence their function. Our focus in this review is to summarize and discuss the findings that delineate the cellular mechanisms of NOP receptor signaling and regulation and the regulation of other receptors by N/OFQ and the NOP receptor.
Collapse
Affiliation(s)
- Courtney L Donica
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | | | | | | |
Collapse
|
23
|
Calo’ G, Guerrini R. Medicinal Chemistry, Pharmacology, and Biological Actions of Peptide Ligands Selective for the Nociceptin/Orphanin FQ Receptor. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1131.ch015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Girolamo Calo’
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| | - Remo Guerrini
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| |
Collapse
|
24
|
Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics 2012; 192:1235-48. [PMID: 23023007 DOI: 10.1534/genetics.112.140855] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hybrid piggyBac/Sleeping Beauty transposon-based insertional mutagenesis system that can be mobilized by simple breeding was established in the rat. These transposons were engineered to include gene trap sequences and a tyrosinase (Tyr) pigmentation reporter to rescue the albinism of the genetic background used in the mutagenesis strategy. Single-copy transposon insertions were transposed into the rat genome by co-injection of plasmids carrying the transposon and RNA encoding piggyBac transposase into zygotes. The levels of transgenic Tyr expression were influenced by chromosomal context, leading to transgenic rats with different pigmentation that enabled visual genotyping. Transgenic rats designed to ubiquitously express either piggyBac or Sleeping Beauty transposase were generated by standard zygote injection also on an albino background. Bigenic rats carrying single-copy transposons at known loci and transposase transgenes exhibited coat color mosaicism, indicating somatic transposition. PiggyBac or Sleeping Beauty transposase bigenic rats bred with wild-type albino rats yielded offspring with pigmentation distinct from the initial transposon insertions as a consequence of germline transposition to new loci. The germline transposition frequency for Sleeping Beauty and piggyBac was ∼10% or about one new insertion per litter. Approximately 50% of the insertions occurred in introns. Chimeric transcripts containing endogenous and gene trap sequences were identified in Gabrb1 mutant rats. This mutagenesis system based on simple crosses and visual genotyping can be used to generate a collection of single-gene mutations in the rat.
Collapse
|
25
|
Zheng S, Geghman K, Shenoy S, Li C. Retake the center stage--new development of rat genetics. J Genet Genomics 2012; 39:261-8. [PMID: 22749013 DOI: 10.1016/j.jgg.2012.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
The rat is a powerful model for the study of human physiology and diseases, and is preferred by physiologists, neuroscientists and toxicologists. However, the lack of robust genetic modification tools has severely limited the generation of rat genetic models over the last two decades. In the last few years, several gene-targeting strategies have been developed in rats using N-ethyl-N-nitrosourea (ENU), transposons, zinc-finger nucleases (ZFNs), bacterial artificial chromosome (BAC) mediated transgenesis, and recently established rat embryonic stem (ES) cells. The development and improvement of these approaches to genetic manipulation have created a bright future for the use of genetic rat models in investigations of gene function and human diseases. Here, we summarize the strategies used for rat genetic manipulation in current research. We also discuss BAC transgenesis as a potential tool in rat transgenic models.
Collapse
Affiliation(s)
- Sushuang Zheng
- Department of Neurology, Friedman Brain Institute, Mt. Sinai School of Medicine, Box 1137, New York, NY 10029, USA
| | | | | | | |
Collapse
|
26
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Several advances have been made to manipulate the rat genome in the last 2 years. This review aims to describe these advances in rat genetic manipulations, with an emphasis on their current status and their prospects and applications in the postgenomic era. RECENT FINDINGS Authentic rat embryonic stem cells were derived in 2008 using the 2i/3i culture system. This led to the generation of the first gene knockout rats via embryonic stem cell-based gene targeting. The development of zinc-finger nucleases (ZFNs) provided an alternative approach that avoids the necessity of germline competent embryonic stem cells. Meanwhile, improvements have been made to the well established random mutagenesis mediated by transposons or N-ethyl-N-nitrosourea (ENU). The in-vitro rat spermatogonial stem cell (SSC) system has greatly optimized these phenotype-driven approaches for future applications. SUMMARY The rat has long been a prime model organism in physiological, pharmacological and neurobehavioral studies. The recent advances of rat reverse genetic approaches, together with the classical ENU and transposon mutagenesis system, will contribute tremendously to the deciphering of gene functions and the creation of rat disease models.
Collapse
|
28
|
Rizzi A, Molinari S, Marti M, Marzola G, Calo' G. Nociceptin/orphanin FQ receptor knockout rats: in vitro and in vivo studies. Neuropharmacology 2011; 60:572-9. [PMID: 21184763 DOI: 10.1016/j.neuropharm.2010.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/15/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ peptide (NOP) receptor. Recently knockout rats for the NOP receptor gene (NOP(-/-)) have been generated; these animals were used in the present study to investigate their emotional (open field, elevated plus maze, and forced swimming test), locomotor (drag and rotarod test), and nociceptive (plantar and formalin test) phenotypes in comparison with their NOP(+/+) littermates. In addition, N/OFQ sensitivity has been assessed in electrically stimulated vas deferens tissues taken from NOP(+/+) and NOP(-/-) rats. In the elevated plus maze and forced swimming tests NOP(-/-) rats showed anxiety- and anti-depressant-like phenotype, respectively. No differences were found in the open field test. NOP(-/-) rats outperformed their NOP(+/+) littermates in two motor behaviour assays. Genetic ablation of the NOP receptor gene produced a statistically significant increase in nociceptive behaviour of the mutant rats in the formalin test. Finally, in the electrically stimulated rat vas deferens taken from NOP(+/+) tissues, N/OFQ inhibited in a concentration-dependent manner the electrically induced twitches while the peptide was inactive in tissues taken from NOP(-/-) animals. These results, in line with previous findings obtained with selective NOP receptor antagonists in mice and rats and with mouse knockout studies, clearly indicate that endogenous N/OFQ-NOP receptor signalling plays an important role in controlling anxiety- and mood-related behaviours, exercise-driven locomotor activity and nociception. These observations are relevant for defining the therapeutic indications (and contraindications) of NOP receptor antagonists.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
29
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
30
|
Calo' G, Rizzi A, Cifani C, Micioni Di Bonaventura MV, Regoli D, Massi M, Salvadori S, Lambert DG, Guerrini R. UFP-112 a potent and long-lasting agonist selective for the Nociceptin/Orphanin FQ receptor. CNS Neurosci Ther 2010; 17:178-98. [PMID: 20497197 DOI: 10.1111/j.1755-5949.2009.00107.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) controls several biological functions via selective activation of the N/OFQ peptide receptor (NOP). [(pF)Phe(4) Aib(7) Arg(14) Lys(15) ]N/OFQ-NH(2) (UFP-112) is an NOP receptor ligand designed using a combination of several chemical modifications in the same peptide sequence that increase NOP receptor affinity/potency and/or reduce susceptibility to enzymatic degradation. In the present review article, we summarize data from the literature and present original findings on the in vitro and in vivo pharmacological features of UFP-112. Moreover, important biological actions and possible therapeutic indications of NOP receptor agonists are discussed based on the results obtained with UFP-112 and compared with other peptide and nonpeptide NOP receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo'
- Department Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, and National Institute of Neuroscience, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Evans RM, You H, Hameed S, Altier C, Mezghrani A, Bourinet E, Zamponi GW. Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation. J Biol Chem 2010; 285:1032-40. [PMID: 19887453 PMCID: PMC2801230 DOI: 10.1074/jbc.m109.040634] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/22/2009] [Indexed: 01/15/2023] Open
Abstract
We have investigated the heterodimerization of ORL1 receptors and classical members of the opioid receptor family. All three classes of opioid receptors could be co-immunoprecipitated with ORL1 receptors from both transfected tsA-201 cell lysate and rat dorsal root ganglia lysate, suggesting that these receptors can form heterodimers. Consistent with this hypothesis, in cells expressing either one of the opioid receptors together with ORL1, prolonged ORL1 receptor activation via nociceptin application resulted in internalization of the opioid receptors. Conversely, mu-, delta-, and kappa-opioid receptor activation with the appropriate ligands triggered the internalization of ORL1. The mu-opioid receptor/ORL1 receptor heterodimers were shown to associate with N-type calcium channels, with activation of mu-opioid receptors triggering N-type channel internalization, but only in the presence of ORL1. Furthermore, the formation of opioid receptor/ORL1 receptor heterodimers attenuated the ORL1 receptor-mediated inhibition of N-type channels, in part because of constitutive opioid receptor activity. Collectively, our data support the existence of heterodimers between ORL1 and classical opioid receptors, with profound implications for effectors such as N-type calcium channels.
Collapse
Affiliation(s)
- Rhian M. Evans
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada and
| | - Haitao You
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada and
| | - Shahid Hameed
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada and
| | - Christophe Altier
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada and
| | | | - Emmanuel Bourinet
- the Institut de Génomique Fonctionnelle, CNRS, 34094 Montpellier, France
| | - Gerald W. Zamponi
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada and
| |
Collapse
|