1
|
Picone JA, Hassan A, Kim RK, Lira DP, Silva GM, Truby NL, Johnson HY, Teague CD, Neve RL, Banks ML, Cui X, Hamilton PJ. The function of the ZFP189 transcription factor in the nucleus accumbens facilitates cocaine-specific transcriptional and behavioral adaptations. Mol Psychiatry 2025; 30:2490-2503. [PMID: 39587295 PMCID: PMC12092205 DOI: 10.1038/s41380-024-02852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Distinguishing the brain mechanisms affected by distinct addictive drugs may inform targeted therapies against specific substance use disorders (SUDs). Here, we explore the function of a drug-associated, transcriptionally repressive transcription factor (TF), ZFP189, whose expression in the nucleus accumbens (NAc) facilitates cocaine-induced molecular and behavioral adaptations. To uncover the necessity of ZFP189-mediated transcriptional control in driving cocaine-induced behaviors, we created synthetic ZFP189 TFs of distinct transcriptional function, including ZFP189VPR, which activates the expression of target genes and exerts opposite transcriptional control to the endogenously repressive ZFP189. By virally delivering synthetic ZFP189 TFs to the NAc of mice, we discover that the transcriptional control exerted by synthetic or endogenous ZFP189 solely alters behavioral adaptations to cocaine but not morphine, saline, or sucrose. Further, these synthetic ZFP189 TFs are only capable of producing gene-expression changes in rodents exposed to cocaine, but not morphine or saline. In these cocaine exposed mice, the gene-expression profile produced by ZFP189VPR is inversely related to the cocaine-induced transcriptional response, as characterized by Upstream Regulator Analysis in Ingenuity Pathway Analysis. Lastly, we demonstrate that NAc ZFP189WT increases vulnerability to cocaine reinforcement through selective sensitization to the reinforcing effects of small cocaine doses. In contrast, ZFP189VPR treated mice do not experience changes in cocaine sensitivity and had lower rates of cocaine self-administration. Collectively, this research describes the brain mechanisms by which a TF specifically coordinates the molecular adaptations that produce increased cocaine addiction-like behaviors. The use of synthetic ZFP189VPR uncovers novel strategies for therapeutic interventions to potentially halt these cocaine-induced transcriptional processes.
Collapse
Affiliation(s)
- Joseph A Picone
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Annalise Hassan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - R Kijoon Kim
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Diego Piñeiro Lira
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Gabriella M Silva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Natalie L Truby
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Hadessah Y Johnson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Xiaohong Cui
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Peter J Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Saito A, Esaki H, Murata H, Ni X, Nishitani N, Deyama S, Kaneda K. Dopamine D 1 receptors in the medial prefrontal cortex and basolateral amygdala cooperatively contribute to social defeat stress-induced augmentation of cocaine reward in mice. Neuropharmacology 2025; 276:110524. [PMID: 40398733 DOI: 10.1016/j.neuropharm.2025.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Stress potentiates the rewarding effects of cocaine; however, its underlying mechanism remains unclear. Here, we investigated the role of dopaminergic transmission in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA), key brain regions implicated in addiction and stress responses, using the cocaine conditioned place preference (CPP) paradigm combined with acute social defeat (SD) stress in male mice. SD stress exposed immediately before the posttest augmented cocaine CPP, which was significantly reduced by systemic injection of SCH23390, a dopamine D1 receptor antagonist. Fiber photometry recordings using a GRABDA sensor revealed SD stress-induced elevations in extracellular dopamine levels in both the mPFC and BLA. Accordingly, bilateral intra-mPFC or bilateral intra-BLA injections of SCH23390 suppressed the stress-induced augmentation of cocaine CPP. Additionally, functional disconnection, achieved via unilateral intra-mPFC SCH23390 injection combined with contralateral intra-BLA SCH23390 injection, suppressed stress-induced CPP augmentation. Moreover, unilateral intra-mPFC SCH23390 injection combined with contralateral intra-BLA injection of NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, inhibited the augmented CPP. Furthermore, selective chemogenetic silencing of glutamatergic projections from the mPFC to the BLA suppressed augmented cocaine CPP. These findings suggest that bilateral and simultaneous D1 receptor-mediated dopaminergic inputs to the mPFC and BLA, as well as the subsequent facilitation of glutamatergic transmission from the mPFC to the BLA, play a crucial role in the SD stress-induced potentiation of the rewarding effects of cocaine.
Collapse
Affiliation(s)
- Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruka Murata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xiyan Ni
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Orban Z, Gill MJ. Differential rearing alters Fos in the accumbens core and ventral palidum following reinstatement of cocaine seeking in male Sprague-Dawley rats. Pharmacol Biochem Behav 2024; 243:173837. [PMID: 39053857 DOI: 10.1016/j.pbb.2024.173837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Rearing rats in environmental enrichment produces a protective effect when exposed to stimulants, as enriched rats display attenuated cocaine seeking during reinstatement. However, less is known about what changes in the brain are responsible for this protective effect. The current study investigated differences in Fos protein expression following reinstatement of cocaine seeking in differentially reared rats. Rats were reared in either enriched (EC) or impoverished (IC) conditions for 30 days, after which rats self-administered cocaine in 2-h sessions. Following self-administration, rats underwent extinction and cue-induced or cocaine-primed reinstatement of cocaine seeking, brains were extracted, and Fos immunohistochemistry was performed. IC rats sought cocaine significantly more than EC rats during cue-induced reinstatement, and cocaine seeking was positively correlated with Fos expression in the nucleus accumbens core and ventral pallidum. IC rats displayed greater Fos expression than EC rats in the accumbens and ventral pallidum, suggesting a role of these areas in the enrichment-induced protective effect.
Collapse
Affiliation(s)
- Z Orban
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America
| | - M J Gill
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America.
| |
Collapse
|
4
|
Berry MM, Miller B, Kelsen S, Cockrell C, Kohtz AS. Sex differences in hippocampal β-adrenergic receptor subtypes drive retrieval, retention, and learning of cocaine-associated memories. Front Behav Neurosci 2024; 18:1379866. [PMID: 38807929 PMCID: PMC11130369 DOI: 10.3389/fnbeh.2024.1379866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 05/30/2024] Open
Abstract
Background Drug seeking behavior occurs in response to environmental contexts and drug-associated cues. The presence of these pervasive stimuli impedes abstinence success. β-adrenergic receptors (β-ARs) have a long-standing historical implication in driving processes associated with contextual memories, including drug-associated memories in substance use disorders. However, sex differences in the role of β-adrenergic receptors in drug memories remain unknown. Hypothesis Prior reports indicate a selective role for β2-ARs in retrieval and retention of contextual drug memories in males, and substantial sex differences exist in the expression of β-ARs of male and female rats. Therefore, we hypothesized that there are sex differences in selective recruitment of β-ARs during different stages of memory encoding and retrieval. Methods The role of β-ARs in driving retrieval and learning of contextual cocaine memories was investigated using cocaine conditioned place preference (CPP) in adult male and female Sprague-Dawley rats. Rats were infused directly to the dorsal hippocampus with Propranolol (β1 and β2) or ICI-118,551 (β1) and/or Betaxolol (β2), immediately prior to testing (retrieval), or paired to each cocaine (10 mg/kp, IP) conditioning session (learning). Results In males, administration of either β1, β2, or combined β1 and β2-ARs before the initial CPP testing reduced the expression of a CPP compared to vehicle administration. In females, β2-ARs transiently decreased CPP memories, whereas β1 had long lasting but not immediate effects to decrease CPP memories. Additionally, β1 and combined β1 and β2-ARs had immediate and persistent effects to decrease CPP memory expression. DG Fos + neurons predicted cocaine CPP expression in males, whereas CA1 and CA3 Fos + neurons predicted cocaine CPP expression in females. Conclusion There are significant sex differences in the role of dorsal hippocampus β-ARs in the encoding and expression of cocaine conditioned place preference. Furthermore, sub regions of the dorsal hippocampus appear to activate differently between male and female rats during CPP. Therefore DG, CA3, and CA1 may have separate region- and sex-specific impacts on driving drug- associated, or context-associated cues.
Collapse
Affiliation(s)
- Melanie M. Berry
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Beau Miller
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Biological Sciences, Mississippi College, Jackson, MS, United States
| | - Silvia Kelsen
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Carlee Cockrell
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Biological Sciences, Mississippi College, Jackson, MS, United States
| | - Amy Stave Kohtz
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
5
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre AS, Polesskaya O, Richards JB, Solberg Woods LC, Gancarz AM, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. Sci Rep 2024; 14:4182. [PMID: 38378969 PMCID: PMC10879139 DOI: 10.1038/s41598-024-53943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n = 200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n = 64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (ii) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
6
|
Li Y, Shi DD, Wang Z. Adolescent nonpharmacological interventions for early-life stress and their mechanisms. Behav Brain Res 2023; 452:114580. [PMID: 37453516 DOI: 10.1016/j.bbr.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Those with a negative experience of psychosocial stress during the early stage of life not only have a high susceptibility of the psychiatric disorder in all phases of their life span, but they also demonstrate more severe symptoms and poorer response to treatment compared to those without a history of early-life stress. The interventions targeted to early-life stress may improve the effectiveness of treating and preventing psychiatric disorders. Brain regions associated with mood and cognition develop rapidly and own heightened plasticity during adolescence. So, manipulating nonpharmacological interventions in fewer side effects and higher acceptance during adolescence, which is a probable window of opportunity, may ameliorate or even reverse the constantly deteriorating impact of early-life stress. The present article reviews animal and people studies about adolescent nonpharmacological interventions for early-life stress. We aim to discuss whether those adolescent nonpharmacological interventions can promote individuals' psychological health who expose to early-life stress.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre A, Polesskaya O, Richards JB, Woods LCS, Gancarz A, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547228. [PMID: 37503161 PMCID: PMC10369912 DOI: 10.1101/2023.06.30.547228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n=64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (iI) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P. King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Connor D. Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Anthony M. George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B. Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H. Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
Calpe-López C, Martínez-Caballero MÁ, García-Pardo MP, Aguilar MA. Resilience to the short- and long-term behavioral effects of intermittent repeated social defeat in adolescent male mice. Pharmacol Biochem Behav 2023:173574. [PMID: 37315696 DOI: 10.1016/j.pbb.2023.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Exposure to intermittent repeated social defeat (IRSD) increases the sensitivity of mice to the rewarding effects of cocaine in the conditioned place preference (CPP) paradigm. Some animals are resilient to this effect of IRSD, though research exploring this inconsistency in adolescent mice is scarce. Thus, our aim was to characterize the behavioral profile of mice exposed to IRSD during early adolescence and to explore a potential association with resilience to the short- and long-term effects of IRSD. METHODS Thirty-six male C57BL/6 mice were exposed to IRSD during early adolescence (PND 27, 30, 33 and 36), while another 10 male mice did not undergo stress (controls). Defeated mice and controls then carried out the following battery of behavioral tests; the Elevated Plus Maze, Hole-Board and Social Interaction Test on PND 37, and the Tail Suspension and Splash tests on PND 38. Three weeks later, all the mice were submitted to the CPP paradigm with a low dose of cocaine (1.5 mg/kg). RESULTS IRSD during early adolescence induced depressive-like behavior in the Social Interaction and Splash tests and increased the rewarding effects of cocaine. Mice with low levels of submissive behavior during episodes of defeat were resilient to the short- and long-term effects of IRSD. In addition, resilience to the short-term effects of IRSD on social interaction and grooming behavior predicted resilience to the long-term effects of IRSD on cocaine reward. CONCLUSION Our findings help to characterize the nature of resilience to the effects of social stress during adolescence.
Collapse
Affiliation(s)
- Claudia Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Ángeles Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Pilar García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - Maria Asunción Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
9
|
Wu R, Xu Z, Song Z, Tai F. Providing or receiving alloparental care promote partner preference and alter central oxytocin and dopamine systems in adult mandarin voles. Horm Behav 2023; 152:105366. [PMID: 37116234 DOI: 10.1016/j.yhbeh.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Juveniles of cooperative breeding species usually remain in the natal area and provide care to younger siblings, a behavior considered one form of alloparenting in the natural condition. Previous studies have demonstrated the effects of providing or receiving alloparental care on adult behaviors, including anxiety-like behavior, social interaction, and parental behavior, but little is known about the influences on species-typical bonding behaviors, such as pair-bond formation. In this study, we explored this concept using socially monogamous mandarin voles (Lasiopodomys mandarinus). As the oxytocin (OT) and dopamine systems are involved in alloparental and pair-bonding behaviors, we also examined the levels of central OT and tyrosine hydroxylase (TH), as well as OT receptor (OTR) and dopamine D1-type and D2-type receptors (D1R and D2R) mRNA expression in the nucleus accumbens (NAcc) and amygdala to investigate the underlying mechanisms. Our results show that mandarin voles providing alloparental care to younger siblings displayed facilitation of partner preference formation, lower levels of OT expression in the paraventricular nucleus of the hypothalamus (PVN) and lateral hypothalamus (LH), and increased OTR and D2R mRNA expression in the NAcc compared to controls. Individuals receiving alloparental care also demonstrated facilitation of partner preference formation in adult voles. Additionally, alloparental care enhanced OT expression in the PVN, anterior medial preoptic nucleus (MPOAa), medial amygdala (MeA), and TH expression in the ventral tegmental area (VTA) and zona incerta (ZI). Furthermore, males displayed decreased D1R mRNA expression in the NAcc, whereas females showed slightly increased D2R expression in the amygdala. These results demonstrate that providing or received alloparental care can promote partner preference formation in monogamous species and that these changes are associated with altered OT and dopamine levels and their receptors in specific brain regions.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Zedong Xu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenzhen Song
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| |
Collapse
|
10
|
Cortés-Patiño DM, Neira VM, Ballesteros-Acosta H, Bustos-Rangel A, Lamprea MR. Interaction of Nicotine and Social reward in group-reared male adolescent rats. Behav Brain Res 2023; 447:114432. [PMID: 37054992 DOI: 10.1016/j.bbr.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Adolescents exhibit great sensitivity to nicotine and social interaction; accordingly, when both stimuli are presented together, they interact to enhance the incentive value of the context in which they occur. Noteworthy, most studies assessing the interaction between nicotine and social reward have used isolated-reared rats. Adolescent isolation is an adverse condition that impacts brain development and behavior, so it is not known if the interaction also occurs in rats without social deprivation. The present study used a conditioned place preference model (CPP) to examine the interaction between nicotine and social reward in group-reared male adolescent rats. At weaning, Wistar rats were randomly assigned to four groups: vehicle, vehicle and a social partner, nicotine (0.1mg/Kg s.c.), and nicotine and a social partner. Conditioning trials occurred on eight consecutive days followed by a test session in which the preference change was assessed. Besides the establishment of CPP, we examined the effects of nicotine on (1) social behaviors during CPP trials and (2) tyrosine hydroxylase (TH) and oxytocin (OT) as markers of changes in the neuronal mechanisms for reward and social affiliation. Similar to previous results, the joint presentation of nicotine and social reward induced CPP, whereas either nicotine or social interaction presented alone did not. This finding coincided with an increase in TH levels observed after nicotine administration only in socially conditioned rats. The interaction between nicotine and social reward is not related to the effects of nicotine on social investigation or social play.
Collapse
|
11
|
Cortés-Patiño DM, Ballesteros-Acosta H, Neira VM, Contreras DRP, Lamprea MR. Post-weaning social isolation increases the incentive value of nicotine-related contexts and decreases the accumulation of ΔFosB in nucleus accumbens in adolescent rats. Pharmacol Biochem Behav 2023; 223:173529. [PMID: 36805863 DOI: 10.1016/j.pbb.2023.173529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Adolescent social conditions profoundly affect vulnerability to drug abuse. Preclinical studies have shown that preventing social interactions during adolescence increases the rewarding effects of drugs like alcohol, cocaine, or amphetamines, however, little data exist regarding the impact of social isolation on nicotine effects. The current study evaluated the effects of differential rearing conditions during adolescence (isolation or group rearing) on (1) conditioned place preference induced by low nicotine doses (0.1 or 0.3 mg/kg) and (2) sensitization to the locomotor effects of nicotine after sub-chronic administration (3) and accumulation of ΔFosB in nucleus accumbens (NAc). Results showed that nicotine induced place preference in isolated and grouped rats, but the effect was more persistent for the rats reared in isolation. Isolated reared rats also exhibited lower levels of ΔFosB accumulation in NAc. No differences were found in the behavioral sensitization to nicotine effects between rearing conditions. The results suggest that isolation engenders a more robust incentive value of nicotine-related contexts. This effect could be related to the basal expression of ΔFosB: lower levels of this transcription factor seem to impair the motivation of isolated reared rats and increase their vulnerability to the effects of drugs like nicotine.
Collapse
|
12
|
Mañas‐Padilla MC, Tezanos P, Cintado E, Vicente L, Sánchez‐Salido L, Gil‐Rodríguez S, Trejo JL, Santín LJ, Castilla‐Ortega E. Environmental enrichment alleviates cognitive and psychomotor alterations and increases adult hippocampal neurogenesis in cocaine withdrawn mice. Addict Biol 2023; 28:e13244. [PMID: 36577726 PMCID: PMC9786803 DOI: 10.1111/adb.13244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Cocaine is a widely used psychostimulant drug whose repeated exposure induces persistent cognitive/emotional dysregulation, which could be a predictor of relapse in users. However, there is scarce evidence on effective treatments to alleviate these symptoms. Environmental enrichment (EE) has been shown to be associated with improved synaptic function and cellular plasticity changes related to adult hippocampal neurogenesis (AHN), resulting in cognitive enhancement. Therefore, EE could mitigate the negative impact of chronic administration of cocaine in mice and reduce the emotional and cognitive symptoms present during cocaine abstinence. In this study, mice were chronically administered with cocaine for 14 days, and control mice received saline. After the last cocaine or saline dose, mice were submitted to control or EE housing conditions, and they stayed undisturbed for 28 days. Subsequently, mice were evaluated with a battery of behavioural tests for exploratory activity, emotional behaviour, and cognitive performance. EE attenuated hyperlocomotion, induced anxiolytic-like behaviour and alleviated cognitive impairment in spatial memory in the cocaine-abstinent mice. The EE protocol notably upregulated AHN in both control and cocaine-treated mice, though cocaine slightly reduced the number of immature neurons. Altogether, these results demonstrate that EE could enhance hippocampal neuroplasticity ameliorating the behavioural and cognitive consequences of repeated administration of cocaine. Therefore, environmental stimulation may be a useful strategy in the treatment cocaine addiction.
Collapse
Affiliation(s)
- M. Carmen Mañas‐Padilla
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| | - Patricia Tezanos
- Department of Translational NeuroscienceCajal Institute, Spanish National Research CouncilMadridSpain
| | - Elisa Cintado
- Department of Translational NeuroscienceCajal Institute, Spanish National Research CouncilMadridSpain
| | - Lucía Vicente
- Centro de Experimentación AnimalUniversidad de MálagaMálagaSpain
- Departamento de PsicologíaUniversidad de DeustoBilbaoSpain
| | - Lourdes Sánchez‐Salido
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Unidad de Gestión Clínica de Salud MentalHospital Regional Universitario de MálagaMálagaSpain
| | - Sara Gil‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| | - José L. Trejo
- Department of Translational NeuroscienceCajal Institute, Spanish National Research CouncilMadridSpain
| | - Luis J. Santín
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| | - Estela Castilla‐Ortega
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| |
Collapse
|
13
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
14
|
Sailer LL, Patel PP, Park AH, Moon J, Hanadari-Levy A, Ophir AG. Synergistic consequences of early-life social isolation and chronic stress impact coping and neural mechanisms underlying male prairie vole susceptibility and resilience. Front Behav Neurosci 2022; 16:931549. [PMID: 35957922 PMCID: PMC9358287 DOI: 10.3389/fnbeh.2022.931549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic stress can be challenging, lead to maladaptive coping strategies, and cause negative mental and physical health outcomes. Early-life adversity exposes developing young to physical or psychological experiences that risks surpassing their capacity to effectively cope, thereby impacting their lifetime physical and mental wellbeing. Sensitivity to stressful events, like social isolation, has the potential to magnify stress-coping. Chronic stress through social defeat is an established paradigm that models adverse early-life experiences and can trigger enduring alterations in behavioral and neural phenotypes. To assess the degree to which stress resilience and sensitivity stemming from early-life chronic stress impact sociability, we exposed male prairie voles to chronic social defeat stress (CSDS) during adolescence. We simultaneously exposed subjects to either social isolation (CSDS+Isol) or group housing (CSDS+Soc) during this crucial time of development. On PND41, all subjects underwent a social approach test to examine the immediate impact of isolation, CSDS, or their combined effects on sociability. Unlike the CSDS+Isol group which primarily displayed social avoidance, the CSDS+Soc group was split by individuals exhibiting susceptible or resilient stress phenotypes. Notably, the Control+Soc and CSDS+Soc animals and their cage-mates significantly gained body weight between PND31 and PND40, whereas the Control+Isol and CSDS+Isol animals did not. These results suggest that the effects of early-life stress may be mitigated by having access to social support. Vasopressin, oxytocin, and opioids and their receptors (avpr1a, oxtr, oprk1, oprm1, and oprd1) are known to modulate social and stress-coping behaviors in the lateral septum (LS). Therefore, we did an mRNA expression analysis with RT-qPCR of the avpr1a, oxtr, oprk1, oprm1, and oprd1 genes to show that isolation and CSDS, or their collective influence, can potentially differentially bias sensitivity of the LS to early-life stressors. Collectively, our study supports the impact and dimensionality of early-life adversity because the type (isolation vs. CSDS), duration (acute vs. chronic), and combination (isolation + CSDS) of stressors can dynamically alter behavioral and neural outcomes.
Collapse
|
15
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
16
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
17
|
Clauss NJ, Koek W, Daws LC. Role of Organic Cation Transporter 3 and Plasma Membrane Monoamine Transporter in the Rewarding Properties and Locomotor Sensitizing Effects of Amphetamine in Male andFemale Mice. Int J Mol Sci 2021; 22:ijms222413420. [PMID: 34948221 PMCID: PMC8708598 DOI: 10.3390/ijms222413420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
A lack of effective treatment and sex-based disparities in psychostimulant addiction and overdose warrant further investigation into mechanisms underlying the abuse-related effects of amphetamine-like stimulants. Uptake-2 transporters such as organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT), lesser studied potential targets for the actions of stimulant drugs, are known to play a role in monoaminergic neurotransmission. Our goal was to examine the roles of OCT3 and PMAT in mediating amphetamine (1 mg/kg)-induced conditioned place preference (CPP) and sensitization to its locomotor stimulant effects, in males and females, using pharmacological, decynium-22 (D22; 0.1 mg/kg, a blocker of OCT3 and PMAT) and genetic (constitutive OCT3 and PMAT knockout (−/−) mice) approaches. Our results show that OCT3 is necessary for the development of CPP to amphetamine in males, whereas in females, PMAT is necessary for the ability of D22 to prevent the development of CPP to amphetamine. Both OCT3 and PMAT appear to be important for development of sensitization to the locomotor stimulant effect of amphetamine in females, and PMAT in males. Taken together, these findings support an important, sex-dependent role of OCT3 and PMAT in the rewarding and locomotor stimulant effects of amphetamine.
Collapse
Affiliation(s)
- Nikki J. Clauss
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Correspondence: (N.J.C.); (L.C.D.)
| | - Wouter Koek
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Correspondence: (N.J.C.); (L.C.D.)
| |
Collapse
|
18
|
Bardo MT, Hammerslag LR, Malone SG. Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 2021; 191:108567. [PMID: 33862030 DOI: 10.1016/j.neuropharm.2021.108567] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Early life adversity can set the trajectory for later psychiatric disorders, including substance use disorders. There are a host of neurobiological factors that may play a role in the negative trajectory. The current review examines preclinical evidence suggesting that early life adversity specifically involving social factors (maternal separation, adolescent social isolation and adolescent social defeat) may influence drug abuse vulnerability by strengthening corticotropin-releasing factor (CRF) systems and weakening oxytocin (OT) systems. In adulthood, pharmacological and genetic evidence indicates that both CRF and OT systems are directly involved in drug reward processes. With early life adversity, numerous studies show an increase in drug abuse vulnerability measured in adulthood, along a concomitant strengthening of CRF systems and a weakening of OT systems. Mechanistic studies, while relatively few in number, are generally consistent with the theme that strengthened CRF systems and weakened OT systems mediate, at least in part, the link between early life adversity and drug abuse vulnerability. Establishing a direct role of CRF and OT in mediating the relation between early life social stressors and drug abuse vulnerability will inform clinical researchers and practitioners toward the development of intervention strategies to reduce risk among those suffering from early life adversities. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
19
|
Noschang C, Lampert C, Krolow R, de Almeida RMM. Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology (Berl) 2021; 238:927-947. [PMID: 33606060 DOI: 10.1007/s00213-021-05777-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Adolescence is known for its high level of risk-taking, and neurobiological alterations during this period may predispose to psychoactive drug initiation and progression into more severe use patterns. Stress is a risk factor for drug consumption, and post-weaning social isolation increases drug self-administration in rodents. This review aimed to provide an overview of the effects of adolescent social isolation on cocaine, amphetamine and nicotine use-related behaviours, highlighting the specific period when animals were submitted to stress and these drugs. We wondered if there was a specific period during adolescence that isolation stress would increase drug use vulnerability. A total of 323 publications from the Scopus, Web of Science and PubMed (Medline) electronic databases were identified using the words "social isolation" and "adolescence" and "drug" or "cocaine" or "amphetamine" or "nicotine", resulting in 24 articles after analyses criteria following the PRISMA statement. The main points raised were social isolation during adolescence increased cocaine self-administration, amphetamine and nicotine locomotor activity. We did not observe a pattern of a specific moment during the adolescent period that could lead to an increased vulnerability to drug use. The precise conditions under which adolescent social stress alters drug use parameters are complex and likely depend on several factors.
Collapse
Affiliation(s)
- C Noschang
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - C Lampert
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Krolow
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R M M de Almeida
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
20
|
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front Behav Neurosci 2021; 14:601939. [PMID: 33519393 PMCID: PMC7838595 DOI: 10.3389/fnbeh.2020.601939] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine pathways and feedback loops that function to maintain physiological homeostasis. Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result in long-term alterations in neuropeptide and neurotransmitter synthesis in the central nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together, these changes can potentially lead to a disruption in neuroendocrine, behavioral, autonomic, and metabolic functions in adulthood. In this review, we will discuss the regulation of the HPA axis and its development. We will also examine the maternal-fetal hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which becomes a major risk factor for many neurodevelopmental pathologies in adulthood, such as major depressive disorder, anxiety, schizophrenia, and others.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Natalie J. Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage A. Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna I. Bautista
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M. Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
21
|
Bendersky CJ, Milian AA, Andrus MD, De La Torre U, Walker DM. Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Front Psychiatry 2021; 12:745406. [PMID: 34616326 PMCID: PMC8488119 DOI: 10.3389/fpsyt.2021.745406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Adolescence is a period of incredible change, especially within the brain's reward circuitry. Stress, including social isolation, during this time has profound effects on behaviors associated with reward and other neuropsychiatric disorders. Because the Nucleus Accumbens (NAc), is crucial to the integration of rewarding stimuli, the NAc is especially sensitive to disruptions by adolescent social isolation stress. This review highlights the long-term behavioral consequences of adolescent social isolation rearing on the NAc. It will discuss the cellular and molecular changes within the NAc that might underlie the long-term effects on behavior. When available sex-specific effects are discussed. Finally by mining publicly available data we identify, for the first time, key transcriptional profiles induced by adolescence social isolation in genes associated with dopamine receptor 1 and 2 medium spiny neurons and genes associated with cocaine self-administration. Together, this review provides a comprehensive discussion of the wide-ranging long-term impacts of adolescent social isolation on the dopaminergic system from molecules through behavior.
Collapse
Affiliation(s)
- Cari J Bendersky
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Allison A Milian
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Mason D Andrus
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Ubaldo De La Torre
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| |
Collapse
|
22
|
Lowell JA, Dikici E, Joshi PM, Landgraf R, Lemmon VP, Daunert S, Izenwasser S, Daftarian P. Vaccination against cocaine using a modifiable dendrimer nanoparticle platform. Vaccine 2020; 38:7989-7997. [PMID: 33158592 DOI: 10.1016/j.vaccine.2020.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Pharmacological therapies for the treatment of cocaine addiction have had disappointing efficacy, and the lack of recent developments in the clinical care of cocaine-addicted patients indicates a need for novel treatment strategies. Recent studies have shown that vaccination against cocaine to elicit production of antibodies that reduce concentrations of free drug in the blood is a promising method to protect against the effects of cocaine and reduce rates of relapse. However, the poorly immunogenic nature of cocaine remains a major hurdle to active immunization. Therefore, we hypothesized that strategies to increase targeted exposure of cocaine to the immune system may produce a more effective vaccine. To specifically direct an immune response against cocaine, in the present study we have conjugated a cocaine analog to a dendrimer-based nanoparticle carrier with MHC II-binding moieties that previously has been shown to activate antigen-presenting cells necessary for antibody production. This strategy produced a rapid, prolonged, and high affinity anti-cocaine antibody response without the need for an adjuvant. Surprisingly, additional evaluation using multiple adjuvant formulations in two strains of inbred mice found adjuvants were either functionally redundant or deleterious in the vaccination against cocaine using this platform. The use of conditioned place preference in rats after administration of this vaccine provided proof of concept for the ability of this vaccine to diminish cocaine reward. Together these data demonstrate the intrinsic efficacy of an immune-targeting dendrimer-based cocaine vaccine, with a vast potential for design of future vaccines against other poorly immunogenic antigens by substitution of the conjugated cargo.
Collapse
Affiliation(s)
- Jeffrey A Lowell
- Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States
| | - Pratibha M Joshi
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States; Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States; Miami Clinical and Translational Science Institute, University of Miami, Clinical Research Building, 1120 NW 14th St., Miami, FL 33136, United States
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami, 1600 NW 10(th) Avenue, Miami, FL 33136, United States.
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States.
| |
Collapse
|
23
|
Cho BR, Gerena J, Olekanma DI, Bal A, Charpentier ANH, Arguello AA. Role of adolescent-formed, context-drug-associations on reinstatement of drug-seeking behavior in rats. Psychopharmacology (Berl) 2020; 237:2823-2833. [PMID: 32601989 PMCID: PMC8454267 DOI: 10.1007/s00213-020-05575-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Drug use during adolescence results in a lifelong risk to develop substance-use disorders. Adolescent rats are less reactive to cocaine-associated cues compared with adults; however, the contribution of adolescent-formed, context-drug-associations to elicit relapse-like behavior is underexplored. Although it is known that social isolation can impact drug-seeking behavior, the effects of housing conditions on context-induced, cocaine-seeking during adolescence vs adulthood are unknown. OBJECTIVES The present study compared the effect of adolescent vs adult-formed context-drug associations under different housing conditions (pair vs single) on cocaine-seeking behavior during adolescence or adulthood. This objective was accomplished using operant cocaine self-administration (Coc-SA) under a standard, non-abbreviated (Non-ABRV) or modified abbreviated (ABRV) paradigm. METHODS In experiment 1, adolescent and adult rats received Non-ABRV Coc-SA in a distinct context (2 h, 1×/day, 10 days), and extinction training (EXT) in a second context (1 h, 1×/day, 8 days) with reinstatement test (TEST) during adulthood in the cocaine-paired context. In experiments 2 and 3, rats received all behavioral phases during adolescence or adulthood: ABRV Coc-SA (2 h, 2×/day, 5 days), EXT (1 h, 4×/day, 2 days) with TEST in a cocaine-paired or novel, unpaired context. All experiments included pair and single-housing conditions. RESULTS AND CONCLUSIONS Age at cocaine exposure did not influence behavior in Non-ABRV or ABRV paradigms. Under Non-ABRV conditions, adolescent and adult single-housed rats had higher seeking behavior than pair housed. These data suggest that social isolation influences context-induced, cocaine-seeking regardless of age at drug exposure and provides a condensed, ABRV paradigm to investigate context-induced, cocaine-seeking behavior during adolescence.
Collapse
Affiliation(s)
- Bo Ram Cho
- Psychology Dept., Michigan State University, Interdisciplinary Science and Technology Building, West Rm. 4010 766 Service Rd., East Lansing, MI, 48824, USA
| | - Jennifer Gerena
- Psychology Dept., Michigan State University, Interdisciplinary Science and Technology Building, West Rm. 4010 766 Service Rd., East Lansing, MI, 48824, USA
| | - Doris I. Olekanma
- Psychology Dept., Michigan State University, Interdisciplinary Science and Technology Building, West Rm. 4010 766 Service Rd., East Lansing, MI, 48824, USA
| | - Aneesh Bal
- Psychology Dept., Michigan State University, Interdisciplinary Science and Technology Building, West Rm. 4010 766 Service Rd., East Lansing, MI, 48824, USA
| | - André N. Herrera Charpentier
- Psychology Dept., Michigan State University, Interdisciplinary Science and Technology Building, West Rm. 4010 766 Service Rd., East Lansing, MI, 48824, USA
| | - Amy A. Arguello
- Psychology Dept., Michigan State University, Interdisciplinary Science and Technology Building, West Rm. 4010 766 Service Rd., East Lansing, MI, 48824, USA
| |
Collapse
|
24
|
Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. Eur Neuropsychopharmacol 2020; 37:12-28. [PMID: 32624295 DOI: 10.1016/j.euroneuro.2020.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Drug addiction is a multifactorial disorder resulting from the complex interaction between biological, environmental and drug-induced effects. Generally, stress is a well-known risk factor for the development of drug addiction and relapse. While most of the research focuses on risk factors that increase the vulnerability to drugs of abuse, recent studies are focusing on the areas of strength/positive coping approaches that can increase resistance to drugs of abuse. In this review, we concentrate on resilience, seen as a dynamic process, which can allow individuals to positively adapt within the context of a specific risk for psychiatric illness. Here, we discuss the effects of social stress in animal models on drug use, particularly cocaine. In contrast, we suggest social interaction reward when available as an alternative to drug use as an approach contracting negative stress effects and increasing resistance to drug use. Indeed, interventions, which aim at enhancing resilience to stress through the facilitation of social interaction and the enhancement of social support, could be particularly effective in helping people cope with stress and preventing drug use problems or relapse. Finally, understanding the neurobiological mechanisms underlying protective factors such as social interaction reward should provide the basis for future evidence-based interventions targeting substance abuse and stress-related pathologies.
Collapse
|
25
|
Brenes JC, Fornaguera J, Sequeira-Cordero A. Environmental Enrichment and Physical Exercise Attenuate the Depressive-Like Effects Induced by Social Isolation Stress in Rats. Front Pharmacol 2020; 11:804. [PMID: 32547399 PMCID: PMC7272682 DOI: 10.3389/fphar.2020.00804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
We assessed the antidepressant-like effects of environmental enrichment (EE) and physical exercise (PE) compared with the selective serotonin reuptake inhibitor fluoxetine against the depression-related neurobehavioral alterations induced by postweaning social isolation (SI) in rats. After 1 month of SI, rats were submitted to PE (treadmill), EE, or fluoxetine (10 mg/kg), which were compared with naïve SI and group-housed rats. After 1 month, behavior was analyzed in the open field (OFT), the sucrose preference (SPT), and the forced swimming (FST) tests. Afterward, the hippocampal serotonin contents, its metabolite, and turnover were measured. SI induced a depression-related phenotype characterized by a marginal bodyweight gain, anxiety, anhedonia, behavioral despair, and alterations of serotonin metabolism. EE produced the widest and largest antidepressive-like effect, followed by PE and fluoxetine, which were almost equivalent. The treatments, however, affected differentially the neurobehavioral domains investigated. EE exerted its largest effect on anhedonia and was the only treatment inducing anxiolytic-like effects. Fluoxetine, in contrast, produced its largest effect on serotonin metabolism, followed by its anti-behavioral despair action. PE was a middle-ground treatment with broader behavioral outcomes than fluoxetine, but ineffective to reverse the serotonergic alterations induced by SI. The most responsive test to the treatments was the FST, followed closely by the SPT. Although OFT locomotion and body weight varied considerably between groups, they were barely responsive to PE and fluoxetine. From a translational standpoint, our data suggest that exercise and recreational activities may have broader health benefits than antidepressants to overcome confinement and the consequences of chronic stress.
Collapse
Affiliation(s)
- Juan C Brenes
- Institute for Psychological Research, University of Costa Rica, San José, Costa Rica.,Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Jaime Fornaguera
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Biochemistry Department, School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Institute of Health Research, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
26
|
Therapeutic efficacy of environmental enrichment for substance use disorders. Pharmacol Biochem Behav 2019; 188:172829. [PMID: 31778722 DOI: 10.1016/j.pbb.2019.172829] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Addiction to drug and alcohol is regarded as a major health problem worldwide for which available treatments show limited effectiveness. The biggest challenge remains to enhance the capacities of interventions to reduce craving, prevent relapse and promote long-term recovery. New strategies to meet these challenges are being explored. Findings from preclinical work suggest that environmental enrichment (EE) holds therapeutic potential for the treatment of substance use disorders, as demonstrated in a number of animal models of drug abuse. The EE intervention introduced after drug exposure leads to attenuation of compulsive drug taking, attenuation of the rewarding (and reinforcing) effects of drugs, reductions in control of behavior by drug cues, and, very importantly, relapse prevention. Clinical work also suggests that multidimensional EE interventions (involving physical activity, social interaction, vocational training, recreational and community involvement) might produce similar therapeutic effects, if implemented continuously and rigorously. In this review we survey preclinical and clinical studies assessing the efficacy of EE as a behavioral intervention for substance use disorders and address related challenges. We also review work providing empirical evidence for EE-induced neuroplasticity within the mesocorticolimbic system that is believed to contribute to the seemingly therapeutic effects of EE on drug and alcohol-related behaviors.
Collapse
|
27
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
28
|
Walker DM, Cunningham AM, Gregory JK, Nestler EJ. Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Front Behav Neurosci 2019; 13:66. [PMID: 31031604 PMCID: PMC6470390 DOI: 10.3389/fnbeh.2019.00066] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a developmental period associated with vast neural and behavioral changes which are accompanied by altered sensitivity to stimuli, both stressful and rewarding. Perturbations, especially stressful stimuli, during this period have been shown to alter behavior in adulthood. Social isolation rearing is one such perturbation. This review highlights the long-term behavioral consequences of adolescent social isolation rearing in rodents with a specific focus on anxiety- and addiction-related behaviors. Sex-specific effects are discussed where data are available. We then consider changes in monoaminergic neurotransmission as one possible mechanism for the behavioral effects described. This research on both normative and perturbed adolescent development is crucial to understanding and treating the increased vulnerability to psychiatric disorders seen in humans during this life stage.
Collapse
Affiliation(s)
- Deena M Walker
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashley M Cunningham
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jill K Gregory
- Academic IT: Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
29
|
Social modulation of drug use and drug addiction. Neuropharmacology 2019; 159:107545. [PMID: 30807753 DOI: 10.1016/j.neuropharm.2019.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
This review aims to demonstrate how social science and behavioral neurosciences have highlighted the influence of social interactions on drug use in animal models. In neurosciences, the effect of global social context that are distal from drug use has been widely studied. For human and other social animals such as monkeys and rodents, positive social interactions are rewarding, can overcome drug reward and, in all, protect from drug use. In contrast, as other types of stress, negative social experiences facilitate the development and maintenance of drug abuse. However, interest recently emerged in the effect of so-called "proximal" social factors, that is, social interactions during drug-taking. These recent studies have characterized the role of the drug considered, the sharing of drug experience and the familiarity of the peer which interaction are made with. We also examine the few studies regarding the sensorial mediator of social behaviors and critically review the neural mediation of social factors on drug use. However, despite considerable characterization of the factors modulating distal influences, the mechanisms for proximal influences on drug use remain largely unknown. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
30
|
Sucrose Abstinence and Environmental Enrichment Effects on Mesocorticolimbic DARPP32 in Rats. Sci Rep 2018; 8:13174. [PMID: 30181585 PMCID: PMC6123458 DOI: 10.1038/s41598-018-29625-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/13/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine- and cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP32) is a signaling molecule that could serve as a molecular switch, promoting or restraining sucrose seeking. We measured DARPP32 and pThr34 DARPP32 in the brains of male Long-Evans rats with a history of sucrose self-administration followed by 1 or 30 days of abstinence and exposure to either overnight (acute) or one month (chronic) environmental enrichment (EE). Brains were extracted following a 1 h cue reactivity test or no exposure to the test environment. Micropunches (prelimbic, infralimbic, and anterior cingulate areas of the medial prefrontal cortex, orbitofrontal cortex, dorsal striatum, nucleus accumbens, and ventral tegmental area) were then processed using Western blot. Abstinence increased, while EE decreased, sucrose seeking. DARPP32 and pThr34 DARPP32 levels were affected by testing, abstinence, and/or EE in most regions. Especially salient results were observed in the nucleus accumbens core, a region associated with relapse behaviors. Both acute and chronic EE reduced DARPP32 in the nucleus accumbens core and acute EE increased the ratio of phosphorylated to total DARPP32. Degree of DARPP32 phosphorylation negatively correlated with sucrose seeking. These findings demonstrate a potential role for DARPP32 in mediating the “anti-craving” effect of EE.
Collapse
|
31
|
Vannan A, Powell GL, Scott SN, Pagni BA, Neisewander JL. Animal Models of the Impact of Social Stress on Cocaine Use Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:131-169. [PMID: 30193703 DOI: 10.1016/bs.irn.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine use disorders are strongly influenced by the social conditions prior, during, and after exposure to cocaine. In this chapter, we discuss how social factors such as early life stress, social rank stress, and environmental stress impact vulnerability and resilience to cocaine. The discussion of each animal model begins with a brief review of examples from the human literature, which provide the psychosocial background these models attempt to capture. We then discuss preclinical findings from use of each model, with emphasis on how social factors influence cocaine-related behaviors and how sex and age influence the behaviors and neurobiology. Models discussed include (1) early life social stress, such as maternal separation and neonatal isolation, (2) social defeat stress, (3) social hierarchies, and (4) social isolation and environmental enrichment. The cocaine-related behaviors reviewed for each of these animal models include cocaine-induced conditioned place preference, behavioral sensitization, and self-administration. Together, our review suggests that the degree of psychosocial stress experienced yields robust effects on cocaine-related behaviors and neurobiology, and these preclinical findings have translational impact for the future of cocaine use disorder treatment.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Broc A Pagni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
32
|
Dziedowiec E, Nayak SU, Gruver KS, Jennings T, Tallarida CS, Rawls SM. Mu Opioid Receptor Agonist DAMGO Produces Place Conditioning, Abstinence-induced Withdrawal, and Naltrexone-Dependent Locomotor Activation in Planarians. Neuroscience 2018; 386:214-222. [PMID: 29958944 DOI: 10.1016/j.neuroscience.2018.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 01/29/2023]
Abstract
Unlike the behavioral effects planarians display when exposed to cocaine, amphetamines, cathinones, ethanol and sucrose, effects of opioid receptor agonists, especially mu opioid receptor agonists, are poorly defined in these flatworms. Here, we tested the hypothesis that planarians exposed to a selective mu opioid receptor agonist, DAMGO (0.1, 1, 10 µM), would display a triad of opioid-like effects (place conditioning, abstinence-induced withdrawal, and motility changes). DAMGO was selected versus morphine because of its greater mu opioid receptor selectivity. In place conditioning and abstinence experiments, the planarian light/dark test (PLDT) was utilized (i.e., planarians are placed into a petri dish containing water that is split into light and dark compartments and time spent in the compartments is determined). Planarians conditioned with DAMGO (1 µM) spent more time on the drug-paired side compared to water controls. In abstinence experiments, planarians exposed to DAMGO for 30 min were removed and then placed into water, where light avoidance (e.g. defensive responding) and depressant-like effects (i.e., decreased motility) were quantified. Compared to water controls, DAMGO-withdrawn planarians spent less time in the light (10 µM) and displayed decreased motility (1, 10 µM). Acute DAMGO exposure (1 µM) produced hypermotility that was antagonized by naltrexone (1, 10, 100 µM). In contrast, acute exposure to the kappa opioid receptor agonist U50,488H (0.1, 1, 10 µM) resulted in decreased motility. Our results show that a mu opioid agonist produces mammalian-like behavioral responses in planarians that may be related to addiction and suggest opioid-like behavioral effects are conserved in invertebrates.
Collapse
Affiliation(s)
- Emily Dziedowiec
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sunil U Nayak
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Keenan S Gruver
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tyra Jennings
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Christopher S Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Freese L, Almeida FB, Heidrich N, Hansen AW, Steffens L, Steinmetz A, Moura DJ, Gomez R, Barros HMT. Environmental enrichment reduces cocaine neurotoxicity during cocaine-conditioned place preference in male rats. Pharmacol Biochem Behav 2018; 169:10-15. [DOI: 10.1016/j.pbb.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
|
34
|
Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology (Berl) 2018; 235:1415-1426. [PMID: 29464302 DOI: 10.1007/s00213-018-4850-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/05/2018] [Indexed: 01/31/2023]
Abstract
RATIONALE Individuals vary in sensitivity to the behavioral effects of nicotine, resulting in differences in vulnerability to nicotine addiction. The role of rearing environment in determining individual sensitivity to nicotine is unclear. The neuropharmacological mechanisms mediating the effect of rearing environment on the behavioral actions of nicotine are also poorly understood. OBJECTIVES The contribution of rearing environment in determining the sensitivity to the interoceptive effects of nicotine was determined in rats reared in isolated conditions (IC) or enriched conditions (EC). The role of dopamine receptors and α4β2*-nicotinic acetylcholine (nACh) receptors in mediating the differential effect of IC and EC on the interoceptive action of nicotine was determined. METHODS The interoceptive action of nicotine was measured as the discriminative stimulus effect of nicotine. Mecamylamine- and eticlopride-inhibition of the nicotine stimulus were used to examine nACh and dopamine receptors, respectively. α4β2*-nACh receptor expression in the mesolimbic dopamine pathway was determined by quantitative autoradiography of [125I]-epibatidine binding. RESULTS EC-reared rats are less sensitive than IC-reared rats to the discriminative stimulus effects of nicotine at all but maximally effective doses. Mecamylamine inhibited the nicotine stimulus threefold more potently in EC-reared rats (IC50 = 0.25 mg/kg) compared to IC-reared rats (IC50 = 0.75 mg/kg); eticlopride inhibition was not different. [125I]-epibatidine binding in the ventral tegmental area of EC-reared rats was reduced (2.8 ± 0.3 fmol) compared to that of IC-reared rats (4.0 ± 0.4 fmol); there was no difference in the nucleus accumbens. CONCLUSIONS Rearing environment regulates the sensitivity to the interoceptive effects of nicotine and α4β2*-nACh receptor expression in the mesolimbic dopamine pathway.
Collapse
|
35
|
Wu R, Song Z, Tai F. Parent-offspring cohabitation after weaning inhibits partner preference and alters central oxytocin and dopamine systems in adult mandarin vole. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:593-604. [PMID: 29671049 DOI: 10.1007/s00359-018-1262-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/04/2023]
Abstract
In some mammals, offspring may live with their parents for a very long time after weaning, but little is known about the effect of post-weaning parent-offspring cohabitation on the behavioral and neurobiological development of offspring. Here, we explored the effect of this experience on partner preference in adult mandarin vole (Microtus mandarinus). Levels of central oxytocin (OT), tyrosine hydroxylase (TH), as well as OT receptor (OTR), dopamine D1-type and D2-type receptors (D1R and D2R) mRNA expression in the nucleus accumbens (NAcc) and medial amygdala (MeA) were also measured. Our data showed that post-weaning living with parents inhibited the preference to partner over an unfamiliar opposite-sex conspecific. Voles with this experience possessed more OT-but less TH-immunoreactive neurons as compared to the control. Additionally, males with this experience had less D2R and OTR mRNA expression in the NAcc than the control while females had less D2R mRNA expression in the NAcc, but more OTR mRNA expression in the MeA. These findings demonstrate that post-weaning parent-offspring cohabitation inhibits the partner preference formation at adulthood, and these changes may be associated with alterations in the levels of central OT and DA, and their receptor mRNA expression in specific brain regions.
Collapse
Affiliation(s)
- Ruiyong Wu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China. .,Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Zhenzhen Song
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China.,Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China. .,Department of Psychology, Wright State University, Dayton, OH, USA.
| |
Collapse
|
36
|
Ajonijebu DC, Abboussi O, Mabandla MV, Daniels WMU. Differential epigenetic changes in the hippocampus and prefrontal cortex of female mice that had free access to cocaine. Metab Brain Dis 2018; 33:411-420. [PMID: 28963688 DOI: 10.1007/s11011-017-0116-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022]
Abstract
Alterations in gene expression within the neural networks of prefrontal cortex (PFC) and hippocampus (HPC) are known to contribute to behavioural phenotypes associated with drug intake. However, the functional consequences of regulated expression patterns of Fosb and Crem (cAMP response element modulator) in both brain regions in response to volitional intake of cocaine in social environment is yet to be explored. Here, we first exposed young adult mice to cocaine (300 mg/L) and water concurrently for 30 days in the IntelliCage to investigate consumption preference, and subsequently for 28 days during which persistent motivated drug seeking behaviours were examined. Thereafter, locomotor activity and memory performance of the mice were assessed. DNA methylation status in the promoters of Fosb and Crem genes were also evaluated. We show that mice that had extended access to cocaine exhibited motivational deficit and demonstrated decreased locomotor activity and intact recognition memory. These changes were accompanied by hypomethylation or hypermethylation in the promoters of Fosb and Crem genes in the PFC and HPC of the cocaine-experienced mice, respectively. Together, these findings correlate the molecular changes to behavioural effects of the treatment and further suggests a possible activation of prefrontal cortical networks by social interaction episodes in the IntelliCage which possibly enhanced behavioural control that dampens mice sensitivity to cocaine rewards. Furthermore, our data delineate the molecular response of Crem and Fosb to oral cocaine in group-housed mice and demonstrates differential regulation of activities within the substrate brain regions studied.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
38
|
Galaj E, Shukur A, Manuszak M, Newman K, Ranaldi R. No evidence that environmental enrichment during rearing protects against cocaine behavioral effects but as an intervention reduces an already established cocaine conditioned place preference. Pharmacol Biochem Behav 2017; 156:56-62. [DOI: 10.1016/j.pbb.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
|
39
|
Robison LS, Ananth M, Hadjiargyrou M, Komatsu DE, Thanos PK. Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats. J Neural Transm (Vienna) 2017; 124:655-667. [PMID: 28116523 PMCID: PMC5400672 DOI: 10.1007/s00702-017-1680-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022]
Abstract
Previously, we created an 8-h limited-access dual bottle drinking paradigm to deliver methylphenidate (MP) to rats at two dosages that result in a pharmacokinetic profile similar to patients treated for attention deficit hyperactivity disorder. Chronic treatment resulted in altered behavior, with some effects persisting beyond treatment. In the current study, adolescent male Sprague-Dawley rats were split into three groups at four weeks of age: control (water), low-dose MP (LD), and high-dose MP (HD). Briefly, 4 mg/kg (low dose; LD) or 30 mg/kg (high dose; HD) MP was consumed during the first hour, and 10 mg/kg (LD) or 60 mg/kg (HD) MP during hours two through eight. Following three months of treatment, half of the rats in each group (n = 8-9/group) were euthanized, and remaining rats went through a 1-month abstinence period, then euthanized. In vitro receptor autoradiography was performed to quantify binding levels of dopamine transporter (DAT), dopamine type 1 (D1R)-like receptors, and dopamine type 2 (D2R)-like receptors using [3H] WIN35,428, [3H] SCH23390, and [3H] Spiperone, respectively. Immediately following treatment, HD MP-treated rats had increased DAT and D1R-like binding in several subregions of the basal ganglia, particularly more caudal portions of the caudate putamen, which correlated with some previously reported behavioral changes. There were no differences between treatment groups in any measure following abstinence. These findings suggest that chronic treatment with a clinically relevant high dose of MP results in reversible changes in dopamine neurochemistry, which may underlie some effects on behavior.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Mala Ananth
- Department of Neurobiology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard, P.O. Box 8000, Old Westbury, NY, 11568, USA
| | - David E Komatsu
- Department of Orthopedics, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions, Research Institute On Addictions, University at Buffalo, 1021 Main St, Buffalo, NY, 14203, USA.
| |
Collapse
|
40
|
Hajheidari S, Miladi-Gorji H, Bigdeli I. Environmental Enrichment Prevents Methamphetamine-Induced Spatial Memory Deficits and Obsessive-Compulsive Behavior in Rats. IRANIAN JOURNAL OF PSYCHIATRY 2017; 12:8-14. [PMID: 28496496 PMCID: PMC5425356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective: This study was designed to examine the effect of environmental enrichment during methamphetamine (METH) dependency and withdrawal on methamphetamine-induced spatial learning and memory deficits and obsessive-compulsive behavior. Method: Adult male Wistar rats (200 ± 10 g) chronically received bi-daily doses of METH (2 mg/kg, sc, with 12 hours intervals) for 14 days. Rats reared in standard (SE) or enriched environment (EE) during the development of dependence on METH and withdrawal. Then, they were tested for spatial learning and memory (the water maze), and obsessive-compulsive behavior as grooming behavior in METH-withdrawn rats. Results: The results revealed that the Sal/EE and METH/EE rats reared in EE spent more time in the target zone on the water maze and displayed significantly increased proximity to the platform compared to their control groups. METH withdrawn rats reared in EE displayed less grooming behavior than METH/SE group. Conclusion: Our findings revealed EE ameliorates METH-induced spatial memory deficits and obsessive-compulsive behavior in rats.
Collapse
Affiliation(s)
- Samira Hajheidari
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Corresponding Author:Tel: 023 33654186, Fax: 023 33654186
| | - Imanollah Bigdeli
- Faculty of Educational Sciences and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
41
|
Early social isolation increases persistence of alcohol-seeking behavior in alcohol-related contexts. Behav Pharmacol 2016; 27:185-91. [PMID: 26881772 DOI: 10.1097/fbp.0000000000000213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Social conditions during rearing are well known to affect adult alcohol consumption, but few experiments have explored the effects of social conditions on behaviors that are related to alcohol dependence, such as the persistence of alcohol seeking. This study compared the effects of isolation (ISO) and interaction (INT) rearing on the persistence of alcohol-seeking behavior. Rats were trained to lever press for a solution of 10% alcohol diluted in water. They were then exposed to a two-component multiple schedule of reinforcement (baseline). Responses in one component were reinforced by a higher rate of alcohol delivery (rich component, variable interval 15 s) and responses in the other component were reinforced by a lower rate of delivery (lean component, variable interval 45 s). The persistence of lever pressing in the presence of each stimulus was then assessed during extinction. The results from baseline showed that response rates in rats in both groups were higher in the rich component than in the lean component, but ISO rats responded significantly more than INT rats in both components. The persistence of responding during extinction in ISO rats in both components was also higher than that in INT rats. The results show that effects of ISO are not restricted to alcohol consumption, but also affect persistence of alcohol-seeking behavior, which may reflect differences in the value of drug-related stimuli.
Collapse
|
42
|
Dyadic social interaction of C57BL/6 mice versus interaction with a toy mouse: conditioned place preference/aversion, substrain differences, and no development of a hierarchy. Behav Pharmacol 2016; 27:279-88. [PMID: 26905190 PMCID: PMC4780246 DOI: 10.1097/fbp.0000000000000223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Impaired social interaction is a hallmark symptom of many psychiatric diseases, including dependence syndromes (substance use disorders). Helping the addict reorient her/his behavior away from the drug of abuse toward social interaction would be of considerable therapeutic benefit. To study the neural basis of such a reorientation, we have developed several animal models in which the attractiveness of a dyadic (i.e. one-to-one) social interaction (DSI) can be compared directly with that of cocaine as a prototypical drug of abuse. Our models are based on the conditioned place preference (CPP) paradigm. In an ongoing effort to validate our experimental paradigms in C57BL/6 mice to make use of the plethora of transgenic models available in this genus, we found the following: (a) DSI with a live mouse produced CPP, whereas an interaction with an inanimate mouse-like object (i.e. a 'toy mouse'; toy mouse interaction) led to conditioned place aversion - but only in the Jackson substrain (C57BL/6J). (b) In the NIH substrain (C57BL/6N), both DSI and toy mouse interaction produced individual aversion in more than 50% of the tested mice. (c) Four 15 min DSI episodes did not result in the development of an observable hierarchy, that is, dominance/subordination behavior in the overwhelming majority (i.e. 30 of 32) of the tested Jackson mouse pairs. Therefore, dominance/subordination does not seem to be a confounding variable in our paradigm, at least not in C57BL/6J mice. Respective data for NIH mice were too limited to allow any conclusion. The present findings indicate that (a) DSI with a live mouse produces CPP to a greater degree than an interaction with an inanimate object resembling a mouse and that (b) certain substrain differences with respect to CPP/aversion to DSI do exist between the Jax and NIH substrain of C57BL/6 mice. These differences have to be considered when choosing a proper mouse substrain model for investigating the neural basis of DSI reward versus drug reward.
Collapse
|
43
|
Ouyang K, Nayak S, Lee Y, Kim E, Wu M, Tallarida CS, Rawls SM. Behavioral effects of Splenda, Equal and sucrose: Clues from planarians on sweeteners. Neurosci Lett 2016; 636:213-217. [PMID: 27845240 DOI: 10.1016/j.neulet.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/30/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
Abstract
Sweetened diets share commonalities with drugs of abuse, but studies comparing behavioral effects of different sweeteners are lacking. Common table sugar produces rewarding and withdrawal effects in planarians. We postulated that Splenda and Equal would produce similar responses and used a tetrad of behavioral assays to test this hypothesis. Acute exposure to a relatively high concentration (10%) of each sweetener produced stereotyped responses (C-shapes) and reduced motility, with Equal producing greater motor effects than sucrose or Splenda. In experiments testing for anxiogenic-like effects, planarians withdrawn from Splenda (1, 3%) or sucrose (1, 3%), but not Equal, and placed into a petri dish with dark and light compartments spent more time in the dark compared to water controls. In place conditioning experiments, both Splenda (0.01%) and sucrose (0.01%) produced an environmental preference shift. Maltodextrin (0.1%), a principal ingredient of Splenda and Equal, produced a significant preference shift. In contrast, sucralose, an indigestible polysaccharide contained in Splenda and Equal, was ineffective. Our data reveal that Splenda produces sucrose-like rewarding and withdrawal effects in planarians that may be dependent on maltodextrin and dextrose. The ineffectiveness of Equal may be due to the presence of aspartame, which is too water insoluble to test in our planarian assay, or to its bitter aftertaste that could mask any rewarding effects produce by maltodextrin or dextrose.
Collapse
Affiliation(s)
- Kevin Ouyang
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Sunil Nayak
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Young Lee
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Erin Kim
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Michael Wu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Christopher S Tallarida
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Jordan CJ, Andersen SL. Sensitive periods of substance abuse: Early risk for the transition to dependence. Dev Cogn Neurosci 2016; 25:29-44. [PMID: 27840157 PMCID: PMC5410194 DOI: 10.1016/j.dcn.2016.10.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Early substance use dramatically increases the risk of substance use disorder (SUD). Although many try drugs, only a small percentage transition to SUD. High reactivity of reward, habit, and stress systems increase risk. Identification of early risk enables targeted, preventative interventions for SUD. Prevention must start before the sensitive adolescent period to maximize resilience.
Early adolescent substance use dramatically increases the risk of lifelong substance use disorder (SUD). An adolescent sensitive period evolved to allow the development of risk-taking traits that aid in survival; today these may manifest as a vulnerability to drugs of abuse. Early substance use interferes with ongoing neurodevelopment to induce neurobiological changes that further augment SUD risk. Although many individuals use drugs recreationally, only a small percentage transition to SUD. Current theories on the etiology of addiction can lend insights into the risk factors that increase vulnerability from early recreational use to addiction. Building on the work of others, we suggest individual risk for SUD emerges from an immature PFC combined with hyper-reactivity of reward salience, habit, and stress systems. Early identification of risk factors is critical to reducing the occurrence of SUD. We suggest preventative interventions for SUD that can be either tailored to individual risk profiles and/or implemented broadly, prior to the sensitive adolescent period, to maximize resilience to developing substance dependence. Recommendations for future research include a focus on the juvenile and adolescent periods as well as on sex differences to better understand early risk and identify the most efficacious preventions for SUD.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States.
| | - Susan L Andersen
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| |
Collapse
|
45
|
Dow-Edwards D, Frank A, Wade D, Weedon J, Izenwasser S. Sexually-dimorphic alterations in cannabinoid receptor density depend upon prenatal/early postnatal history. Neurotoxicol Teratol 2016; 58:31-39. [PMID: 27634313 DOI: 10.1016/j.ntt.2016.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/07/2023]
Abstract
Recent research has demonstrated that the endogenous cannabinoid system is central to the brain's response to stress. As part of an ongoing collaboration, we sought to examine the effects of prenatal and early postnatal rearing and housing conditions on developing endocannabinoid systems. We compare brain cannabinoid receptors (CBR) in offspring of either prenatal vehicle intubated or non-treated dams (Experiment 1) or in rats derived from a vendor and shipped at weaning to a collaborating lab (Experiment 2). From postnatal day (PND) 23, all rats were either housed in isolated conditions or enriched conditions with 3 rats/cage and a variety of stimulus objects changed twice a week. All rats underwent 5days of handling as controls for a behavior study and all rats were sacrificed at approximately PND48-50 within 2hours of the last behavioral test. All brains were processed together for CB1 receptor binding using 3H CP55,940 in prefrontal cortex, striatum, amygdala and hippocampus. Conditions in the two labs were as similar as possible since the two studies were intentionally designed to be comparable and contemporary. Results show that 1) comparing offspring of non-treated dams to offspring of dams receiving daily vehicle intubations, males show decreased CB1 binding in most brain regions while females only showed alterations in the hippocampus and these were increases in the offspring of the vehicle-intubated dams. 2) When comparing offspring of non-treated dams in NY with those derived from a vendor, shipped and maintained in the collaborating lab, this latter group showed reduced CB1 binding in prefrontal cortex in males and increased binding in all four brain regions in females. Therefore, overall, both prenatal handling (intubations) and being vendor-derived, shipped and maintained in a collaborating facility reduced CB1 receptors in males and increased them in females in key limbic brain regions. Effects of environmental enrichment or isolation were minor with only the prefrontal cortex showing an increase in binding in the isolated animals that were offspring of the vehicle-intubated dams. These results support the ideas that prenatal/early postnatal conditions produce different effects in males and females and override the effects of enrichment/isolation on cannabinoid receptors. Behavioral responses to cannabinoid challenges would therefore be expected to vary depending on sex, prenatal/early postnatal history and postweaning conditions of the rats. Since exogenous cannabinoids act through the CBR, the present data may provide a molecular basis for discrepant behavioral effects reported across various labs in the literature as well as sex differences seen following stress and/or manipulation of the cannabinoid system.
Collapse
Affiliation(s)
- Diana Dow-Edwards
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, M S 29, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| | - Ashley Frank
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Room 4113A (D-80), Miami, FL 33136, USA
| | - Dean Wade
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Room 4113A (D-80), Miami, FL 33136, USA
| | - Jeremy Weedon
- Scientific Computing Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Room 4113A (D-80), Miami, FL 33136, USA
| |
Collapse
|
46
|
Perkins AE, Doremus-Fitzwater TL, Spencer RL, Varlinskaya EI, Conti MM, Bishop C, Deak T. A working model for the assessment of disruptions in social behavior among aged rats: The role of sex differences, social recognition, and sensorimotor processes. Exp Gerontol 2016; 76:46-57. [PMID: 26811912 DOI: 10.1016/j.exger.2016.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/28/2023]
Abstract
Aging results in a natural decline in social behavior, yet little is known about the processes underlying these changes. Engaging in positive social interaction is associated with many health benefits, including reduced stress reactivity, and may serve as a potential buffer against adverse consequences of aging. The goal of these studies was to establish a tractable model for the assessment of social behavior deficits associated with late aging. Thus, in Exp. 1, 1.5-, 3-, and 18-month-old male Fischer 344 (F344) rats were assessed for object investigation, and social interaction with a same-aged partner (novel/familiar), or a different-aged partner, thereby establishing working parameters for studies that followed. Results revealed that 18-month-old males exhibited reductions in social investigation and social contact behavior, with this age-related decline not influenced by familiarity or age of the social partner. Subsequently, Exp. 2 extended assessment of social behavior to both male and female F344 rats at multiple ages (3, 9, 18, and 24 months), after which a series of sensorimotor performance tests were conducted. In this study, both males and females exhibited late aging-related reductions in social interactions, but these changes were more pronounced in females. Additionally, sensorimotor performance was shown to be impaired in 24-month-olds, but not 18-month-olds, with this deficit more evident in males. Finally, Exp. 3 examined whether aging-related inflammation could account for declines in social behavior during late aging by administering naproxen (0, 7, 14, and 28 mg/kg; s.c.)-a non-steroidal anti-inflammatory drug-to 18-month-old females. Results from this study revealed that social behavior was unaffected by acute or repeated (6 days) naproxen, suggesting that aging-related social deficits in females may not be a consequence of a general aging-related inflammation and/or malaise. Together, these findings demonstrate that aging-related declines in social behavior are (i) specific to social stimuli and (ii) not indicative of a general state of aging-related debilitation. Thus, these findings establish working parameters for a highly tractable model in which the neural and hormonal mechanisms underlying aging-related declines in social behavior can be examined.
Collapse
Affiliation(s)
- Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Tamara L Doremus-Fitzwater
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Robert L Spencer
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO 80309-0345, United States
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
47
|
Oxytocin and MDMA ('Ecstasy') enhance social reward in rats. Psychopharmacology (Berl) 2015; 232:2631-41. [PMID: 25772337 DOI: 10.1007/s00213-015-3899-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 01/05/2023]
Abstract
RATIONALE Oxytocin (OT), vasopressin (AVP) and 3,4 methylenedioxymethamphetamine (MDMA, 'Ecstasy') all increase social interaction in rats, perhaps by enhancing the rewarding value of social encounters. OBJECTIVES Here, we used the conditioned place preference (CPP) paradigm to assess the intrinsic rewarding effects of OT, AVP and MDMA, and whether these effects are enhanced by the presence of a conspecific, or a dynamic, tactile object (a tennis ball). METHODS Adult male rats received conditioning sessions in a CPP apparatus twice a day (vehicle at 10 a.m., drug at 3 p.m.). Experiment 1 involved conditioning with OT (0.5 mg/kg, intraperitoneal (i.p.)), AVP (0.005 mg/kg, i.p.) or MDMA (5 mg/kg, i.p.). Experiments 2 and 3 involved conditioning with the same treatments but in the presence of a conspecific receiving the same treatment (social-CPP) or in the presence of a tennis ball (object-CPP), respectively. Conditioned place preference was assessed 24 h, 2 weeks and 4 weeks later. RESULTS OT, AVP and MDMA did not produce a conventional CPP. However, when the conditioning environment also contained a conspecific both OT and MDMA induced a significant CPP lasting for at least 4 weeks. Rats given OT and MDMA also developed a more modest yet significant CPP for the environment where they encountered a tennis ball. CONCLUSIONS These results indicate that OT and MDMA can augment the rewarding effects of social interaction, but also interaction with a dynamic and tactile non-social object. AVP does not condition social- or object-CPPs and may promote social proximity by inducing generalized anxiety and defensive aggregation.
Collapse
|
48
|
Lenoir M, Starosciak AK, Ledon J, Booth C, Zakharova E, Wade D, Vignoli B, Izenwasser S. Sex differences in conditioned nicotine reward are age-specific. Pharmacol Biochem Behav 2015; 132:56-62. [PMID: 25735492 PMCID: PMC4552616 DOI: 10.1016/j.pbb.2015.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 02/05/2023]
Abstract
Women constitute half of all smokers and many studies suggest that adult males and females differ in factors that maintain tobacco smoking, yet there is limited information about sex differences in nicotine reward during adolescence. Limited studies suggest that adolescent male rats self-administer more nicotine than adults, suggesting that drug administration during adolescence leads to different behavioral effects than during adulthood. In the present study, male rats developed a significant conditioned place preference (CPP) to lower doses of nicotine than females, regardless of age. In addition, adolescents were more sensitive than adults. In female rats, adolescents exhibited a CPP of greater magnitude than adult females. In males, the magnitude of the CPP did not differ as a function of age, but adolescents exhibited CPP to lower doses than adults. There also were differences in nicotinic acetylcholinergic receptor binding in nucleus accumbens and caudate putamen in response to nicotine across age and sex. These findings suggest that it is necessary to consider sex- and age-specific effects of drugs such as nicotine when developing strategies for improving smoking cessation treatments.
Collapse
Affiliation(s)
- Magalie Lenoir
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA
| | - Amy K Starosciak
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA
| | - Jennifer Ledon
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA
| | - Caitlin Booth
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA
| | - Elena Zakharova
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA
| | - Dean Wade
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA
| | - Beatrice Vignoli
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rm 4113A (D-80), Miami, FL 33136, USA.
| |
Collapse
|
49
|
Tallarida CS, Tallarida RJ, Rawls SM. Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats. Drug Alcohol Depend 2015; 149:145-50. [PMID: 25683823 PMCID: PMC4447121 DOI: 10.1016/j.drugalcdep.2015.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND The Drug Enforcement Agency estimates that 80% of cocaine seized in the United States contains the veterinary pharmaceutical levamisole (LVM). One problem with LVM is that it is producing life-threatening neutropenia in an alarming number of cocaine abusers. The neuropharmacological profile of LVM is also suggestive of an agent with modest reinforcing and stimulant effects that could enhance cocaine's addictive effects. METHODS We tested the hypothesis that LVM (ip) enhances the rewarding and locomotor stimulant effects of cocaine (ip) using rat conditioned place preference (CPP) and locomotor assays. Effects of LVM by itself were also tested. RESULTS LVM (0-10 mg/kg) produced CPP at 1mg/kg (P<0.05) and locomotor activation at 5mg/kg (P < 0.05). For CPP combination experiments, a statistically inactive dose of LVM (0.1 mg/kg) was administered with a low dose of cocaine (2.5 mg/kg). Neither agent produced CPP compared to saline (P > 0.05); however, the combination of LVM and cocaine produced enhanced CPP compared to saline or either drug by itself (P < 0.01). For locomotor experiments, the same inactive dose of LVM (0.1mg/kg, ip) was administered with low (10 mg/kg) and high doses (30 mg/kg) of cocaine. LVM (0.1 mg/kg) enhanced locomotor activation produced by 10mg/kg of cocaine (P < 0.05) but not by 30 mg/kg (P>0.05). CONCLUSIONS LVM can enhance rewarding and locomotor-activating effects of low doses of cocaine in rats while possessing modest activity of its own.
Collapse
Affiliation(s)
- Christopher S Tallarida
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ronald J Tallarida
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Vouga A, Gregg RA, Haidery M, Ramnath A, Al-Hassani HK, Tallarida CS, Grizzanti D, Raffa RB, Smith GR, Reitz AB, Rawls SM. Stereochemistry and neuropharmacology of a 'bath salt' cathinone: S-enantiomer of mephedrone reduces cocaine-induced reward and withdrawal in invertebrates. Neuropharmacology 2014; 91:109-16. [PMID: 25496724 DOI: 10.1016/j.neuropharm.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 01/21/2023]
Abstract
Knowledge about the neuropharmacology of mephedrone (MEPH) applies primarily to the racemate, or street form of the drug, but not to its individual enantiomers. Here, through chemical isolation of MEPH enantiomers and subsequent behavioral characterization in established invertebrate (planarian) assays, we began separating adverse effects of MEPH from potential therapeutic actions. We first compared stereotypical and environmental place conditioning (EPC) effects of racemic MEPH, S-MEPH, and R-MEPH. Stereotypy was enhanced by acute treatment (100-1000 μM) with each compound; however, S-MEPH was less potent and efficacious than racemate and R-MEPH. Both R-MEPH (10, 100, 250 μM) and racemate (100 μM) produced EPC, but S-MEPH was ineffective at all concentrations (10-100 μM). After showing that S-MEPH lacked rewarding efficacy, we investigated its ability to alter three of cocaine's behavioral effects (EPC, withdrawal, and stereotypy). Cocaine (1 μM) produced EPC that was abolished when S-MEPH (100 μM) was administered after cocaine conditioning. Spontaneous withdrawal from chronic cocaine exposure caused a reduction in motility that was not evident during acute or continuous cocaine treatment but was attenuated by S-MEPH (100 μM) treatment during the cocaine abstinence interval. Acute stereotypy produced by 1 mM cocaine, nicotine or racemic MEPH was not affected by S-MEPH (10-250 μM). The present results obtained using planarian assays suggest that the R-enantiomer of MEPH is predominantly responsible for its stimulant and rewarding effects and the S-enantiomer is capable of antagonizing cocaine's addictive-like behaviors without producing rewarding effects of its own.
Collapse
Affiliation(s)
- Alexandre Vouga
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ryan A Gregg
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Maryah Haidery
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Anita Ramnath
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Hassan K Al-Hassani
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Christopher S Tallarida
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - David Grizzanti
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Robert B Raffa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Garry R Smith
- Fox Chase Chemical Diversity Center Inc., Doylestown, PA, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center Inc., Doylestown, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|