1
|
Shin Y, Kim S, Sohn JW. Serotonergic regulation of appetite and sodium appetite. J Neuroendocrinol 2023; 35:e13328. [PMID: 37525500 DOI: 10.1111/jne.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Serotonin is a neurotransmitter that is synthesized and released from the brainstem raphe nuclei to affect many brain functions. It is well known that the activity of raphe serotonergic neurons is changed in response to the changes in feeding status to regulate appetite via the serotonin receptors. Likewise, changes in volume status are known to alter the activity of raphe serotonergic neurons and drugs targeting serotonin receptors were shown to affect sodium appetite. Therefore, the central serotonin system appears to regulate ingestion of both food and salt, although neural mechanisms that induce appetite in response to hunger and sodium appetite in response to volume depletion are largely distinct from each other. In this review, we discuss our current knowledge regarding the regulation of ingestion - appetite and sodium appetite - by the central serotonin system.
Collapse
Affiliation(s)
- Yurim Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungjik Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023; 15:535. [PMID: 36771242 PMCID: PMC9921152 DOI: 10.3390/nu15030535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joseph M. Breza
- Department of Psychology, College of Arts and Sciences, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Colin Sumners
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
4
|
Fu JY, Yu XD, Zhu Y, Xie SZ, Tang MY, Yu B, Li XM. Whole-Brain Map of Long-Range Monosynaptic Inputs to Different Cell Types in the Amygdala of the Mouse. Neurosci Bull 2020; 36:1381-1394. [PMID: 32691225 PMCID: PMC7674542 DOI: 10.1007/s12264-020-00545-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
The amygdala, which is involved in various behaviors and emotions, is reported to connect with the whole brain. However, the long-range inputs of distinct cell types have not yet been defined. Here, we used a retrograde trans-synaptic rabies virus to generate a whole-brain map of inputs to the main cell types in the mouse amygdala. We identified 37 individual regions that projected to neurons expressing vesicular glutamate transporter 2, 78 regions to parvalbumin-expressing neurons, 104 regions to neurons expressing protein kinase C-δ, and 89 regions to somatostatin-expressing neurons. The amygdala received massive projections from the isocortex and striatum. Several nuclei, such as the caudate-putamen and the CA1 field of the hippocampus, exhibited input preferences to different cell types in the amygdala. Notably, we identified several novel input areas, including the substantia innominata and zona incerta. These findings provide anatomical evidence to help understand the precise connections and diverse functions of the amygdala.
Collapse
Affiliation(s)
- Jia-Yu Fu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bin Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Polli FDS, Gomes JN, Ferreira HS, Santana RC, Fregoneze JB. Inhibition of salt appetite in sodium-depleted rats by carvacrol: Involvement of noradrenergic and serotonergic pathways. Eur J Pharmacol 2019; 854:119-127. [PMID: 30986399 DOI: 10.1016/j.ejphar.2019.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Carvacrol, a monoterpene phenol present in the essential oil of oregano, possesses several biological properties, such as antioxidant, anti-inflammatory, anxiolytic, anticonvulsive and antinociceptive. In vitro studies have shown that carvacrol inhibits serotonin, noradrenaline and dopamine transporters and the enzymes monoamine oxidase-A and B. Different brain functions are controlled by monoamines, including cardiovascular control, thirst and sodium appetite. In the present study we investigated the effects of intracerebroventricular (i.c.v.) injection of carvacrol on sodium appetite, and the participation of brain serotonergic and noradrenergic pathways on carvacrol effects. Neuronal activation in homeostasis-related brain areas induced by i.c.v. injection of carvacrol was also evaluated. Carvacrol dose-dependently inhibited hypertonic saline intake (1.5%) in sodium-depleted rats, and this antinatriorexigenic effect was reduced by brain serotonergic depletion and by alpha-adrenergic blockade. Furthermore, i.c.v. injections of carvacrol significantly increased the neuronal activation in brain areas involved in the control of salt appetite, such as MnPO, OVLT, PVN, SON, CeA and MeA. Taken together, our data show that carvacrol presents antinatriorexigenic activity through serotonin and noradrenaline pathways within brain circuits involved in the modulation of the body fluid homeostasis.
Collapse
Affiliation(s)
- Filip de Souza Polli
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil.
| | - Jefferson Novaes Gomes
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil
| | - Hilda Silva Ferreira
- Life Sciences Department, Bahia State University, 41195-001, Salvador, Bahia, Brazil
| | - Rejane Conceição Santana
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil
| | - Josmara Bartolomei Fregoneze
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil
| |
Collapse
|
6
|
Qiao H, Wang N, Yan J. [Role of the central nucleus of the amygdala in regulating the nongenomic effect of aldosterone on sodium intake in rat nucleus tractus solitarius]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1159-1164. [PMID: 30377123 DOI: 10.3969/j.issn.1673-4254.2018.10.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To reveal the nongenomic effect of aldosterone on the regulation of sodium intake in the nucleus tractus solitarius (NTS) and the role of central nucleus of the amygdala (CeA) in regulating this effect. METHODS Adult male SD rats were divided into four groups and underwent operations to induce bilateral CeA electrolytic lesions (400 μA, 25 s; n=28), bilateral sham CeA lesions (n=28), unilateral CeA lesions (n=28), or unilateral sham CeA lesions (n=26). After 3 days of recovery, the rats received implantation of a stainless steel 23-gauge cannula wih two tubes into the NTS followed by a recovery period of 7 days. The rats in each group were then divided into two subgroups for microinjection of aldosterone (50 ng/μL) or control solution in the NTS, and the cumulative intake within 30 min of 0.3 mol/L NaCl solution was recorded for each rat. RESULTS Bilateral CeA lesions (3 days) eliminated the increased 0.3 mol/L NaCl intake induced by aldosterone microinjected into the NTS (0.3±0.04 mL in CeA lesion group vs 1.3±0.3 mL in sham lesion group). Unilateral CeA lesion (3 days) reduced aldosterone-induced increase of NaCl intake in the first 15 min (P < 0.05) but not in 15-30 min (P > 0.05). In rats with sham lesions, aldosterone (50 ng/μL) still induced a significant increase in NaCl intake[1.3±0.3 mL vs 0.25±0.02 mL in the control group; F (3, 224)=24.0, P < 0.05]. CONCLUSIONS The regulation of sodium intake by aldosterone is subjected to descending facilitatory modulation by the bilateral CeA, and CeA integrity is essential for aldosterone to execute the nongenomic effect in regulating rapid sodium intake.
Collapse
Affiliation(s)
- Hu Qiao
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Department of Physiology and Pathophysiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Nan Wang
- Department of Physiology and Pathophysiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Jianqun Yan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Department of Physiology and Pathophysiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| |
Collapse
|
7
|
Guan L, Qiao H, Wang N, Luo X, Yan J. The purinergic mechanism of the central nucleus of amygdala is involved in the modulation of salt intake in sodium-depleted rats. Brain Res Bull 2018; 143:132-137. [PMID: 30170187 DOI: 10.1016/j.brainresbull.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
The central nucleus of the amygdala (CeA) is a critical region in regulating sodium intake, and interestingly, purinergic receptors reportedly related to fluid balance, are also expressed in CeA. In this study, we investigated whether the purinergic mechanisms of CeA were involved in regulating sodium intake. Male Sprague-Dawley rats had cannulas implanted bilaterally into the CeA and were sodium depleted with furosemide (FURO 20 mg/kg) plus 24 h-sodium deficient food fed. Bilateral injections of the P2X purinergic agonist, α,β-methyleneadenosine 5'-triphosphate (α,β-methylene ATP 1.0, 2.0, 4.0 nmol, respectively) into the CeA region induced dose-related reductions in sodium intake without affecting water intake. Injection of P2X purinergic antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS 4.0 nmol/0.5 μl) into the CeA region did not alter sodium and water intake, however, prior injection of PPADS into the CeA area abolished the inhibitory effects on sodium intake by α,β-methylene ATP. Interestingly, prior injection of γ-aminobutyric acid type A (GABAA) receptor antagonist, bicuculline (4.0 nmol/0.5 μl) into the CeA region partially reversed the deficit of sodium intake induced by α,β-methylene ATP. These results suggest that purinergic receptors in the CeA are involved in the control of sodium intake in the sodium-depleted rats and this negative modulation may be, at least partly, mediated by the GABAA receptor.
Collapse
Affiliation(s)
- Limin Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi, 710061, PR China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi, 710061, PR China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Nan Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jianqun Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi, 710061, PR China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
8
|
Angiotensin II facilitates GABAergic neurotransmission at postsynaptic sites in rat amygdala neurons. Neuropharmacology 2018; 133:334-344. [PMID: 29447844 DOI: 10.1016/j.neuropharm.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022]
Abstract
The central nucleus of the amygdala (CeA) is critical in the regulation of sodium appetite. Angiotensin II (Ang II) is important in the generation of sodium appetite and may function as a neurotransmitter or modulator to affect the synaptic transmission and the excitability of neurons. However, the role of Ang II in the CeA remains unclear. In this study, we determined the effects of Ang II on the excitatory and inhibitory synaptic inputs to the CeA neurons in brain slices with whole-cell patch-clamp recordings. Ang II (0.5-5 μM) significantly potentiated the amplitude of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) in a concentration-dependent manner. Ang II (2 μM) significantly increased the amplitude of miniature GABAergic inhibitory postsynaptic currents (mIPSCs) without affecting the frequency. This effect was blocked by Ang II type 1 (AT1) receptor antagonist, losartan. One mM guanosine 5'-O-(-2-thiodiphosphate) (GDP-β-s) in the pipette internal solution eliminated the facilitatory effect of Ang II on GABAergic synaptic transmission. In contrast, Ang II had no effect on the spontaneous glutamatergic excitatory postsynaptic currents (EPSCs) and did not alter the frequency and amplitude of miniature EPSCs at concentrations that facilitated IPSCs. Furthermore, Ang II decreased the firing activity of CeA neurons, and this effect was abolished by losartan and GDP-β-s. In addition, Ang II failed to inhibit CeA neurons in the presence of bicuculline. These data provide substantial new evidence that Ang II inhibits the CeA neurons by facilitation of GABAergic synaptic input efficacy through activation of postsynaptic AT1 receptors.
Collapse
|
9
|
Yan JB, Hu ZH. [µ-opioid receptors in the central nucleus of the amygdala mediate sodium intake in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1195-1200. [PMID: 28951361 PMCID: PMC6765484 DOI: 10.3969/j.issn.1673-4254.2017.09.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the opioidergic mechanism of the central nucleus of the amygdala (CeA) for regulating sodium appetite in rats. METHDOS Using the elaborate invasive cerebral cannulation and brain microinjection method, we observed the effects of bilateral intra-CeA injections of DAMGO (a selective µ-opioid receptor agonist) and CTAP (a highly selective µ-opioid receptor antagonist), either alone or in combination, on NaCl solution (0.3 mol/L) and water intake by rats in different models of Na+ ingestion. RESULTS In the two-bottle tests, bilateral injections of DAMGO at 1, 2, and 4 nmol into the CeA induced a dose-related increase of NaCl and water intake in rats treated with water deprivation with partial rehydration (WD-PR), and pretreatment with 0.5, 1, and 2 nmol CTAP injected into the CeA significantly suppressed DAMGO-induced NaCl and water intake in a dose-dependent manner: in the one-bottle tests, bilateral injections of DAMGO (2 noml) into the CeA had no effect on water intake of the rats. In rats with subcutaneous injection of furosemide (FURO) combined with captopril (CAP) (FURO+CAP), bilateral intra-CeA injections of DAMGO (2 nmol) caused increased NaCl and water intake in the two-bottle tests, but such effects were suppressed by pretreatment with CTAP injection into the CeA; in the one-bottle tests, bilateral intra-CeA injections of DAMGO had no effect on water intake of the rats. CONCLUSION µ-opioid receptors in the CeA are involved in the excitatory regulation of sodium appetite to mediate sodium intake. µ-opioid receptor antagonists are expected to be targets for developing inhibitors of sodium appetite.
Collapse
Affiliation(s)
- Jun-Bao Yan
- Department of Physiology, Medical College of Henan University of Science and Technology, Luoyang 471023, China.E-mail:
| | | |
Collapse
|
10
|
Roncari CF, David RB, De Paula PM, Colombari DS, De Luca Jr. LA, Colombari E, Menani JV. The lateral parabrachial nucleus and central angiotensinergic mechanisms in the control of sodium intake induced by different stimuli. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Lateral parabrachial nucleus and opioid mechanisms of the central nucleus of the amygdala in the control of sodium intake. Behav Brain Res 2017; 316:11-17. [DOI: 10.1016/j.bbr.2016.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022]
|
12
|
Importance of the central nucleus of the amygdala on sodium intake caused by deactivation of lateral parabrachial nucleus. Brain Res 2015; 1625:238-45. [DOI: 10.1016/j.brainres.2015.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/19/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022]
|
13
|
Hu B, Qiao H, Sun B, Jia R, Fan Y, Wang N, Lu B, Yan JQ. AT1 receptor blockade in the central nucleus of the amygdala attenuates the effects of muscimol on sodium and water intake. Neuroscience 2015; 307:302-10. [PMID: 26344240 DOI: 10.1016/j.neuroscience.2015.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
The blockade of the central nucleus of the amygdala (CeA) with the GABAA receptor agonist muscimol significantly reduces hypertonic NaCl and water intake by sodium-depleted rats. In the present study we investigated the effects of previous injection of losartan, an angiotensin II type-1 (AT1) receptor antagonist, into the CeA on 0.3M NaCl and water intake reduced by muscimol bilaterally injected into the same areas in rats submitted to water deprivation-partial rehydration (WD-PR) and in rats treated with the diuretic furosemide (FURO). Male Sprague-Dawley rats with stainless steel cannulas bilaterally implanted into the CeA were used. Bilateral injections of muscimol (0.2 nmol/0.5 μl, n=8 rats/group) into the CeA in WD-PR-treated rats reduced 0.3M NaCl intake and water intake, and pre-treatment of the CeA with losartan (50 μg/0.5 μl) reversed the inhibitory effect of muscimol. The negative effect of muscimol on sodium and water intake could also be blocked by pretreatment with losartan microinjected into the CeA in rats given FURO (n=8 rats/group). However, bilateral injections of losartan (50 μg/0.5 μl) alone into the CeA did not affect the NaCl or water intake. These results suggest that the deactivation of CeA facilitatory mechanisms by muscimol injection into the CeA is promoted by endogenous angiotensin II acting on AT1 receptors in the CeA, which prevents rats from ingesting large amounts of hypertonic NaCl and water.
Collapse
Affiliation(s)
- B Hu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Prosthodontics, Xi'an Jiaotong University, College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - H Qiao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - R Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Y Fan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - N Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Lu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - J Q Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
14
|
Dalmasso C, Antunes-Rodrigues J, Vivas L, De Luca LA. Mapping brain Fos immunoreactivity in response to water deprivation and partial rehydration: Influence of sodium intake. Physiol Behav 2015; 151:494-501. [PMID: 26297688 DOI: 10.1016/j.physbeh.2015.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
Water deprivation (WD) followed by water intake to satiety, produces satiation of thirst and partial rehydration (PR). Thus, WD-PR is a natural method to differentiate thirst from sodium appetite. WD-PR also produces Fos immunoreactivity (Fos-ir) in interconnected areas of a brain circuit postulated to subserve sodium appetite. In the present work, we evaluated the effect of sodium intake on Fos-ir produced by WD-PR in brain areas operationally defined according to the literature as either facilitatory or inhibitory to sodium intake. Isotonic NaCl was available for ingestion in a sodium appetite test performed immediately after a single episode of WD-PR. Sodium intake decreased Fos-ir in facilitatory areas such as the lamina terminalis (particularly subfornical organ and median preoptic nucleus), central amygdala and hypothalamic parvocellular paraventricular nucleus in the forebrain. Sodium intake also decreased Fos-ir in inhibitory areas such as the area postrema, lateral parabrachial nucleus and nucleus of the solitary tract in the hindbrain. In contrast, sodium intake further increased Fos-ir that was activated by water deprivation in the dorsal raphe nucleus, another inhibitory area localized in the hindbrain. WD-PR increased Fos-ir in the core and shell of the nucleus accumbens. Sodium intake reduced Fos-ir in both parts of the accumbens. In summary, sodium intake following WD-PR reduced Fos-ir in most facilitatory and inhibitory areas, but increased Fos-ir in another inhibitory area. It also reduced Fos-ir in a reward area (accumbens). The results suggest a functional link between sodium intake and the activity of the hindbrain-forebrain circuitry subserving reward and sodium appetite in response to water deprivation.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Laura Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista - UNESP, Araraquara, São Paulo, Brazil.
| |
Collapse
|
15
|
De Luca LA, Almeida RL, David RB, de Paula PM, Andrade CAF, Menani JV. Participation of α2 -adrenoceptors in sodium appetite inhibition during sickness behaviour following administration of lipopolysaccharide. J Physiol 2015; 594:1607-16. [PMID: 26036817 DOI: 10.1113/jp270377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/26/2015] [Indexed: 11/08/2022] Open
Abstract
Sickness behaviour, a syndrome characterized by a general reduction in animal activity, is part of the active-phase response to fight infection. Lipopolysaccharide (LPS), an effective endotoxin to model sickness behaviour, reduces thirst and sodium excretion, and increases neurohypophysial secretion. Here we review the effects of LPS on thirst and sodium appetite. Altered renal function and hydromineral fluid intake in response to LPS occur in the context of behavioural reorganization, which manifests itself as part of the syndrome. Recent data show that, in addition to its classical effect on thirst, non-septic doses of LPS injected intraperitoneally produce a preferential inhibition of intracellular thirst versus extracellular thirst. Moreover, LPS also reduced hypertonic NaCl intake in sodium-depleted rats that entered a sodium appetite test. Antagonism of α2 -adrenoceptors abolished the effect of LPS on sodium appetite. LPS and cytokine transduction potentially recruit brain noradrenaline and α2 -adrenoceptors to control sodium appetite and sickness behaviour.
Collapse
Affiliation(s)
- Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Roberto L Almeida
- Department of Physiology, ABC Medical School, Santo André, São Paulo, Brazil
| | - Richard B David
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Patricia M de Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Carina A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
16
|
Pavan CG, Roncari CF, Barbosa SP, De Paula PM, Colombari DS, De Luca LA, Colombari E, Menani JV. Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats. Behav Brain Res 2015; 288:20-5. [DOI: 10.1016/j.bbr.2015.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/03/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
|
17
|
Davern PJ. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front Physiol 2014; 5:436. [PMID: 25477821 PMCID: PMC4235290 DOI: 10.3389/fphys.2014.00436] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is located in an anatomical position that enables it to perform a critical role in relaying signals related to the regulation of fluid and electrolyte intake and cardiovascular function from the brainstem to the forebrain. Early neuroanatomical studies have described the topographic organization of blood pressure sensitive neurons and functional studies have demonstrated a major role for the LPBN in regulating cardiovascular function, including blood pressure, in response to hemorrhages, and hypovolemia. In addition, inactivation of the LPBN induces overdrinking of water in response to a range of dipsogenic treatments primarily, but not exclusively, those associated with endogenous centrally acting angiotensin II. Moreover, treatments that typically cause water intake stimulate salt intake under some circumstances particularly when serotonin receptors in the LPBN are blocked. This review explores the expanding body of evidence that underlies the complex neural network within the LPBN influencing salt appetite, thirst and the regulation of blood pressure. Importantly understanding the interactions among neurons in the LPBN that affect fluid balance and cardiovascular control may be critical to unraveling the mechanisms responsible for hypertension.
Collapse
Affiliation(s)
- Pamela J Davern
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| |
Collapse
|
18
|
Gasparini S, Menani JV, Daniels D. Moxonidine into the lateral parabrachial nucleus modifies postingestive signals involved in sodium intake control. Neuroscience 2014; 284:768-774. [PMID: 25264033 DOI: 10.1016/j.neuroscience.2014.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
The activation of α2-adrenoceptors with bilateral injections of moxonidine (α2-adrenoceptor and imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake induced by treatment with furosemide (FURO)+captopril (CAP) subcutaneously. In the present study, we analyzed licking microstructure during water and 1.8% NaCl intake to investigate the changes in orosensory and postingestive signals produced by moxonidine injected into the LPBN. Male Sprague-Dawley rats were treated with FURO+CAP combined with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 μl) into the LPBN. Bilateral injections of moxonidine into the LPBN increased FURO+CAP-induced 1.8% NaCl intake, without changing water intake. Microstructural analysis of licking behavior found that this increase in NaCl intake was a function of increased number of licking bursts from 15 to 75 min of the test (maximum of 49±9 bursts/bin, vs. vehicle: 2±2 bursts/bin). Analysis of the first 15 min of the test, when most of the licking behavior occurred, found no effect of moxonidine on the number of licks/burst for sodium intake (24±5 licks/burst, vs. vehicle: 27±8 licks/burst). This finding suggests that activation of α2-adrenoceptors in the LPBN affects postingestive signals that are important to inhibit and limit sodium intake by FURO+CAP-treated rats.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil.
| | - D Daniels
- Department of Psychology, University at Buffalo, The State University of New York, United States
| |
Collapse
|
19
|
Andrade CAF, Andrade-Franzé GMF, De Paula PM, De Luca LA, Menani JV. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis. Braz J Med Biol Res 2014; 47:11-8. [PMID: 24519089 PMCID: PMC3932968 DOI: 10.1590/1414-431x20133308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/15/2013] [Indexed: 12/03/2022] Open
Abstract
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus
(LPBN) are involved in the control of sodium and water intake. Bilateral injections
of moxonidine (α2-adrenergic/imidazoline receptor agonist) or
noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a
combined treatment of furosemide plus captopril. Injection of moxonidine into the
LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion,
urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium
and water balance, which suggests that moxonidine injected into the LPBN deactivates
mechanisms that restrain body fluid volume expansion. Pretreatment with specific
α2-adrenoceptor antagonists injected into the LPBN abolishes the
behavioral and renal effects of moxonidine or noradrenaline injected into the same
area, suggesting that these effects depend on activation of LPBN
α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is
reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated
with moxonidine injected into the LPBN, the NaCl palatability remains high, even
after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and
renal responses produced by activation of α2-adrenoceptors in the LPBN are
probably a consequence of reduction of oxytocin secretion and blockade of inhibitory
signals that affect sodium palatability. In this review, a model is proposed to show
how activation of α2-adrenoceptors in the LPBN may affect palatability
and, consequently, ingestion of sodium as well as renal sodium excretion.
Collapse
Affiliation(s)
- C A F Andrade
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - G M F Andrade-Franzé
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - P M De Paula
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - L A De Luca
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - J V Menani
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, AraraquaraSP, Brasil, Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| |
Collapse
|
20
|
Menani JV, De Luca LA, Johnson AK. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am J Physiol Regul Integr Comp Physiol 2014; 306:R201-10. [PMID: 24401989 DOI: 10.1152/ajpregu.00251.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In states of sodium deficiency many animals seek and consume salty solutions to restore body fluid homeostasis. These behaviors reflect the presence of sodium appetite that is a manifestation of a pattern of central nervous system (CNS) activity with facilitatory and inhibitory components that are affected by several neurohumoral factors. The primary focus of this review is on one structure in this central system, the lateral parabrachial nucleus (LPBN). However, before turning to a more detailed discussion of the LPBN, a brief overview of body fluid balance-related body-to-brain signaling and the identification of the primary CNS structures and humoral factors involved in the control of sodium appetite is necessary. Angiotensin II, mineralocorticoids, and extracellular osmotic changes act on forebrain areas to facilitate sodium appetite and thirst. In the hindbrain, the LPBN functions as a key integrative node with an ascending output that exerts inhibitory influences on forebrain regions. A nonspecific or general deactivation of LPBN-associated inhibition by GABA or opioid agonists produces NaCl intake in euhydrated rats without any other treatment. Selective LPBN manipulation of other neurotransmitter systems [e.g., serotonin, cholecystokinin (CCK), corticotrophin-releasing factor (CRF), glutamate, ATP, or norepinephrine] greatly enhances NaCl intake when accompanied by additional treatments that induce either thirst or sodium appetite. The LPBN interacts with key forebrain areas that include the subfornical organ and central amygdala to determine sodium intake. To summarize, a model of LPBN inhibitory actions on forebrain facilitatory components for the control of sodium appetite is presented in this review.
Collapse
Affiliation(s)
- Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil; and Departments of Psychology, Pharmacology and Health, and Human Physiology and the Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
21
|
Yan JB, Sun HL, Wang Q, Chen K, Sun B, Song L, Yan W, Zhao XL, Zhao SR, Zhang Y, Qiao H, Hu B, Yan JQ. Natriorexigenic effect of DAMGO is decreased by blocking AT1 receptors in the central nucleus of the amygdala. Neuroscience 2013; 262:9-20. [PMID: 24389419 DOI: 10.1016/j.neuroscience.2013.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/17/2022]
Abstract
μ-Opioid receptor (μ-OR) activation with agonist [D-Ala², N-Me-Phe⁴, Gly⁵-ol]-enkephalin (DAMGO) in the central nucleus of the amygdala (CeA) induces sodium (0.3M NaCl) intake in rats. The purpose of this study was to examine the effects of pre-injections of losartan (AT1 angiotensin receptor antagonist) into the CeA on 0.3 M NaCl and water intake induced by DAMGO injected bilaterally in the same area in rats submitted to water deprivation-partial rehydration (WD-PR) and in rats treated with the diuretic furosemide (FURO) combined with a low dose of the angiotensin-converting enzyme inhibitor captopril (CAP) injected subcutaneously (FURO/CAP). Male Sprague-Dawley rats with stainless steel cannulas implanted bilaterally into the CeA were used. In WD-PR rats, bilateral injections of DAMGO (2 nmol in 0.5 μL) into the CeA induced 0.3 M NaCl and water intake, and pre-treatment with losartan (108 nmol in 0.5 μL) injected into the CeA reduced 0.3 M NaCl and water intake induced by DAMGO. In FURO/CAP rats, pre-treatment with losartan (108 nmol in 0.5 μL) injected into the CeA attenuated the increase in 0.3M NaCl and water intake induced by DAMGO (2 nmol in 0.5 μL) injected into the same site. The results suggest that the natriorexigenic effect of DAMGO injected into the CeA is facilitated by endogenous angiotensin II acting on AT1 receptors in the CeA, which drives rats to ingest large amounts of hypertonic NaCl.
Collapse
Affiliation(s)
- J-B Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Physiology, Medical College of Henan University of Science and Technology, 263# Kaiyuan Avenue, Luoyang, Henan 471023, PR China
| | - H-L Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Oral Biology, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Q Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - K Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - L Song
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - W Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - X-L Zhao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - S-R Zhao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - H Qiao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Hu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - J-Q Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Oral Biology, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
22
|
Roncari CF, David RB, Johnson RF, De Paula PM, Colombari DSA, De Luca LA, Johnson AK, Colombari E, Menani JV. Angiotensinergic and cholinergic receptors of the subfornical organ mediate sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience 2013; 262:1-8. [PMID: 24374079 DOI: 10.1016/j.neuroscience.2013.12.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Bilateral injections of the GABA(A) agonist muscimol into the lateral parabrachial nucleus (LPBN) induce 0.3 M NaCl and water intake in satiated and normovolemic rats, a response reduced by intracerebroventricular (icv) administration of losartan or atropine (angiotensinergic type 1 (AT₁) and cholinergic muscarinic receptor antagonists, respectively). In the present study, we investigated the effects of the injections of losartan or atropine into the subfornical organ (SFO) on 0.3M NaCl and water intake induced by injections of muscimol into the LPBN. In addition, using intracellular calcium measurement, we also tested the sensitivity of SFO-cultured cells to angiotensin II (ANG II) and carbachol (cholinergic agonist). In male Holtzman rats with cannulas implanted bilaterally into the LPBN and into the SFO, injections of losartan (1 μg/0.1 μl) or atropine (2 nmol/0.1 μl) into the SFO almost abolished 0.3M NaCl and water intake induced by muscimol (0.5 nmol/0.2 μl) injected into the LPBN. In about 30% of the cultured cells of the SFO, carbachol and ANG II increased intracellular calcium concentration ([Ca²⁺](i)). Three distinct cell populations were found in the SFO, i.e., cells activated by either ANG II (25%) or carbachol (2.6%) or by both stimuli (2.3%). The results suggest that the activation of angiotensinergic and cholinergic mechanisms in the SFO is important for NaCl and water intake induced by the deactivation of LPBN inhibitory mechanisms with muscimol injections. They also show that there are cells in the SFO activated by both angiotensinergic and cholinergic stimuli, perhaps those involved in the responses to muscimol into the LPBN.
Collapse
Affiliation(s)
- C F Roncari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil; Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - R B David
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil; Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - R F Johnson
- Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - P M De Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - D S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - A K Johnson
- Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - E Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
23
|
Margatho LO, Elias CF, Elias LLK, Antunes-Rodrigues J. Oxytocin in the central amygdaloid nucleus modulates the neuroendocrine responses induced by hypertonic volume expansion in the rat. J Neuroendocrinol 2013; 25:466-77. [PMID: 23331859 DOI: 10.1111/jne.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/13/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022]
Abstract
The present study investigated the involvement of the oxytocinergic neurones that project into the central amygdala (CeA) in the control of electrolyte excretion and hormone secretion in unanaesthetised rats subjected to acute hypertonic blood volume expansion (BVE; 0.3 M NaCl, 2 ml/100 g of body weight over 1 min). Oxytocin and vasopressin mRNA expression in the paraventricular (Pa) and supraoptic nucleus (SON) of the hypothalamus were also determined using the real time-polymerase chain reaction and in situ hybridisation. Male Wistar rats with unilaterally implanted stainless steel cannulas in the CeA were used. Oxytocin (1 μg/0.2 μl), vasotocin, an oxytocin antagonist (1 μg/0.2 μl) or vehicle was injected into the CeA 20 min before the BVE. In rats treated with vehicle in the CeA, hypertonic BVE increased urinary volume, sodium excretion, plasma oxytocin (OT), vasopressin (AVP) and atrial natriuretic peptide (ANP) levels and also increased the expression of OT and AVP mRNA in the Pa and SON. In rats pre-treated with OT in the CeA, previously to the hypertonic BVE, there were further significant increases in plasma AVP, OT and ANP levels, urinary sodium and urine output, as well as in gene expression (AVP and OT mRNA) in the Pa and SON compared to BVE alone. Vasotocin reduced sodium, urine output and ANP levels, although no changes were observed in plasma AVP and OT levels or in the expression of the AVP and OT genes in both hypothalamic nuclei. The results of the present study suggest that oxytocin in the CeA exerts a facilitatory role in the maintenance of hydroelectrolyte balance in response to changes in extracellular volume and osmolality.
Collapse
Affiliation(s)
- L O Margatho
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
24
|
Yan J, Li J, Yan J, Sun H, Wang Q, Chen K, Sun B, Wei X, Song L, Zhao X, Wei S, Han L. Activation of μ-opioid receptors in the central nucleus of the amygdala induces hypertonic sodium intake. Neuroscience 2013; 233:28-43. [DOI: 10.1016/j.neuroscience.2012.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 12/29/2022]
|
25
|
Wang Q, Li J, Yang X, Chen K, Sun B, Yan J. Inhibitory effect of activation of GABAA receptor in the central nucleus of amygdala on the sodium intake in the sodium-depleted rat. Neuroscience 2012; 223:277-84. [DOI: 10.1016/j.neuroscience.2012.07.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
26
|
Lesions of the central nucleus of the amygdala decrease taste threshold for sodium chloride in rats. Brain Res Bull 2012; 89:8-15. [PMID: 22796484 DOI: 10.1016/j.brainresbull.2012.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Previous studies reported that NaCl intake was down-regulated in rats with bilateral lesions of the central nucleus of the amygdala (CeA). In line with the evidence from anatomical and physiological studies, such an inhibition could be the result of altered taste threshold for NaCl, one of the important factors in assessing taste functions. To assess the effect of CeA on the taste threshold for NaCl, a conditioned taste aversion (CTA) to a suprathreshold concentration of NaCl (0.1M) in rats with bilateral lesions of CeA or sham lesions was first established. And then, two-bottle choice tests between water and a series of concentrations of NaCl were conducted. The taste threshold for NaCl is defined as the lowest concentration at which there is a reliable difference scores between conditioned and control subjects. Rats with CeA lesions acquired a taste aversion for 0.1M NaCl when it was paired with LiCl and still retained the aversion after the two-bottle choice test. The results of the two-bottle choice test showed that the taste threshold for NaCl was 0.0006M in rats with CeA lesions, whereas in rats with sham lesions the threshold was 0.005M, which was identical to that of normal rats. The conditioned results confirm the claim that CeA is not essential in the profile of conditioned taste aversion. Our findings demonstrate that lesions of the CeA increased the sensitivity to NaCl taste in rats, indicating that the CeA may be involved in encoding the intensity of salty gustation elicited by NaCl.
Collapse
|
27
|
Andrade C, Margatho L, Andrade-Franzé G, De Luca L, Antunes-Rodrigues J, Menani J. Moxonidine into the lateral parabrachial nucleus reduces renal and hormonal responses to cell dehydration. Neuroscience 2012; 208:69-78. [DOI: 10.1016/j.neuroscience.2012.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/27/2022]
|
28
|
Miller RL, Stein MK, Loewy AD. Serotonergic inputs to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei that project to the ventral tegmental area. Neuroscience 2011; 193:229-40. [PMID: 21784133 PMCID: PMC3185334 DOI: 10.1016/j.neuroscience.2011.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
The present study demonstrates that serotonin (5-hydroxytryptamine, 5-HT)-containing axons project to two sets of neurons in the dorsolateral pons that have been implicated in salt appetite regulation. These two neuronal groups are the pre-locus coeruleus (pre-LC) and a region in the parabrachial nucleus termed the external lateral-inner subdivision (PBel-inner). Neurons in both regions constitutively express the transcription factor Forkhead protein2 (FoxP2), and become c-Fos activated after prolonged sodium depletion. They send extensive projections to the midbrain and forebrain, including a strong projection to the ventral tegmental area (VTA)-a reward processing site. The retrograde neuronal tracer cholera toxin β-subunit (CTb) was injected into the VTA region; this was done to label the cell bodies of the pre-LC and PBel-inner neurons. After 1 week, the rats were killed and their brainstems processed by a triple-color immunofluorescence procedure. The purpose was to determine whether the CTb-labeled pre-LC and PBel-inner neurons, which also had FoxP2 immunoreactive nuclei, received close contacts from 5-HT axons. Neurons with these properties were found in both sites. Since the origin of this 5-HT input was unknown, a second set of experiments was carried out in which CTb was injected into the pre-LC or lateral PB. One week later, the rats were perfused and the brainstems from these animals were analyzed for the presence of neurons that co-contained CTb and tryptophan hydroxylase (synthetic enzyme for 5-HT) immunoreactivity. Co-labeled neurons were found mainly in the area postrema and to a lesser degree, in the dorsal raphe nucleus. We propose that the 5-HT inputs to the pre-LC and PBel-inner may modulate the salt appetite-related functions that influence the reward system.
Collapse
Affiliation(s)
- Rebecca L. Miller
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew K. Stein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur D. Loewy
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Changes in taste reactivity to intra-oral hypertonic NaCl after lateral parabrachial injections of an α2-adrenergic receptor agonist. Physiol Behav 2011; 104:702-8. [DOI: 10.1016/j.physbeh.2011.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/17/2022]
|
30
|
Weisinger R, Armitage J, Chen N, Begg D, Mathai M, Jayasooriya A, Sinclair A, Weisinger H. Sodium appetite in adult rats following ω-3 polyunsaturated fatty acid deficiency in early development. Appetite 2010; 55:393-7. [DOI: 10.1016/j.appet.2010.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 02/05/2023]
|
31
|
Carson DS, Hunt GE, Guastella AJ, Barber L, Cornish JL, Arnold JC, Boucher AA, McGregor IS. Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus. Addict Biol 2010; 15:448-63. [PMID: 20731630 DOI: 10.1111/j.1369-1600.2010.00247.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent preclinical evidence indicates that the neuropeptide oxytocin may have potential in the treatment of drug dependence and drug withdrawal. Oxytocin reduces methamphetamine self-administration, conditioned place preference and hyperactivity in rodents. However, it is unclear how oxytocin acts in the brain to produce such effects. The present study examined how patterns of neural activation produced by methamphetamine were modified by co-administered oxytocin. Male Sprague-Dawley rats were pretreated with either 2 mg/kg oxytocin (IP) or saline and then injected with either 2 mg/kg methamphetamine (IP) or saline. After injection, locomotor activity was measured for 80 minutes prior to perfusion. As in previous studies, co-administered oxytocin significantly reduced methamphetamine-induced behaviors. Strikingly, oxytocin significantly reduced methamphetamine-induced Fos expression in two regions of the basal ganglia: the subthalamic nucleus and the nucleus accumbens core. The subthalamic nucleus is of particular interest given emerging evidence for this structure in compulsive, addiction-relevant behaviors. When administered alone, oxytocin increased Fos expression in several regions, most notably in the oxytocin-synthesizing neurons of the supraoptic nucleus and paraventricular nucleus of the hypothalamus. This provides new evidence for central actions of peripheral oxytocin and suggests a self-stimulation effect of exogenous oxytocin on its own hypothalamic circuitry. Overall, these results give further insight into the way in which oxytocin might moderate compulsive behaviors and demonstrate the capacity of peripherally administered oxytocin to induce widespread central effects.
Collapse
Affiliation(s)
- Dean S Carson
- Brain & Mind Research Institute, University of Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
De Luca LA, Pereira-Derderian DT, Vendramini RC, David RB, Menani JV. Water deprivation-induced sodium appetite. Physiol Behav 2010; 100:535-44. [DOI: 10.1016/j.physbeh.2010.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/23/2010] [Accepted: 02/28/2010] [Indexed: 02/06/2023]
|