1
|
Yang S, Luo M, Yang S, Yuan M, Zeng H, Xia J, Wang N. Relationship between chemokine/chemokine receptor and glioma prognosis and outcomes: Systematic review and meta-analysis. Int Immunopharmacol 2024; 133:112047. [PMID: 38631221 DOI: 10.1016/j.intimp.2024.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Glioma is a primary tumor originating from the central nervous system, and despite ongoing efforts to improve treatment, its overall survival rate remains low. There are a limited number of reports regarding the clinical grading, prognostic impact, and utility of chemokines. Therefore, conducting a meta-analysis is necessary to obtain convincing and conclusive results. METHODS A comprehensive literature search was conducted using various databases, including PubMed, Web of Science, The Cochrane Library, Embase, Ovid Medline, CNKI, Wanfang Database, VIP, and CBM. The search encompassed articles published from the inception of the databases until March 2024. The estimated odds ratio (ORs), standard mean difference (SMDs), and hazard ratio (HR) with their corresponding 95% confidence intervals (95% CI) were calculated to assess the predictive value of chemokine and receptor levels in glioma risk. Additionally, heterogeneity tests and bias tests were performed to evaluate the reliability of the findings. RESULTS This meta-analysis included a total of 36 studies, involving 2,480 patients diagnosed with glioma. The results revealed a significant association between the expression levels of CXCR4 (n = 8; OR = 22.28; 95 % CI = 11.47-43.30; p = 0.000), CXCL12 (n = 4; OR = 10.69; 95 % CI = 7.03-16.24; p = 0.000), CCL2 (n = 6; SMD = -0.83; 95 % CI = -0.98--0.67; p = 0.000), CXCL8 (n = 3; SMD = 0.75; 95 % CI = 0.47-1.04; p = 0.000), CXCR7 (n = 3; OR = 20.66; 95 % CI = 10.20-41.82; p = 0.000), CXCL10 (n = 2; SMD = 3.27; 95 % CI = 2.91-3.62; p = 0.000) and the risk of glioma. Additionally, a significant correlation was observed between CXCR4 (n = 8; OR = 4.39; 95 % CI = 3.04-6.32; p = 0.000), (n = 6; SMD = 1.37; 95 % CI = 1.09-1.65; p = 0.000), CXCL12 (n = 6; OR = 6.30; 95 % CI = 3.87-10.25; p = 0.000), (n = 5; ES = 2.25; 95 % CI = 1.15-3.34; p = 0.041), CCL2 (n = 3; OR = 9.65; 95 % CI = 4.55-20.45; p = 0.000), (n = 4; SMD = -1.47; 95 % CI = -1.68--1.26; p = 0.000), and CCL18 (n = 3; SMD = 1.62; 95 % CI = 1.30-1.93; p = 0.000) expression levels and high-grade glioma (grades 3-4). Furthermore, CXCR4 (HR = 2.38, 95 % CI = 1.66-3.40; p = 0.000) exhibited a strong correlation with poor overall survival (OS) rates in glioma patients. CONCLUSION The findings of this study showed a robust association between elevated levels of CXCR4, CXCL12, CCL2, CXCL8, CXCL10 and CXCR7 with a higher risk of glioma. Furthermore, the WHO grading system was validated by the strong correlation shown between higher expression of CXCR4, CXCL12, CCL2, and CCL18 and WHO high-grade gliomas (grades 3-4). Furthermore, the results of the meta-analysis suggested that CXCR4 might be a helpful biomarker for predicting the worse prognosis of glioma patients.
Collapse
Affiliation(s)
- Shaobo Yang
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde city), NO. 818 Renmin Road, Changde, Hunan, 415003, China
| | - Minjie Luo
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Shun Yang
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde city), NO. 818 Renmin Road, Changde, Hunan, 415003, China
| | - Min Yuan
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde city), NO. 818 Renmin Road, Changde, Hunan, 415003, China
| | - Hu Zeng
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde city), NO. 818 Renmin Road, Changde, Hunan, 415003, China
| | - Jun Xia
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde city), NO. 818 Renmin Road, Changde, Hunan, 415003, China
| | - Nianhua Wang
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde city), NO. 818 Renmin Road, Changde, Hunan, 415003, China.
| |
Collapse
|
2
|
Perrone S, Grassi F, Caporilli C, Boscarino G, Carbone G, Petrolini C, Gambini LM, Di Peri A, Moretti S, Buonocore G, Esposito SMR. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants (Basel) 2023; 12:antiox12020309. [PMID: 36829868 PMCID: PMC9952571 DOI: 10.3390/antiox12020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The Brain is vulnerable to numerous insults that can act in the pre-, peri-, and post-natal period. There is growing evidence that demonstrate how oxidative stress (OS) could represent the final common pathway of all these insults. Fetuses and newborns are particularly vulnerable to OS due to their inability to active the antioxidant defenses. Specific molecules involved in OS could be measured in biologic fluids as early biomarkers of neonatal brain injury with an essential role in neuroprotection. Although S-100B seems to be the most studied biomarker, its use in clinical practice is limited by the complexity of brain damage etiopathogenesis and the time of blood sampling in relation to the brain injury. Reliable early specific serum markers are currently lacking in clinical practice. It is essential to determine if there are specific biomarkers that can help caregivers to monitor the progression of the disease in order to active an early neuroprotective strategy. We aimed to describe, in an educational review, the actual evidence on serum biomarkers for the early identification of newborns at a high risk of neurological diseases. To move the biomarkers from the bench to the bedside, the assays must be not only be of a high sensitivity but suitable for the very rapid processing and return of the results for the clinical practice to act on. For the best prognosis, more studies should focus on the association of these biomarkers to the type and severity of perinatal brain damage.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Carbone
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lucia Maria Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonio Di Peri
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sabrina Moretti
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
3
|
CCL18 Expression Is Higher in a Glioblastoma Multiforme Tumor than in the Peritumoral Area and Causes the Migration of Tumor Cells Sensitized by Hypoxia. Int J Mol Sci 2022; 23:ijms23158536. [PMID: 35955670 PMCID: PMC9369326 DOI: 10.3390/ijms23158536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with a very poor prognosis. For this reason, researchers worldwide study the impact of the tumor microenvironment in GBM, such as the effect of chemokines. In the present study, we focus on the role of the chemokine CCL18 and its receptors in the GBM tumor. We measured the expression of CCL18, CCR8 and PITPNM3 in the GMB tumor from patients (16 men and 12 women) using quantitative real-time polymerase chain reaction. To investigate the effect of CCL18 on the proliferation and migration of GBM cells, experiments were performed using U-87 MG cells. The results showed that CCL18 expression was higher in the GBM tumor than in the peritumoral area. The women had a decreased expression of PITPNM3 receptor in the GBM tumor, while in the men a lower expression of CCR8 was observed. The hypoxia-mimetic agent, cobalt chloride (CoCl2), increased the expression of CCL18 and PITPNM3 and thereby sensitized U-87 MG cells to CCL18, which did not affect the proliferation of U-87 MG cells but increased the migration of the test cells. The results indicate that GBM cells migrate from hypoxic areas, which may be important in understanding the mechanisms of tumorigenesis.
Collapse
|
4
|
Ding D, Zhang L, Liu X, Sun C, He J, Li J, Gao X, Guan F, Zhang L. Chemokine CCL18 Promotes Phagocytosis Through Its Receptor CCR8 Rather than PITPNM3 in Human Microglial Cells. J Interferon Cytokine Res 2022; 42:19-28. [PMID: 35041514 DOI: 10.1089/jir.2021.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CCL18 is a CC chemokine that exhibits diverse functions through interaction with various cell subsets with both proinflammatory anti-inflammatory properties through its receptors CCR8 (CC chemokine receptor 8) and PITPNM3 (phosphatidylinositol transfer protein 3). However, the function of CCL18 in microglia remains unclear. In this study, we show that CCL18 did not change the expression of the inflammatory factors, interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α), or inducible nitric oxide synthase (iNOS), but significantly induced expression of the macrophage markers, MRC-1 and ARG-1 M2, in a human microglial clone 3 cell line (HMC3). Phagocytosis by HMC3 cells was significantly enhanced in the presence of CCL18, indicated by uptake of amyloid-β and dextran. CCR8 and PITPNM3 were both expressed on HMC3 cells, but selective knockdown of CCR8 and PITPNM3 showed that only the former played a dominant role in phagocytosis of HMC3 through the nuclear factor kappa B (NF-κB)/Src signaling pathway. Our results suggest that CCL18 could have anti-inflammatory activity and activate the phagocytic function of microglia, which is involved in neural development, homeostasis, and repair mechanisms.
Collapse
Affiliation(s)
- Dengfeng Ding
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Caixian Sun
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayue He
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingwen Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Upadhyayula PS, Higgins DM, Argenziano MG, Spinazzi EF, Wu CC, Canoll P, Bruce JN. The Sledgehammer in Precision Medicine: Dexamethasone and Immunotherapeutic Treatment of Glioma. Cancer Invest 2021; 40:554-566. [PMID: 34151678 DOI: 10.1080/07357907.2021.1944178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Dominique M Higgins
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Peter Canoll
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Manhattan, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| |
Collapse
|
6
|
Li Z, Jin Y, Zou Q, Shi X, Wu Q, Lin Z, He Q, Huang G, Qi S. Integrated genomic and transcriptomic analysis suggests KRT18 mutation and MTAP are key genetic alterations related to the prognosis between astrocytoma and glioblastoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:713. [PMID: 33987411 PMCID: PMC8106028 DOI: 10.21037/atm-21-1317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Astrocytoma and glioblastoma (GBM) are the two main subtypes of glioma, with the 2016 World Health Organization Classification of Tumors of the Central Nervous System (CNS WHO) classifying them into different grades. GBM is the most malignant among all CNS tumors with a 5-year survival rate of less than 5%. Although the prognosis of patients with astrocytoma is better than that of GBM in general, patients with anaplastic astrocytoma (AA) and isocitrate dehydrogenase (IDH) wild type have a similar prognosis as GBM and entail a high risk of progression. Exploring the molecular driving force behind the malignant phenotype of astrocytoma and GBM will help explain the diversity of glioma and discover new drug targets. Methods We enrolled 12 patients with astrocytoma and 12 patients with GBM and performed whole-exome sequencing (WES) and RNA sequencing analysis on tumor samples from the patients. Results We found that the somatic mutation of KRT18, which is associated with cell apoptosis and adhesion by interacting with receptor 1-associated protein (TRADD) and pinin, was significantly enriched in astrocytoma, but rare in GBM. Copy number loss of MTAP, which is closely related to a poor prognosis of glioma, was found to be significantly enriched in GBM. In addition, different somatic copy number alteration (SCNA), gene expression, and immune cell infiltration patterns between astrocytoma and GBM were found. Conclusions This study revealed the distinct characteristics of astrocytoma and GBM at the DNA and RNA level. Somatic mutation of KRT18 and copy number loss of MTAP, two key genetic alterative genes in astrocytoma and GBM, have the potential to become therapeutic targets in glioma.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Jin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Zou
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Xiaofeng Shi
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Qianchao Wu
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qun He
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the Progression of Cancer. Int J Mol Sci 2020; 21:ijms21217955. [PMID: 33114763 PMCID: PMC7663205 DOI: 10.3390/ijms21217955] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Correspondence: ; Tel.: +48-717-841-354
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, Ignacego Jana Paderewskiego 35 Av., 51-612 Wroclaw, Poland
| |
Collapse
|
8
|
Jing X, Peng J, Dou Y, Sun J, Ma C, Wang Q, Zhang L, Luo X, Kong B, Zhang Y, Wang L, Qu X. Macrophage ERα promoted invasion of endometrial cancer cell by mTOR/KIF5B-mediated epithelial to mesenchymal transition. Immunol Cell Biol 2019; 97:563-576. [PMID: 30779215 DOI: 10.1111/imcb.12245] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Tumor-associated macrophages (TAMs) exert tumor-promoting effects. There have been reports that estrogen receptors (ERs) are expressed on the infiltrating macrophages of endometriosis, ovarian cancer and lung cancer. However, the role of ERs in macrophages is not well characterized. In this study, we identified that ER alpha (ERα) expression on the macrophages of human endometrial cancer was positively correlated with cancer progression. Conditioned medium from selective ERα agonist-treated M2 macrophages induced the epithelial to mesenchymal transition (EMT) in endometrial cancer cells. However, this effect can be inhibited by ERα antagonist. Here, we showed that macrophages ERα-engaged abundantly produced chemokine (C-C motif) ligand 18 (CCL18), and its expression promoted the invasion of endometrial cancer cells by activating the extracellular signal-regulated kinase 1/2 pathway, whereas suppressing CCL18 abrogated these effects. Furthermore, we identified that CCL18 derived from TAMs upregulated KIF5B expression to promote EMT via activating the PI3K/AKT/mTOR signaling pathway in endometrial cancer. Overall, our findings show how ERα-engaged infiltrating macrophages initiate chronic inflammation and promote the aggressive progression of endometrial cancer cells. ERα-positive TAMs act as drivers of endometrial cancer, which may become a potential therapeutic target.
Collapse
Affiliation(s)
- Xuanxuan Jing
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jin Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Dou
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jintang Sun
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chao Ma
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Zhang
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xia Luo
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijie Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
She L, Qin Y, Wang J, Liu C, Zhu G, Li G, Wei M, Chen C, Liu G, Zhang D, Chen X, Wang Y, Qiu Y, Tian Y, Zhang X, Liu Y, Huang D. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell Int 2018; 18:120. [PMID: 30181713 PMCID: PMC6114178 DOI: 10.1186/s12935-018-0620-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
Background Alternatively activated macrophages in tumor microenvironment is defined as M2 tumor-associated macrophages (M2 TAMs) that promote cancer progression. However, communicative mechanisms between M2 TAMs and cancer cells in squamous cell carcinoma of head and neck (SCCHN) remain largely unknown. Methods Quantitative real-time PCR, western blotting, enzyme-linked immunosorbent assay and flow cytometry were applied to quantify mRNA and protein expression of genes related to M2 TAMs, epithelial–mesenchymal transition (EMT) and stemness. Wounding-healing and Transwell invasion assays were performed to detect the invasion and migration. Sphere formation assay was used to detect the stemness of SCCHN cells. RNA-sequencing and following bioinformatics analysis were used to determine the alterations of transcriptome. Results THP-1 monocytes were successfully polarized into M2-like TAMs, which was manifested by increased mRNA and protein expression of CCL18, IL-10 and CD206. Conditioned medium from M2-like TAMs promoted the migration and invasion of SCCHN cells, which was accompanied by the occurrence of EMT and enhanced stemness. Importantly, CCL18 neutralizing antibody partially abrogated these effects that caused by conditional medium from M2-like TAMs. In addition, recombinant human CCL18 (rhCCL18) correspondingly promoted the malignant biological behaviors of SCCHN in vitro. Finally, RNA-sequencing analysis identified 331 up-regulated and 363 down-regulated genes stimulated by rhCCL18, which were statistically enriched in 10 cancer associated signaling pathways. Conclusion These findings indicate that CCL18 derived from M2-like TAMs promotes metastasis via inducing EMT and cancer stemness in SCCHN in vitro. Electronic supplementary material The online version of this article (10.1186/s12935-018-0620-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li She
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yuexiang Qin
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Juncheng Wang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Chao Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Gangcai Zhu
- 3Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410010 Hunan People's Republic of China
| | - Guo Li
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Ming Wei
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Changhan Chen
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Guancheng Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Diekuo Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Xiyu Chen
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yunyun Wang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yuanzheng Qiu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yongquan Tian
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Xin Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yong Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Donghai Huang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
10
|
Wang L, Wang YX, Chen LP, Ji ML. Upregulation of microRNA-181b inhibits CCL18-induced breast cancer cell metastasis and invasion via the NF-κB signaling pathway. Oncol Lett 2016; 12:4411-4418. [PMID: 28105154 PMCID: PMC5228575 DOI: 10.3892/ol.2016.5230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/01/2016] [Indexed: 12/01/2022] Open
Abstract
The purpose of the present study was to investigate the effects of upregulating microRNA (miR)-181b expression in tumor-associated macrophages regarding breast cancer cell metastasis and to identify the target gene. Ectopic miR-181b was transfected into MDA-MB-231 and MCF-7 breast cancer cell lines with or without chemokine ligand 18 (CCL18) stimulation. Cell proliferation, migration/invasion and apoptosis rate were investigated. The binding effects of miR-181b to the 3'-untranslated region (UTR) of the nuclear factor (NF)-κB gene were detected with the dual luciferase reporter system. Immunofluorescent staining of the NF-κB key component P65 was performed. The messenger (m) RNA and protein expression of NF-κB induced by CCL18 with or without miR-181b stimulation was evaluated with reverse transcription-quantitative polymerase chain reaction and western blot analysis. When compared with the CCL18-stimulated group, miR-181b mimic-transfected cells exhibited significantly inhibited proliferation and migration, with an increased cell apoptosis percentage in a dose-dependent manner. Furthermore, the luciferase activity was reduced for cells with NF-κB 3'-UTR wild-type that were co-transfected with miR-181b mimics. Immunofluorescent staining of NF-κB demonstrably weakened the P65 signal in stimulated miR-181b mimic cells when compared with parental and CCL18-treated cells. The increased expression level of NF-κB induced by CCL18 in MDA-MB-231 and MCF-7 cells was suppressed by miR-181b mimics. Overexpression of miR-181b suppressed cell survival rate and migration. This overexpression may achieve this goal by regulating the NF-κB pathway in breast cancer cells. Our study demonstrated a potential therapeutic application of miR-181b in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Yu-Xia Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Li-Ping Chen
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Ming-Li Ji
- Department of Physiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
11
|
Wang Q, Tang Y, Yu H, Yin Q, Li M, Shi L, Zhang W, Li D, Li L. CCL18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Mol Carcinog 2016; 55:1688-1699. [PMID: 26457987 PMCID: PMC5057350 DOI: 10.1002/mc.22419] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
CCL18 is a chemotactic cytokine involved in the pathogenesis and progression of various disorders, including cancer. Previously, our results showed high levels of CCL18 in the serum of epithelial ovarian carcinoma patients suggesting its potential as a circulating biomarker. In this study, we determined that CCL18 expression was up-regulated in ovarian carcinoma compared with adjacent tissue and was expressed in carcinoma cells in the tumor and not in normal ovarian epithelial cells by laser capture microdissection coupled with real-time RT-PCR. Moreover, correlation analysis showed that the CCL18 level was positively correlated with the metastasis of patients with ovarian cancer. Survival analysis also revealed that an increased level of CCL18 was associated with worse survival time in ovarian cancer patients. Over-expression of CCL18 led to enhanced migration and invasion of the Skov3 ovarian cancer cell line in vitro and in vivo. Finally, proteomics analysis demonstrated that CCL18-mediated ovarian cancer invasiveness was strongly correlated with the mTORC2 pathway. These findings suggest that the CCL18 chemokine has an important role in chemokine-mediated tumor metastasis, and may serve as a potential predictor for poor survival outcomes for ovarian cancer. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qi Wang
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Yong Tang
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Hongjing Yu
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Qiaoyun Yin
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Mengdi Li
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Lijun Shi
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Wei Zhang
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Danrong Li
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China
| | - Li Li
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Gaungxi, China.
| |
Collapse
|
12
|
Wang L, Wang YX, Zhang DZ, Fang XJ, Sun PS, Xue HC. Let-7a mimic attenuates CCL18 induced breast cancer cell metastasis through Lin 28 pathway. Biomed Pharmacother 2016; 78:301-307. [PMID: 26898455 DOI: 10.1016/j.biopha.2016.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs are believed to influence breast cancer cell tumorgenicity by interacting with the production of tumor associated macrophages. At this stage, this hypothesis lacks sufficient empirical evidence. Our study is an investigation of the effects of let-7a on the function of human breast cancer cell lines that had undergone chemokine ligand 18 (CCL18) stimulation. METHODS Two breast cancer cell lines MDA-MB-231 and MCF-7 were transfected with let-7a mimics with or without CCL18 simulation. The expression level of let-7a was evaluated with qRT-PCR. Our study examined cell proliferation, migration and cell cycles following let-7a treatment. The predicted target of let-7a was identified and confirmed in vitro by a dual luciferase reporter system. The associations between let-7a, CCL18 and target gene expression were evaluated using RT-PCR and the Western blotting method. RESULTS The downregulated expression level of let-7a was observed in both breast cancer cell lines. When compared to the control and CCL18 stimulation groups, cell proliferation and migration in MDA-MB-231 and MCF-7 cells were significantly inhibited by let-7a. Furthermore, the cell cycle was dramatically blocked at the G2/M phase. The luciferase reporter identified Lin28 as the direct binding target of let-7a in both breast cancer cell lines. CONCLUSION Upregulation of let-7a carries the potential to reverse CCL18 induced cell proliferation and migration alteration in breast cancer cells by regulating Lin28 expression. Our results provided evidence which suggests the use of let-7a as a therapeutic agent in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, 453100, Xinxiang, PR China
| | - Yu-Xia Wang
- Department of Pathophysiology, Xinxiang Medical University, 453003, Xinxiang, PR China
| | - De-Zhong Zhang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, 453100, Xinxiang, PR China
| | - Xiang-Jie Fang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, 453100, Xinxiang, PR China
| | - Pei-Sheng Sun
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, 453100, Xinxiang, PR China
| | - Hui-Chao Xue
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, 453100, Xinxiang, PR China.
| |
Collapse
|
13
|
Lin Z, Li W, Zhang H, Wu W, Peng Y, Zeng Y, Wan Y, Wang J, Ouyang N. CCL18/PITPNM3 enhances migration, invasion, and EMT through the NF-κB signaling pathway in hepatocellular carcinoma. Tumour Biol 2015; 37:3461-8. [PMID: 26449829 DOI: 10.1007/s13277-015-4172-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022] Open
Abstract
Chemokine ligand 18 (CCL18) has been associated with hepatocellular carcinoma (HCC) metastasis. Here, we demonstrated a novel mechanism through which CCL18 enhances cell migration, invasion, and epithelial-mesenchymal transition (EMT) in HCC. (1) Using immunohistochemistry, we analyzed the expression of PITPNM3, a molecule that correlated with CCL18 signaling, in 149 HCC tissue specimens. The results showed that PITPNM3 expression is highly associated with tumor metastasis and differentiation; (2) in vitro experiments showed that CCL18 enhances cell migration, invasion, and EMT in PITPNM3((+)) HCC cells but not in PITPNM3((-)) cells. Silencing of PITPNM3 by short interfering RNA (siRNA) inhibited the induction of cell migration, invasion, and EMT by CCL18; (3) Cell migration, invasion, and EMT induced by CCL18 accompanied with the phosphorylation of IKK and IKBα as well as p65 nuclear translocation in PITPNM3((+)) HCC cells, but not in the cells that PITPNM3 is silenced with siRNA, implying that the activation of NF-κB signaling is involved in the action of CCL18/PITPNM3. These results suggest that CCL18 enhances HCC cell migration, invasion, and EMT through the expression of PITPNM3 and the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zeyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenbin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Heyun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yaorong Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunjie Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunle Wan
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Nengtai Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Uchida K, Shan L, Suzuki H, Tabuse Y, Nishimura Y, Hirokawa Y, Mizukami K, Akatsu H, Meno K, Asada T. Amyloid-β sequester proteins as blood-based biomarkers of cognitive decline. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 1:270-80. [PMID: 27239510 PMCID: PMC4876892 DOI: 10.1016/j.dadm.2015.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction There are no blood-based biomarkers for cognitive decline in aging, or mild cognitive impairment (MCI) and Alzheimer's disease (AD). Cumulative evidence suggests that apolipoproteins, complement system, and transthyretin are involved in AD pathogenesis by sequestration of amyloid β. However, there is no clinical study to assess the utility of “sequester proteins” in risk assessment and/or diagnosis of MCI and AD. Methods Serum levels of sequester proteins and their clinical potential in cognitive decline assessment were analyzed by longitudinal and cross-sectional studies using independent cohorts and were confirmed by a prospective study. Results A combination of apolipoprotein A1, complement C3, and transthyretin achieved an area under the curve of 0.89 (sensitivity 91% and specificity 80%) in MCI versus healthy controls and also discriminated individuals with mild cognitive decline from healthy controls. Discussion A set of sequester proteins could be blood-based biomarkers for assessment of early stages of cognitive decline.
Collapse
Affiliation(s)
- Kazuhiko Uchida
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Tel.: +81-29-853-3210; Fax: +81-50-3730-7456.
| | - Liu Shan
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideaki Suzuki
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Yo Tabuse
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Yoshinori Nishimura
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | | | - Katsuyoshi Mizukami
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Kohji Meno
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Takashi Asada
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Douglas-Escobar M, Weiss MD. Biomarkers of brain injury in the premature infant. Front Neurol 2013; 3:185. [PMID: 23346073 PMCID: PMC3551194 DOI: 10.3389/fneur.2012.00185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/17/2012] [Indexed: 01/02/2023] Open
Abstract
The term “encephalopathy of prematurity” encompasses not only the acute brain injury [such as intraventricular hemorrhage (IVH)] but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is IVH and periventricular leukomalacia (PVL). Furthermore 20–25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500–750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury, and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD), and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP, and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9, and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after PHVD. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.
Collapse
Affiliation(s)
- Martha Douglas-Escobar
- Department of Pediatrics, University of Florida Gainesville, FL, USA ; McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | |
Collapse
|
16
|
Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin Dev Immunol 2011; 2011:565187. [PMID: 22162712 PMCID: PMC3227419 DOI: 10.1155/2011/565187] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 01/02/2023]
Abstract
Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.
Collapse
|
17
|
Lautner R, Mattsson N, Schöll M, Augutis K, Blennow K, Olsson B, Zetterberg H. Biomarkers for microglial activation in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:939426. [PMID: 22114747 PMCID: PMC3206374 DOI: 10.4061/2011/939426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/01/2011] [Indexed: 01/21/2023] Open
Abstract
Intensive research over the last decades has provided increasing evidence for neuroinflammation as an integral part in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Inflammatory responses in the central nervous system (CNS) are initiated by activated microglia, representing the first line of the innate immune defence of the brain. Therefore, biochemical markers of microglial activation may help us understand the underlying mechanisms of neuroinflammation in AD as well as the double-sided qualities of microglia, namely, neuroprotection and neurotoxicity. In this paper we summarize candidate biomarkers of microglial activation in AD along with a survey of recent neuroimaging techniques.
Collapse
Affiliation(s)
- Ronald Lautner
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Michael Schöll
- Division of Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kristin Augutis
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Bob Olsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| |
Collapse
|
18
|
Lin MS, Sun YY, Chiu WT, Hung CC, Chang CY, Shie FS, Tsai SH, Lin JW, Hung KS, Lee YH. Curcumin Attenuates the Expression and Secretion of RANTES after Spinal Cord Injury In Vivo and Lipopolysaccharide-Induced Astrocyte Reactivation In Vitro. J Neurotrauma 2011; 28:1259-69. [DOI: 10.1089/neu.2011.1768] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Muh-Shi Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei City Hospital, Zhong Xiao Branch, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery, Taipei County Hospital, New Taipei City, Taiwan
| | - Yu-Yo Sun
- Division of Cell Physiology and Neuroscience, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Ta Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University- Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chia-Chi Hung
- Division of Cell Physiology and Neuroscience, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Chiu-Yun Chang
- Division of Cell Physiology and Neuroscience, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Anatomy, Taipei Medical University, Taipei, Taiwan
| | - Feng-Shiun Shie
- Division of Mental Health and Addiction Medicine, National Health Research Institute, Miao-Li County, Taiwan
| | - Shin-Han Tsai
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University- Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jia-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University- Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuo-Sheng Hung
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Division of Cell Physiology and Neuroscience, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
19
|
Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, Yao H, Su F, Anderson KS, Liu Q, Ewen ME, Yao X, Song E. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011; 19:541-55. [PMID: 21481794 PMCID: PMC3107500 DOI: 10.1016/j.ccr.2011.02.006] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/08/2010] [Accepted: 02/03/2011] [Indexed: 11/22/2022]
Abstract
Tumor-associated macrophages (TAMs) can influence cancer progression and metastasis, but the mechanism remains unclear. Here, we show that breast TAMs abundantly produce CCL18, and its expression in blood or cancer stroma is associated with metastasis and reduced patient survival. CCL18 released by breast TAMs promotes the invasiveness of cancer cells by triggering integrin clustering and enhancing their adherence to extracellular matrix. Furthermore, we identify PITPNM3 as a functional receptor for CCL18 that mediates CCL18 effect and activates intracellular calcium signaling. CCL18 promotes the invasion and metastasis of breast cancer xenografts, whereas suppressing PITPNM3 abrogates these effects. These findings indicate that CCL18 derived from TAMs plays a critical role in promoting breast cancer metastasis via its receptor, PITPNM3.
Collapse
Affiliation(s)
- Jingqi Chen
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical College, Guangzhou 510260, China
| | - Yandan Yao
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Chang Gong
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Fengyan Yu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Shicheng Su
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Bodu Liu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Hui Deng
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, and University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Fengsong Wang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, and University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Ling Lin
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Herui Yao
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Fengxi Su
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Karen S. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Liu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Ewen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, and University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Erwei Song
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
20
|
Kallankari H, Kaukola T, Ojaniemi M, Herva R, Perhomaa M, Vuolteenaho R, Kingsmore SF, Hallman M. Chemokine CCL18 predicts intraventricular hemorrhage in very preterm infants. Ann Med 2010; 42:416-25. [PMID: 20608885 DOI: 10.3109/07853890.2010.481085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) in very preterm infants is a common disease associated with long-term consequences. Risk factors of IVH remain to be further defined. AIMS To determine whether specific immunoproteins at birth predict the risk of IVH and whether their receptors are localized at the bleeding site. METHODS A prospective cohort consisted of 163 infants born before 32 weeks of gestation. Altogether 107 cord blood immunoproteins and 12 cytokines from peripheral blood obtained 1 and 7 days after birth were analyzed. Serial brain ultrasounds were assessed. Immunohistochemistry of a chemokine receptor from 14 autopsies was studied. RESULTS Low levels of cord chemokine CCL18 (chemokine (C-C motif) ligand 18) robustly predicted the risk of IVH grade II-IV when ante- and neonatal risk factors were considered. Cord CCL18 increased from 32 weeks to term. During the first week after very preterm birth CCL18 increased as the risk of new IVH cases decreased. CCL18 receptor, CCR3, was detectable in choroid plexus, periventricular capillary endothelium, ependymal cells, and in germinal matrix. CONCLUSION Low cord blood CCL18 is an independent risk factor of IVH. CCL18 may inhibit signal transduction of its receptor in periventricular cells. Defining the function and regulation of CCL18 may help to decrease the risk of IVH.
Collapse
Affiliation(s)
- Hanna Kallankari
- Institute of Clinical Medicine, Department of Pediatrics, University of Oulu, FIN-90014, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|