1
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
3
|
The role of memantine in the treatment of major depressive disorder: Clinical efficacy and mechanisms of action. Eur J Pharmacol 2018; 827:103-111. [PMID: 29551658 DOI: 10.1016/j.ejphar.2018.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
A developing body of evidence indicates that disturbed glutamate neurotransmission especially through N-methyl-d-aspartate (NMDA) is central to the pathophysiology of major depressive disorder (MDD) and NMDA receptor antagonists have shown therapeutic potential in the MDD treatment. Memantine is an uncompetitive NMDA receptor antagonist, approved for treatment of Alzheimer's disease (AD) that in contrast to other NMDA receptor antagonists at therapeutic doses does not induce highly undesirable side effects. Neuroprotective properties and well tolerability of memantine have been attributed to its unique pharmacological features such as moderate affinity, rapid blocking kinetics and strongly voltage-dependency. In this review we summarized clinical trial evidence of antidepressant effectiveness of memantine and its mechanisms of action. Available data indicate contradictory findings relating to clinical efficacy suggesting further research is necessary in determining as to whether memantine will eventually be an advantageous therapy for MDD. Preclinical data proposed various neurobiological mechanisms underlying antidepressant-like properties of memantine that are responsible for synaptic plasticity and cell survival.
Collapse
|
4
|
Pigment Epithelium-Derived Factor (PEDF) is a Determinant of Stem Cell Fate: Lessons from an Ultra-Rare Disease. J Dev Biol 2015; 3:112-128. [PMID: 27239449 PMCID: PMC4883593 DOI: 10.3390/jdb3040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PEDF is a secreted glycoprotein that is widely expressed by multiple organs. Numerous functional contributions have been attributed to PEDF with antiangiogenic, antitumor, anti-inflammatory, and neurotrophic properties among the most prominent. The discovery that null mutations in the PEDF gene results in Osteogenesis Imperfecta Type VI, a rare autosomal recessive bone disease characterized by multiple fractures, highlights a critical developmental function for this protein. This ultra-rare orphan disease has provided biological insights into previous studies that noted PEDF’s effects on various stem cell populations. In addition to bone development, PEDF modulates resident stem cell populations in the brain, muscle, and eye. Functional effects on human embryonic stem cells have also been demonstrated. An overview of recent advances in our understanding by which PEDF regulates stem cells and their potential clinical applications will be evaluated in this review.
Collapse
|
5
|
Song G, Li Y, Lin L, Cao Y. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways. Mol Med Rep 2015; 12:7615-22. [PMID: 26459718 PMCID: PMC4626184 DOI: 10.3892/mmr.2015.4382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/17/2015] [Indexed: 11/23/2022] Open
Abstract
Memantine non-competitively blocks the N-methyl-d-aspartate receptor in order to inhibit beta-amyloid (Aβ) secretion, and has been used to treat moderate-to-severe Alzheimer's disease (AD). However, the mechanisms underlying the role of memantine in the autophagy and apoptosis of neuronal cells in AD, as well as the association between neuronal autophagy and apoptosis have yet to be elucidated. The present study aimed to establish an AD cell model overexpressing the 695-amino-acid Swedish mutant of Aβ precursor protein (APP695swe) in order to observe the effects of memantine on the cell viability, autophagy and apoptosis of SH-SY5Y cells in the AD model, and to investigate the associated underlying mechanisms. A pcDNA3.1-APP695 plasmid was transfected into the SH-SY5Y cells. Reverse transcription-quantitative polymerase chain reaction and western blot analyses demonstrated that the AD cell model was successfully established. MTT assays demonstrated that memantine was able to upregulate neuronal cell survival, and acridine orange staining and flow cytometry demonstrated that memantine (5 µM) was able to inhibit neuronal autophagy and apoptosis. Following neuronal autophagy induction by rapamycin, cell apoptosis rates increased significantly. Further experiments revealed that memantine was able to upregulate the expression of signaling molecules phosphorylated (p)-phosphoinositide 3-kinase, p-Akt and p-mammalian target of rapamycin (mTOR), and also inhibited the phosphorylation of the B-cell lymphoma 2/Beclin-1 complex via mitogen-activated protein kinase 8. In conclusion, the results of the present study demonstrated that in the AD cell model, autophagy was able to promote apoptosis. Memantine exerted anti-autophagic and anti-apoptotic functions, and mTOR-dependent as well as-independent autophagic signaling pathways were involved in this process. Therefore, these results of the present study strongly supported the use of memantine as a potential therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Guijun Song
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu Li
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lulu Lin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunpeng Cao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
6
|
Amin SN, El-Aidi AA, Ali MM, Attia YM, Rashed LA. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior. Neuromolecular Med 2015; 17:121-36. [PMID: 25680935 DOI: 10.1007/s12017-015-8343-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.
Collapse
MESH Headings
- Acute Disease
- Animals
- Anxiety/blood
- Anxiety/drug therapy
- Anxiety/etiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Biomarkers/blood
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/biosynthesis
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Drug Evaluation, Preclinical
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/therapeutic use
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Gene Expression Regulation/drug effects
- Grooming/drug effects
- Grooming/physiology
- Hippocampus/chemistry
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Hydrocortisone/blood
- Interleukin-6/blood
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memantine/pharmacology
- Memantine/therapeutic use
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurogenesis/drug effects
- Neuronal Plasticity/drug effects
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Wistar
- Restraint, Physical/adverse effects
- Spatial Memory/drug effects
- Spatial Memory/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/physiology
- Stress, Psychological/blood
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/physiopathology
- Synaptophysin/biosynthesis
- Synaptophysin/genetics
- Tumor Necrosis Factor-alpha/blood
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Medical Physiology, Kasr Al Ainy Faculty of Medicine, Cairo University, Al Manyal, Cairo, 11451, Egypt,
| | | | | | | | | |
Collapse
|
7
|
Zille M, Riabinska A, Terzi MY, Balkaya M, Prinz V, Schmerl B, Nieminen-Kelhä M, Endres M, Vajkoczy P, Pina AL. Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse. PLoS One 2014; 9:e114595. [PMID: 25470280 PMCID: PMC4255036 DOI: 10.1371/journal.pone.0114595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
We here suggest that pigment epithelium-derived factor (PEDF) does not have an effect on lesion size, behavioral outcome, cell proliferation, or cell death after striatal ischemia in the mouse. PEDF is a neurotrophic factor with neuroprotective, antiangiogenic, and antipermeability effects. It influences self-renewal of neural stem cells and proliferation of microglia. We investigated whether intraventricular infusion of PEDF reduces infarct size and cell death, ameliorates behavioral outcome, and influences cell proliferation in the one-hour middle cerebral artery occlusion (MCAO) mouse model of focal cerebral ischemia. C57Bl6/N mice were implanted with PEDF or artificial cerebrospinal fluid (control) osmotic pumps and subjected to 60-minute MCAO 48 hours after pump implantation. They received daily BrdU injections for 7 days after MCAO in order to investigate cell proliferation. Infarct volumes were determined 24 hours after reperfusion using magnetic resonance imaging. We removed the pumps on day 5 and performed behavioral testing between day 7 and 21. Immunohistochemical staining was performed to determine the effect of PEDF on cell proliferation and cell death. Our model produced an ischemic injury confined solely to striatal damage. We detected no reduction in infarct sizes and cell death in PEDF- vs. CSF-infused MCAO mice. Behavioral outcome and cell proliferation did not differ between the groups. However, we cannot exclude that PEDF might work under different conditions in stroke. Further studies will elucidate the effect of PEDF treatment on cell proliferation and behavioral outcome in moderate to severe ischemic injury in the brain.
Collapse
Affiliation(s)
- Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Arina Riabinska
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Menderes Yusuf Terzi
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Mustafa Balkaya
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Vincent Prinz
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Bettina Schmerl
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | | | - Matthias Endres
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Ana Luisa Pina
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
8
|
Ho TC, Chen SL, Wu JY, Ho MY, Chen LJ, Hsieh JW, Cheng HC, Tsao YP. PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing. Stem Cells 2014; 31:1775-84. [PMID: 23553951 DOI: 10.1002/stem.1393] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/06/2013] [Indexed: 12/15/2022]
Abstract
Limbal epithelial stem cell (LSC) transplantation is a prevalent therapeutic method for patients with LSC deficiency. The maintenance of stem cell characteristics in the process of culture expansion is critical for the success of ocular surface reconstruction. Pigment epithelial-derived factor (PEDF) increased the numbers of holoclone in LSC monolayer culture and preserved the stemness of LSC in suspension culture by evidence of ΔNp63α, Bmi-1, and ABCG2 expression. BrdU pulse-labeling assay also demonstrated that PEDF stimulated LSCs proliferation. In air-lift culture of limbal equivalent, PEDF was capable of increasing the numbers of ΔNp63α-positive cells. The mitogenic effect of PEDF was found to be mediated by the phosphorylations of p38 MAPK and STAT3 in LSCs. Synthetic 44-mer PEDF (residues 78-121) was as effective as the full length PEDF in LSC expansion in suspension culture and limbal equivalent formation, as well as the activation of p38 MAPK and STAT3. In mice subjecting to mechanical removal of cornea epithelium, 44-mer PEDF facilitated corneal wound healing. Microscopically, 44-mer PEDF advanced the early proliferative response in limbus, increased the proliferation of ΔNp63α-positive cells both in limbus and in epithelial healing front, and assisted the repopulation of limbus in the late phase of wound healing. In conclusion, the capability of expanding LSC in cell culture and in animal indicates the potential of PEDF and its fragment (e.g., 44-mer PEDF) in ameliorating limbal stem cell deficiency; and their uses as therapeutics for treating corneal wound.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Craword SE, Fitchev P, Veliceasa D, Volpert OV. The many facets of PEDF in drug discovery and disease: a diamond in the rough or split personality disorder? Expert Opin Drug Discov 2013; 8:769-92. [PMID: 23642051 DOI: 10.1517/17460441.2013.794781] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pigment epithelium-derived factor (PEDF) was discovered as a neurotrophic factor secreted by retinal pigment epithelial cells. A decade later, it re-emerged as a powerful angiogenesis inhibitor guarding ocular function. Since then, significant advances were made identifying PEDF's mechanisms, targets and biomedical applications. AREAS COVERED The authors review several methodologies that have generated significant new information about the potential of PEDF as a drug. Furthermore, the authors review and discuss mechanistic and structure-function analyses combined with the functional mapping of active fragments, which have yielded several short bioactive PEDF peptides. Additionally, the authors present functional studies in knockout animals and human correlates that have provided important information about conditions amenable to PEDF-based therapies. EXPERT OPINION Through its four known receptors, PEDF causes a wide range of cellular events vitally important for the organism, which include survival and differentiation, migration and invasion, lipid metabolism and stem cell maintenance. These processes are deregulated in multiple pathological conditions, including cancer, metabolic and cardiovascular disease. PEDF has been successfully used in countless preclinical models of these conditions and human correlates suggest a wide utility of PEDF-based drugs. The most significant clinical application of PEDF, to date, is its potential therapeutic use for age-related macular degeneration. Moreover, PEDF-based gene therapy has advanced to early stage clinical trials. PEDF active fragments have been mapped and used to design short peptide mimetics conferring distinct functions of PEDF, which may address specific clinical problems and become prototype drugs.
Collapse
Affiliation(s)
- Susan E Craword
- St. Louis University School of Medicine, Department of Pathology, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
10
|
Dong C, Anand KJS. Developmental neurotoxicity of ketamine in pediatric clinical use. Toxicol Lett 2013; 220:53-60. [PMID: 23566897 DOI: 10.1016/j.toxlet.2013.03.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/27/2022]
Abstract
Ketamine is widely used as an anesthetic, analgesic, and sedative in pediatric clinical practice and it is also listed as an illicit drug by most countries. Recent in vivo and in vitro animal studies have confirmed that ketamine can induce neuronal cell death in the immature brain, resulting from widespread neuronal apoptosis. These effects can disturb normal development further altering the structure and functions of the brain. Our recent studies further indicate that ketamine can alter neurogenesis from neural stem progenitor cells in the developing brain. Taken together, these findings identify a novel complication associated with ketamine use in premature infants, term newborns, and pregnant women. Recent data on the developmental neurotoxicity of ketamine are reviewed with proposed future directions for evaluating the safety of ketamine in these patient populations.
Collapse
Affiliation(s)
- Chaoxuan Dong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | | |
Collapse
|
11
|
Ramasamy S, Narayanan G, Sankaran S, Yu YH, Ahmed S. Neural stem cell survival factors. Arch Biochem Biophys 2013; 534:71-87. [PMID: 23470250 DOI: 10.1016/j.abb.2013.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
Neural stem and progenitor cells (NSCs and NPs) give rise to the central nervous system (CNS) during embryonic development. NSCs and NPs differentiate into three main cell-types of the CNS; astrocytes, oligodendrocytes, and neurons. NSCs are present in the adult CNS and are important in maintenance and repair. Adult NSCs hold great promise for endogenous or self-repair of the CNS. Intriguingly, NSCs have been implicated as the cells that give rise to brain tumors. Thus, the balance between survival, growth and differentiation is a critical aspect of NSC biology, during development, in the adult, and in disease processes. In this review, we survey what is known about survival factors that control both embryonic and adult NSCs. We discuss the neurosphere culture system as this is widely used to measure NSC activity and behavior in vitro and emphasize the importance of clonality. We define here NSC survival factors in their broadest sense to include any factor that influences survival and proliferation of NSCs and NPs. NSC survival factors identified to date include growth factors, morphogens, proteoglycans, cytokines, hormones, and neurotransmitters. Understanding NSC and NP interaction in response to these survival factors will provide insight to CNS development, disease and repair.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore
| | | | | | | | | |
Collapse
|
12
|
Réus GZ, Abelaira HM, Stringari RB, Fries GR, Kapczinski F, Quevedo J. Memantine treatment reverses anhedonia, normalizes corticosterone levels and increases BDNF levels in the prefrontal cortex induced by chronic mild stress in rats. Metab Brain Dis 2012; 27:175-82. [PMID: 22327556 DOI: 10.1007/s11011-012-9281-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
Abstract
Memantine is a N-methyl-D-aspartate (NMDA) receptor antagonist and several studies have pointed to the NMDA receptor antagonists as a potential therapeutic target for the treatment of depression. The present study was aimed to evaluate the behavioral and physiological effects of administration of memantine in rats exposed to the chronic mild stress (CMS) model. To this aim, after 40 days of exposure to CMS procedure, rats were treated with memantine (20 mg/kg) for 7 days. In this study, sweet food consumption, adrenal gland weight, corticosterone levels, and brain-derived-neurotrophic factor (BDNF) protein levels in the prefrontal cortex, hippocampus and amygdala were assessed. Our results demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, and an increase of corticosterone levels in rats, but did not alter BDNF protein levels in the rat brain. Memantine treatment reversed anhedonia and the increase of adrenal gland weight, normalized corticosterone levels and increased BDNF protein levels in the prefrontal cortex in stressed rats. Finally, these findings further support the hypothesis that NMDA receptor antagonists such as memantine could be helpful in the pharmacological treatment of depression.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia, Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
13
|
Wei H, Dobkin C, Sheikh AM, Malik M, Brown WT, Li X. The therapeutic effect of memantine through the stimulation of synapse formation and dendritic spine maturation in autism and fragile X syndrome. PLoS One 2012; 7:e36981. [PMID: 22615862 PMCID: PMC3352866 DOI: 10.1371/journal.pone.0036981] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/11/2012] [Indexed: 12/22/2022] Open
Abstract
Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs) from Fmr1 knockout (KO) mice, a mouse model for fragile X syndrome (FXS) and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, United States of America
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carl Dobkin
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, United States of America
| | - Ashfaq M. Sheikh
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, United States of America
| | - Mazhar Malik
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, United States of America
| | - W. Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, United States of America
| | - Xiaohong Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Babic S, Ondrejcakova M, Bakos J, Racekova E, Jezova D. Cell proliferation in the hippocampus and in the heart is modified by exposure to repeated stress and treatment with memantine. J Psychiatr Res 2012; 46:526-32. [PMID: 22297273 DOI: 10.1016/j.jpsychires.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 12/28/2022]
Abstract
The present studies were aimed to verify the hypothesis that treatment with memantine, a low affinity NMDA glutamate receptor antagonist, can reduce possible stress-induced alterations in cell proliferation in the hippocampus and in the heart and has consequences on stress hormone release. Adult male Wistar rats were exposed to repeated hypokinesis (movement restraint, 2 h daily) or remained undisturbed and they were treated with memantine (5 mg/kg/day, s.c.) or vehicle for 8 days. On the day 7, all animals were injected with 5-bromo-2'-deoxyuridine (BrdU), a marker of cell proliferation. The mild form of chronic stress used resulted only in moderate decrease in BrdU incorporation into DNA in the hippocampus, while the same stimulus caused a pronounced reduction of the new cells formed in left heart ventricle. In both tissues, stress-induced reduction in cell proliferation was more evident in memantine-treated rats. Memantine failed to modify hormones of the hypothalamic-pituitary-adrenocortical axis, while the treatment increased plasma renin activity. The present study demonstrates that treatment with memantine potentiated rather than prevented stress-induced reduction of cell proliferation. We have shown that stress exposure may induce a reduction in cell proliferation in the heart, even in a higher extent than that in the hippocampus. Effects of memantine under stress conditions might be relevant with respect to clinical use of memantine, which is being used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- S Babic
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, Bratislava 833 06, Slovakia
| | | | | | | | | |
Collapse
|
15
|
Skaper SD. Culture of rat retina pigmented epithelial cells. Methods Mol Biol 2012; 846:159-66. [PMID: 22367809 DOI: 10.1007/978-1-61779-536-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Retinal pigment epithelium cells play a key role in maintaining the normal function of retina and can express several neurotrophic factors, which support the neurosensory retina and may also provide trophic signals to the host dopaminergic neurons. The following chapter describes a protocol for the purification and culture of retinal pigmented epithelial cells from postnatal rat.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Abstract
We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl--aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination.
Collapse
|
17
|
Calenda G, Strong TD, Pavlovich CP, Schaeffer EM, Burnett AL, Yu W, Davies KP, Bivalacqua TJ. Whole genome microarray of the major pelvic ganglion after cavernous nerve injury: new insights into molecular profile changes after nerve injury. BJU Int 2012; 109:1552-64. [DOI: 10.1111/j.1464-410x.2011.10705.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Pigment epithelium-derived factor (PEDF) protects cortical neurons in vitro from oxidant injury by activation of extracellular signal-regulated kinase (ERK) 1/2 and induction of Bcl-2. Neurosci Res 2011; 72:1-8. [PMID: 21946416 DOI: 10.1016/j.neures.2011.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 12/31/2022]
Abstract
Mitigating oxidative stress-induced damage is critical to preserve neuronal function in diseased or injured brains. This study explores the mechanisms contributing to the neuroprotective effects of pigment epithelium-derived factor (PEDF) in cortical neurons. Cultured primary neurons are exposed to PEDF and H₂O₂ as well as inhibitors of phosphoinositide-3 kinase (PI3K) or extracellular signal-regulated kinase 1/2 (ERK1/2). Neuronal survival, cell death and levels of caspase 3, PEDF, phosphorylated ERK1/2, and Bcl-2 are measured. The data show cortical cultures release PEDF and that H₂O₂ treatment causes cell death, increases activated caspase 3 levels and decreases release of PEDF. Exogenous PEDF induces a dose-dependent increase in Bcl-2 expression and neuronal survival. Blocking Bcl-2 expression by siRNA reduced PEDF-induced increases in neuronal survival. Treating cortical cultures with PEDF 24 h before H₂O₂ exposure mitigates oxidant-induced decreases in neuronal survival, Bcl-2 expression, and phosphorylation of ERK1/2 and also reduces elevated caspase 3 level and activity. PEDF pretreatment effect on survival is blocked by inhibiting ERK or PI3K. However, only inhibition of ERK reduced the ability of PEDF to protect neurons from H₂O₂-induced Bcl-2 decrease and neuronal death. These data demonstrate PEDF-mediated neuroprotection against oxidant injury is largely mediated via ERK1/2 and Bcl-2 and suggest the utility of PEDF in preserving the viability of oxidatively challenged neurons.
Collapse
|
19
|
Namba T, Ming GL, Song H, Waga C, Enomoto A, Kaibuchi K, Kohsaka S, Uchino S. NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via Disrupted-In-Schizophrenia 1 (DISC1). J Neurochem 2011; 118:34-44. [PMID: 21517847 DOI: 10.1111/j.1471-4159.2011.07282.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the mammalian brain, new neurons are continuously generated throughout life in the dentate gyrus (DG) of the hippocampus. Previous studies have established that newborn neurons migrate a short distance to be integrated into a pre-existing neuronal circuit in the hippocampus. How the migration of newborn neurons is governed by extracellular signals, however, has not been fully understood. Here, we report that NMDA receptor (NMDA-R)-mediated signaling is essential for the proper migration and positioning of newborn neurons in the DG. An intraperitoneal injection of the NMDA-R antagonists, memantine, or 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) into adult male mice caused the aberrant positioning of newborn neurons, resulting in the overextension of their migration in the DG. Interestingly, we revealed that the administration of NMDA-R antagonists leads to a decrease in the expression of Disrupted-In-Schizophrenia 1 (DISC1), a candidate susceptibility gene for major psychiatric disorders such as schizophrenia, which is also known as a critical regulator of neuronal migration in the DG. Furthermore, the overextended migration of newborn neurons induced by the NMDA-R antagonists was significantly rescued by exogenous expression of DISC1. Collectively, these results suggest that the NMDA-R signaling pathway governs the migration of newborn neurons via the regulation of DISC1 expression in the DG.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abraham JD, Calvayrac-Pawlowski S, Cobo S, Salvetat N, Vicat G, Molina L, Touchon J, Michel BF, Molina F, Verdier JM, Fareh J, Mourton-Gilles C. Combined measurement of PEDF, haptoglobin and tau in cerebrospinal fluid improves the diagnostic discrimination between alzheimer’s disease and other dementias. Biomarkers 2011; 16:161-71. [DOI: 10.3109/1354750x.2010.536995] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jean-Daniel Abraham
- SysDiag CNRS / Bio-Rad UMR3145, 1682 rue de la Valsiere, Montpellier, France
| | | | - Sandra Cobo
- SysDiag CNRS / Bio-Rad UMR3145, 1682 rue de la Valsiere, Montpellier, France
| | - Nicolas Salvetat
- SysDiag CNRS / Bio-Rad UMR3145, 1682 rue de la Valsiere, Montpellier, France
| | - Guillaume Vicat
- SysDiag CNRS / Bio-Rad UMR3145, 1682 rue de la Valsiere, Montpellier, France
| | - Laurence Molina
- SysDiag CNRS / Bio-Rad UMR3145, 1682 rue de la Valsiere, Montpellier, France
| | - Jacques Touchon
- Neurology Service, Gui de Chauliac Hospital, 80 Avenue Augustin Fliche, Montpellier, France
| | - Bernard-François Michel
- Univ. Montpellier 2, Montpellier, F-34095 France; Inserm, U710, Montpellier, F-34095 France; EPHE, Paris, F-75007 France
| | - Franck Molina
- SysDiag CNRS / Bio-Rad UMR3145, 1682 rue de la Valsiere, Montpellier, France
| | - Jean-Michel Verdier
- Univ. Montpellier 2, Montpellier, F-34095 France; Inserm, U710, Montpellier, F-34095 France; EPHE, Paris, F-75007 France
| | - Jeannette Fareh
- SysDiag CNRS / Bio-Rad UMR3145, 1682 rue de la Valsiere, Montpellier, France
| | | |
Collapse
|