1
|
Carles A, Hoffmann M, Scheiner M, Crouzier L, Bertrand-Gaday C, Chatonnet A, Decker M, Maurice T. The selective butyrylcholinesterase inhibitor UW-MD-95 shows symptomatic and neuroprotective effects in a pharmacological mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14814. [PMID: 38887858 PMCID: PMC11183908 DOI: 10.1111/cns.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-β (Aβ) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD. METHODS We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aβ25-35 peptide using behavioral, biochemical, and immunohistochemical approaches. RESULTS When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aβ25-35-treated mice. When injected once a day over 7 days, it prevented Aβ25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aβ25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aβ1-42 level in the hippocampus induced by Aβ25-35. CONCLUSION UW-MD-95 appeared as a potent neuroprotective compound in the Aβ25-35 model of AD, with potentially an impact on Aβ1-42 accumulation that could suggest a novel mechanism of neuroprotection.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | - Matthias Hoffmann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Matthias Scheiner
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lucie Crouzier
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| |
Collapse
|
2
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
3
|
Kakoty V, Kc S, Kumari S, Yang CH, Dubey SK, Sahebkar A, Kesharwani P, Taliyan R. Brain insulin resistance linked Alzheimer's and Parkinson's disease pathology: An undying implication of epigenetic and autophagy modulation. Inflammopharmacology 2023; 31:699-716. [PMID: 36952096 DOI: 10.1007/s10787-023-01187-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
In metabolic syndrome, dysregulated signalling activity of the insulin receptor pathway in the brain due to persistent insulin resistance (IR) condition in the periphery may lead to brain IR (BIR) development. BIR causes an upsurge in the activity of glycogen synthase kinase-3 beta, increased amyloid beta (Aβ) accumulation, hyperphosphorylation of tau, aggravated formation of Aβ oligomers and simultaneously neurofibrillary tangle formation, all of which are believed to be direct contributors in Alzheimer's Disease (AD) pathology. Likewise, for Parkinson's Disease (PD), BIR is associated with alpha-synuclein alterations, dopamine loss in brain areas which ultimately succumbs towards the appearance of classical motor symptoms corresponding to the typical PD phenotype. Modulation of the autophagy process for clearing misfolded proteins and alteration in histone proteins to alleviate disease progression in BIR-linked AD and PD have recently evolved as a research hotspot, as the majority of the autophagy-related proteins are believed to be regulated by histone posttranslational modifications. Hence, this review will provide a timely update on the possible mechanism(s) converging towards BIR induce AD and PD. Further, emphasis on the potential epigenetic regulation of autophagy that can be effectively targeted for devising a complete therapeutic cure for BIR-induced AD and PD will also be reviewed.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India, Jalandhar-Delhi G.T Road, Phagwara
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Sarathlal Kc
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
4
|
Pavlou S, Foskolou S, Patikas N, Field SF, Papachristou EK, Santos CD, Edwards AR, Kishore K, Ansari R, Rajan SS, Fernandes HJR, Metzakopian E. CRISPR-Cas9 genetic screen leads to the discovery of L-Moses, a KAT2B inhibitor that attenuates Tunicamycin-mediated neuronal cell death. Sci Rep 2023; 13:3934. [PMID: 36894612 PMCID: PMC9998435 DOI: 10.1038/s41598-023-31141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Accumulation of aggregated and misfolded proteins, leading to endoplasmic reticulum stress and activation of the unfolded protein response, is a hallmark of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Genetic screens are powerful tools that are proving invaluable in identifying novel modulators of disease associated processes. Here, we performed a loss-of-function genetic screen using a human druggable genome library, followed by an arrayed-screen validation, in human iPSC-derived cortical neurons. We identified and genetically validated 13 genes, whose knockout was neuroprotective against Tunicamycin, a glycoprotein synthesis inhibitor widely used to induce endoplasmic reticulum stress. We also demonstrated that pharmacological inhibition of KAT2B, a lysine acetyltransferase identified by our genetic screens, by L-Moses, attenuates Tunicamycin-mediated neuronal cell death and activation of CHOP, a key pro-apoptotic member of the unfolded protein response in both cortical and dopaminergic neurons. Follow-up transcriptional analysis suggested that L-Moses provided neuroprotection by partly reversing the transcriptional changes caused by Tunicamycin. Finally, L-Moses treatment attenuated total protein levels affected by Tunicamycin, without affecting their acetylation profile. In summary, using an unbiased approach, we identified KAT2B and its inhibitor, L-Moses, as potential therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sofia Pavlou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sarah F Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Evangelia K Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Clive D' Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sandeep S Rajan
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
5
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
6
|
Creighton SD, Jardine KH, Desimone A, Zmetana M, Castellano S, Milite C, Sbardella G, Winters BD. Age-dependent attenuation of spatial memory deficits by the histone acetyltransferase p300/CBP-associated factor (PCAF) in 3xTG Alzheimer's disease mice. Learn Mem 2022; 29:71-76. [PMID: 35169045 PMCID: PMC8852226 DOI: 10.1101/lm.053536.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Histone acetylation, catalyzed by histone acetyltransferases, has emerged as a promising therapeutic strategy in Alzheimer's disease (AD). By longitudinally characterizing spatial memory at 3, 6, and 9 mo of age, we show that acute activation and inhibition of the histone acetyltransferase PCAF remediated memory impairments in 3xTG-AD mice in an age-related bidirectional manner. At 3 and 6 mo of age, PCAF activation ameliorated memory deficits. At 9 mo of age, PCAF activation had no effect on spatial memory, whereas PCAF inhibition improved memory deficits in females. This work reveals a complex potential therapeutic role for PCAF in AD, initially benefitting memory but becoming detrimental as the disease progresses.
Collapse
Affiliation(s)
- Samantha D. Creighton
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada,Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Kristen H. Jardine
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alexa Desimone
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Megan Zmetana
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Laboratory, University of Salerno, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Laboratory, University of Salerno, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Laboratory, University of Salerno, I-84084 Fisciano, Salerno, Italy
| | - Boyer D. Winters
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Son SM, Park SJ, Fernandez-Estevez M, Rubinsztein DC. Autophagy regulation by acetylation-implications for neurodegenerative diseases. Exp Mol Med 2021; 53:30-41. [PMID: 33483607 PMCID: PMC8080689 DOI: 10.1038/s12276-021-00556-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 01/30/2023] Open
Abstract
Posttranslational modifications of proteins, such as acetylation, are essential for the regulation of diverse physiological processes, including metabolism, development and aging. Autophagy is an evolutionarily conserved catabolic process that involves the highly regulated sequestration of intracytoplasmic contents in double-membrane vesicles called autophagosomes, which are subsequently degraded after fusing with lysosomes. The roles and mechanisms of acetylation in autophagy control have emerged only in the last few years. In this review, we describe key molecular mechanisms by which previously identified acetyltransferases and deacetylases regulate autophagy. We highlight how p300 acetyltransferase controls mTORC1 activity to regulate autophagy under starvation and refeeding conditions in many cell types. Finally, we discuss how altered acetylation may impact various neurodegenerative diseases in which many of the causative proteins are autophagy substrates. These studies highlight some of the complexities that may need to be considered by anyone aiming to perturb acetylation under these conditions.
Collapse
Affiliation(s)
- Sung Min Son
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - So Jung Park
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Marian Fernandez-Estevez
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - David C. Rubinsztein
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
9
|
Clegg MA, Tomkinson NCO, Prinjha RK, Humphreys PG. Advancements in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2019; 14:362-385. [PMID: 30624862 DOI: 10.1002/cmdc.201800738] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 01/07/2023]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.
Collapse
Affiliation(s)
- Michael A Clegg
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Philip G Humphreys
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
10
|
Affiliation(s)
- Andre Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
- Department for Systems Medicine and Brain Diseases, German Center for Neurodegenerative Diseases (DZNE) site Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Suryanarayanan V, Singh SK. Deciphering the binding mode and mechanistic insights of pentadecylidenemalonate (1b) as activator of histone acetyltransferase PCAF. J Biomol Struct Dyn 2018; 37:2296-2309. [PMID: 30044210 DOI: 10.1080/07391102.2018.1479658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Histone acetyltransferases (HATs) is one among the conspicuous posttranslational modification in eukaryotic cells. p300/CBP Associated Factor (PCAF) and CREB-binding protein (CBP) are the two highly homologous HAT family which are vastly implicated in several diseases like cancer, diabetes, etc. Pentadecylidenemalonate, a simplified analog of anacardic acid, was reported as first mixed inhibitor/activator of HATs which inhibits p300/CBP and activates PCAF. It was appointed earlier as a valuable biological tool to understand the mechanism of lysine acetyltransferases due to its powerful apoptotic effect. In this study, pentadecylidenemalonate was taken for deciphering the binding mode, key interacting residues as well as mechanistic insights on PCAF and CBP as activator and inhibitor, respectively. This study is highly believed to help in rational design on antineoplastic drugs against PCAF. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Venkatesan Suryanarayanan
- a Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics , Alagappa University , Karaikudi , India Communicated by Ramaswamy H. Sarma
| | - Sanjeev Kumar Singh
- a Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics , Alagappa University , Karaikudi , India Communicated by Ramaswamy H. Sarma
| |
Collapse
|
12
|
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:49-82. [PMID: 30072060 DOI: 10.1016/bs.pmbts.2018.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases are complex, progressive disorders and affect millions of people worldwide, contributing significantly to the global burden of disease. In recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we describe the current state of play for epigenetic research into neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. We focus on the recent evidence for a potential role of DNA modifications, histone modifications and non-coding RNA in the etiology of these disorders. Finally, we discuss how new technological and bioinformatics advances in the field of epigenetics could further progress our understanding about the underlying mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands; University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Suryanarayanan V, Singh SK. Unravelling novel congeners from acetyllysine mimicking ligand targeting a lysine acetyltransferase PCAF bromodomain. J Biomol Struct Dyn 2018; 36:4303-4319. [DOI: 10.1080/07391102.2017.1415820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Venkatesan Suryanarayanan
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630004, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630004, India
| |
Collapse
|
14
|
The epigenetic factor PCAF regulates vascular inflammation and is essential for intimal hyperplasia development. PLoS One 2017; 12:e0185820. [PMID: 29016683 PMCID: PMC5634597 DOI: 10.1371/journal.pone.0185820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Objective Genetic P300/CBP-associated factor (PCAF) variation affects restenosis-risk in patients. PCAF has lysine acetyltransferase activity and promotes nuclear factor kappa-beta (NFκB)-mediated inflammation, which drives post-interventional intimal hyperplasia development. We studied the contributing role of PCAF in post-interventional intimal hyperplasia. Methods and results PCAF contribution to inflammation and intimal hyperplasia was assessed in leukocytes, macrophages and vascular smooth muscle cells (vSMCs) in vitro and in a mouse model for intimal hyperplasia, in which a cuff is placed around the femoral artery. PCAF deficiency downregulate CCL2, IL-6 and TNF-alpha expression, as demonstrated on cultured vSMCs, leukocytes and macrophages. PCAF KO mice showed a 71.8% reduction of vSMC-rich intimal hyperplasia, a 73.4% reduction of intima/media ratio and a 63.7% reduction of luminal stenosis after femoral artery cuff placement compared to wild type (WT) mice. The association of PCAF and vascular inflammation was further investigated using the potent natural PCAF inhibitor garcinol. Garcinol treatment reduced CCL2 and TNF-alpha expression, as demonstrated on cultured vSMCs and leukocytes. To assess the effect of garcinol treatment on vascular inflammation we used hypercholesterolemic ApoE*3-Leiden mice. After cuff placement, garcinol treatment resulted in reduced arterial leukocyte and macrophage adherence and infiltration after three days compared to untreated animals. Conclusions These results identify a vital role for the lysine acetyltransferase PCAF in the regulation of local inflammation after arterial injury and likely the subsequent vSMC proliferation, responsible for intimal hyperplasia.
Collapse
|
15
|
Vardarajan BN, Tosto G, Lefort R, Yu L, Bennett DA, De Jager PL, Barral S, Reyes-Dumeyer D, Nagy PL, Lee JH, Cheng R, Medrano M, Lantigua R, Rogaeva E, St George-Hyslop P, Mayeux R. Ultra-rare mutations in SRCAP segregate in Caribbean Hispanic families with Alzheimer disease. Neurol Genet 2017; 3:e178. [PMID: 28852706 PMCID: PMC5570674 DOI: 10.1212/nxg.0000000000000178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify rare coding variants segregating with late-onset Alzheimer disease (LOAD) in Caribbean Hispanic families. METHODS Whole-exome sequencing (WES) was completed in 110 individuals from 31 Caribbean Hispanic families without APOE ε4 homozygous carriers. Rare coding mutations segregating in families were subsequently genotyped in additional families and in an independent cohort of Caribbean Hispanic patients and controls. SRCAP messenger RNA (mRNA) expression was assessed in whole blood from mutation carriers with LOAD, noncarriers with LOAD, and healthy elderly controls, and also from autopsied brains in 2 clinical neuropathologic cohort studies of aging and dementia. RESULTS Ten ultra-rare missense mutations in the Snf2-related CREBBP, activator protein (SRCAP), were found in 12 unrelated families. Compared with the frequency in Caribbean Hispanic controls and the Latino population in the Exome Aggregation Consortium, the frequency of SRCAP mutations among Caribbean Hispanic patients with LOAD was significantly enriched (p = 1.19e-16). mRNA expression of SRCAP in whole blood was significantly lower in mutation carriers with LOAD, while the expression in whole blood and in the brain was significantly higher in nonmutation carriers with LOAD. Brain expression also correlated with clinical and neuropathologic endophenotypes. CONCLUSIONS WES in Caribbean Hispanic families with LOAD revealed ultra-rare missense mutations in SRCAP, a gene expressed in the brain and mutated in Floating-Harbor syndrome. SRCAP is a potent coactivator of the CREB-binding protein and a regulator of DNA damage response involving ATP-dependent chromatin remodeling. We hypothesize that increased expression in LOAD suggests a compensatory mechanism altered in mutation carriers.
Collapse
Affiliation(s)
- Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Roger Lefort
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Lei Yu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - David A Bennett
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Sandra Barral
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Peter L Nagy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Rong Cheng
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Martin Medrano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Rafael Lantigua
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Ekaterina Rogaeva
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Peter St George-Hyslop
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., G.T., R. Lefort, P.L.D.J., S.B., D.R.-D., J.H.L., R.C., R. Lantigua, R.M.); Gertrude H. Sergievsky Center (B.N.V., G.T., S.B., D.R.-D., J.H.L., R.C., R.M.); Department of Neurology (P.L.D.J., S.B., R.M.), Department of Psychiatry (R.M.), Department of Systems Biology (B.N.V.), Department of Medicine (R. Lantigua), and Department of Pathology and Cell Biology (R. Lefort, P.L.N.), College of Physicians and Surgeons, Columbia University, New York Presbyterian Hospital; Department of Epidemiology (J.H.L., R.M.), School of Public Health, Columbia University, New York; Tanz Centre for Research in Neurodegenerative Diseases (E.R., P.S.G.-H.) and Department of Medicine (E.R., P.S.G.-H.), University of Toronto, Krembil Discovery Tower, ON, Canada; Department of Clinical Neurosciences (P.S.G.-H.), Cambridge Institute for Medical Research, University of Cambridge, UK; Rush Alzheimer's Disease Center (L.Y., D.A.B.), Rush University Medical Center, Chicago, IL; Program in Medical and Population Genetics (P.L.D.J.), Broad Institute, Cambridge, MA; and School of Medicine (M.M.), Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| |
Collapse
|
16
|
Humphreys PG, Bamborough P, Chung CW, Craggs PD, Gordon L, Grandi P, Hayhow TG, Hussain J, Jones KL, Lindon M, Michon AM, Renaux JF, Suckling CJ, Tough DF, Prinjha RK. Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical Probe. J Med Chem 2017; 60:695-709. [DOI: 10.1021/acs.jmedchem.6b01566] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | - Paola Grandi
- Cellzome
GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | - Anne-Marie Michon
- Cellzome
GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Colin J. Suckling
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | | | | |
Collapse
|
17
|
Alzheimer's Disease and Histone Code Alterations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:321-336. [PMID: 28523554 DOI: 10.1007/978-3-319-53889-1_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Substantial progress has been made in identifying Alzheimer's disease (AD) risk-associated variants using genome-wide association studies (GWAS). The majority of these risk variants reside in noncoding regions of the genome making their functional evaluation difficult; however, they also infer the presence of unconventional regulatory regions that may reside at these locations. We know from these studies that rare familial cases of AD account for less than 5% of all AD cases and autosomal dominant mutations in APP, PSEN1 and PSEN2 account for less than 10% of the genetic basis of these familial cases [1]. The sporadic form of AD, while more complex, still has a substantial genetic component evidenced by observational studies where 30-48% of AD patients have a first degree relative who is also affected [2]. In addition, the strongest risk factor after age is the APOE E4 polymorphism, and more than 20 other risk variants have been identified to date, reviewed in two recent papers [3, 4]. Monozygotic twin studies have revealed a discordance for AD, implicating that a combination of epigenetic and genetic factors are likely involved in the development of AD [5].
Collapse
|
18
|
Novel Nuclear Factor-KappaB Targeting Peptide Suppresses β-Amyloid Induced Inflammatory and Apoptotic Responses in Neuronal Cells. PLoS One 2016; 11:e0160314. [PMID: 27764084 PMCID: PMC5072831 DOI: 10.1371/journal.pone.0160314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
In the central nervous system (CNS), activation of the transcription factor nuclear factor-kappa B (NF-κβ) is associated with both neuronal survival and increased vulnerability to apoptosis. The mechanisms underlying these dichotomous effects are attributed to the composition of NF-κΒ dimers. In Alzheimer’s disease (AD), β-amyloid (Aβ) and other aggregates upregulate activation of p65:p50 dimers in CNS cells and enhance transactivation of pathological mediators that cause neuroinflammation and neurodegeneration. Hence selective targeting of activated p65 is an attractive therapeutic strategy for AD. Here we report the design, structural and functional characterization of peptide analogs of a p65 interacting protein, the glucocorticoid induced leucine zipper (GILZ). By virtue of binding the transactivation domain of p65 exposed after release from the inhibitory IκΒ proteins in activated cells, the GILZ analogs can act as highly selective inhibitors of activated p65 with minimal potential for off-target effects.
Collapse
|
19
|
Rabhi N, Denechaud PD, Gromada X, Hannou SA, Zhang H, Rashid T, Salas E, Durand E, Sand O, Bonnefond A, Yengo L, Chavey C, Bonner C, Kerr-Conte J, Abderrahmani A, Auwerx J, Fajas L, Froguel P, Annicotte JS. KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response. Cell Rep 2016; 15:1051-1061. [DOI: 10.1016/j.celrep.2016.03.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/02/2016] [Accepted: 03/22/2016] [Indexed: 01/01/2023] Open
|
20
|
Simon RP, Robaa D, Alhalabi Z, Sippl W, Jung M. KATching-Up on Small Molecule Modulators of Lysine Acetyltransferases. J Med Chem 2016; 59:1249-70. [PMID: 26701186 DOI: 10.1021/acs.jmedchem.5b01502] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reversible acetylation of lysines is one of the best characterized epigenetic modifications. Its involvement in many key physiological and pathological processes has been documented in numerous studies. Lysine deacetylases (KDACs) and acetyltransferases (KATs) maintain the acetylation equilibrium at histones but also many other proteins. Besides acetylation, also other acyl groups are reversibly installed at the side chain of lysines in proteins. Because of their involvement in disease, KDACs and KATs were proposed to be promising drug targets, and for KDACs, indeed, five inhibitors are now approved for human use. While there is a similar level of evidence for the potential of KATs as drug targets, no inhibitor is in clinical trials. Here, we review the evidence for the diverse roles of KATs in disease pathology, provide an overview of structural features and the available modulators, including those targeting the bromodomains of KATs, and present an outlook.
Collapse
Affiliation(s)
- Roman P Simon
- Institute of Pharmaceutical Sciences, University of Freiburg , Albertstraße 25, Freiburg 79104, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, University Halle-Wittenberg , Halle/Saale 06120, Germany
| | - Zayan Alhalabi
- Department of Pharmaceutical Chemistry, University Halle-Wittenberg , Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, University Halle-Wittenberg , Halle/Saale 06120, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg , Albertstraße 25, Freiburg 79104, Germany
| |
Collapse
|
21
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
22
|
Abstract
Precise regulation of gene expression programs during embryo development requires cooperation between transcriptional factors and histone-modifying enzymes, such as the Gcn5 histone acetyltransferase. Gcn5 functions within a multi-subunit complex, called SAGA, that is recruited to specific genes through interactions with sequence-specific DNA-binding proteins to aid in gene activation. Although the transcriptional programs regulated by SAGA in embryos are not well defined, deletion of either Gcn5 or USP22, the catalytic subunit of a deubiquitinase module in SAGA, leads to early embryonic lethality. Here, we review the known functions of Gcn5, USP22 and associated proteins during development and discuss how these functions might be related to human disease states, including cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Wang
- Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | | |
Collapse
|
23
|
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview. ACS Chem Neurosci 2014; 5:1164-77. [PMID: 25250644 DOI: 10.1021/cn500117a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Manoj Kumar
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Sarmistha Halder Sinha
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Anne Schneider-Anthony
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Tapas K Kundu
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| |
Collapse
|
24
|
Castellano S, Milite C, Feoli A, Viviano M, Mai A, Novellino E, Tosco A, Sbardella G. Identification of structural features of 2-alkylidene-1,3-dicarbonyl derivatives that induce inhibition and/or activation of histone acetyltransferases KAT3B/p300 and KAT2B/PCAF. ChemMedChem 2014; 10:144-57. [PMID: 25333655 DOI: 10.1002/cmdc.201402371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 12/23/2022]
Abstract
Dysregulation of the activity of lysine acetyltransferases (KATs) is related to a variety of diseases and/or pathological cellular states; however, their role remains unclear. Therefore, the development of selective modulators of these enzymes is of paramount importance, because these molecules could be invaluable tools for assessing the importance of KATs in several pathologies. We recently found that diethyl pentadecylidenemalonate (SPV106) possesses a previously unobserved inhibitor/activator activity profile against protein acetyltransferases. Herein, we report that manipulation of the carbonyl functions of a series of analogues of SPV106 yielded different activity profiles against KAT2B and KAT3B (pure KAT2B activator, pan-inhibitor, or mixed KAT2B activator/KAT3B inhibitor). Among the novel compounds, a few derivatives may be useful chemical tools for studying the mechanism of lysine acetylation and its implications in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA) (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
25
|
The role of epigenetic regulation in learning and memory. Exp Neurol 2014; 268:30-6. [PMID: 24837316 DOI: 10.1016/j.expneurol.2014.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/26/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
The formation of long-term memory involves a series of molecular and cellular changes, including gene transcription, protein synthesis and synaptic plasticity dynamics. Some of these changes arise during learning and are subsequently retained throughout life. 'Epigenetic' regulation, which involves DNA methylation and histone modifications, plays a critical role in retaining long-term changes in post-mitotic cells. Accumulating evidence suggests that the epigenetic machinery might regulate the formation and stabilization of long-term memory in two ways: a 'gating' role of the chromatin state to regulate activity-triggered gene expression; and a 'stabilizing' role of the chromatin state to maintain molecular and cellular changes induced by the memory-related event. The neuronal activation regulates the dynamics of the chromatin status under precise timing, with subsequent alterations in the gene expression profile. This review summarizes the existing literature, focusing on the involvement of epigenetic regulation in learning and memory. We propose that the identification of different epigenetic regulators and signaling pathways involved in memory-related epigenetic regulations will provide mechanistic insights into the formation of long-term memory.
Collapse
|
26
|
Preethi J, Singh HK, Venkataraman JS, Rajan KE. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus. Cell Mol Neurobiol 2014; 34:577-89. [PMID: 24610280 PMCID: PMC11488884 DOI: 10.1007/s10571-014-0042-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/22/2014] [Indexed: 01/24/2023]
Abstract
Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15-29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.
Collapse
Affiliation(s)
- Jayakumar Preethi
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Hemant K. Singh
- Laboratories for CNS Disorder, Learning & Memory, Division of Pharmacology, Central Drug Research Institute, Lucknow, 226001 India
| | - Jois Shreyas Venkataraman
- Department of Animal Physiology/Neurobiology, Zoological Institute, University of Cologne, 50674 Colonge, Germany
| | - Koilmani Emmanuvel Rajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 India
| |
Collapse
|
27
|
Abstract
Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level.
Collapse
Affiliation(s)
- Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Fischer A. Targeting histone-modifications in Alzheimer's disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology 2014; 80:95-102. [PMID: 24486385 DOI: 10.1016/j.neuropharm.2014.01.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 01/06/2023]
Abstract
Alzheimer' s disease (AD) is the most common form of dementia causing an increasing emotional and economical burden to our societies. Although much progress has been made regarding the molecular mechanisms that underlie AD pathogenesis effective therapies are not available yet. The emerging field of neuroepigenetics has provided evidence that de-regulation of epigenetic processes play a role in AD. In this article we will critically review the primary research data that led to the hypothesis that targeting histone-modifying enzymes could be used to treat AD pathogenesis and address the question if the field is ready to translate such findings into clinical application.
Collapse
Affiliation(s)
- Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Grisebachstr. 5, 37077 Göttingen, Germany; Research Group for Epigenetic Mechansims of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Grisebachstr. 5, 37077 Göttingen, Germany.
| |
Collapse
|
29
|
Schneider A, Chatterjee S, Bousiges O, Selvi BR, Swaminathan A, Cassel R, Blanc F, Kundu TK, Boutillier AL. Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics 2013; 10:568-88. [PMID: 24006237 PMCID: PMC3805875 DOI: 10.1007/s13311-013-0204-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The acetylation of histone and non-histone proteins controls a great deal of cellular functions, thereby affecting the entire organism, including the brain. Acetylation modifications are mediated through histone acetyltransferases (HAT) and deacetylases (HDAC), and the balance of these enzymes regulates neuronal homeostasis, maintaining the pre-existing acetyl marks responsible for the global chromatin structure, as well as regulating specific dynamic acetyl marks that respond to changes and facilitate neurons to encode and strengthen long-term events in the brain circuitry (e.g., memory formation). Unfortunately, the dysfunction of these finely-tuned regulations might lead to pathological conditions, and the deregulation of the HAT/HDAC balance has been implicated in neurological disorders. During the last decade, research has focused on HDAC inhibitors that induce a histone hyperacetylated state to compensate acetylation deficits. The use of these inhibitors as a therapeutic option was efficient in several animal models of neurological disorders. The elaboration of new cell-permeant HAT activators opens a new era of research on acetylation regulation. Although pathological animal models have not been tested yet, HAT activator molecules have already proven to be beneficial in ameliorating brain functions associated with learning and memory, and adult neurogenesis in wild-type animals. Thus, HAT activator molecules contribute to an exciting area of research.
Collapse
Affiliation(s)
- Anne Schneider
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Snehajyoti Chatterjee
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Olivier Bousiges
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - B. Ruthrotha Selvi
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Amrutha Swaminathan
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Raphaelle Cassel
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Frédéric Blanc
- />Service de Neuropsychologie and CMRR (Centre Mémoire de Ressources et de recherche) Laboratoire ICube, Université de Strasbourg, CNRS, équipe IMIS-Neurocrypto, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Tapas K. Kundu
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Anne-Laurence Boutillier
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
30
|
Walker MP, LaFerla FM, Oddo SS, Brewer GJ. Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer's disease. AGE (DORDRECHT, NETHERLANDS) 2013; 35:519-31. [PMID: 22237558 PMCID: PMC3636384 DOI: 10.1007/s11357-011-9375-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/18/2011] [Indexed: 05/02/2023]
Abstract
With aging and Alzheimer's disease (AD), there is an increased sensitivity to stress along with declines in the memory-associated neurotrophin brain-derived neurotrophic factor in AD. We have replicated this aging phenotype in cultured neurons from aged mice despite being grown in the same environmental conditions as young neurons. This led us to hypothesize that age-related differences in epigenetic acetylation and methylation of histones are associated with age-related gene regulation. We cultured hippocampal/cortical neurons from the 3xTg-AD mouse model and from non-transgenic mice to quantify single cell acetylation and methylation levels across the life span. In non-transgenic neurons, H3 acetylation was unchanged with age, while H4 acetylation decreased with age of the donor. Compared to non-transgenic neurons, 3xTg-AD neurons had higher levels of H3 and H4 acetylation beginning at 4 months of age. In contrast to non-transgenic neurons, 3xTg-AD neurons increased acetylation with age; 3xTg-AD neurons also responded differently to inhibition of histone deacetylases at an early age. Importantly, treatment of non-transgenic neurons with the AD peptide Aβ also elevated levels of acetylation. We also examined the repressive function of histone H3 lysine 9 (H3K9) methylation. H3K9 methylation increased with age in non-transgenic neurons, which was amplified further in 3xTg-AD neurons. The dominant effect of higher H3K9 methylation was supported by lower Bdnf gene expression in non-transgenic and 3xTg-AD mice. These data show that the epigenetic states of non-transgenic and 3xTg-AD brain neurons are profoundly different and reversible, beginning at 4 months of age when the first memory deficits are reported.
Collapse
Affiliation(s)
- Michael P. Walker
- />Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626 USA
| | - Frank M. LaFerla
- />Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697 USA
| | - Salvador S. Oddo
- />Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697 USA
| | - Gregory J. Brewer
- />Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626 USA
- />Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL 62794-9626 USA
| |
Collapse
|
31
|
Lithner CU, Lacor PN, Zhao WQ, Mustafiz T, Klein WL, Sweatt JD, Hernandez CM. Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer's disease. Neurobiol Aging 2013; 34:2081-90. [PMID: 23582659 DOI: 10.1016/j.neurobiolaging.2012.12.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/28/2012] [Indexed: 01/08/2023]
Abstract
Amyloid-β peptide (Aβ) fragment misfolding may play a crucial role in the progression of Alzheimer's disease (AD) pathophysiology as well as epigenetic mechanisms at the DNA and histone level. We hypothesized that histone H3 homeostasis is disrupted in association with the appearance of soluble Aβ at an early stage in AD progression. We identified, localized, and compared histone H3 modifications in multiple model systems (neural-like SH-SY5Y, primary neurons, Tg2576 mice, and AD neocortex), and narrowed our focus to investigate 3 key motifs associated with regulating transcriptional activation and inhibition: acetylated lysine 14, phosphorylated serine 10 and dimethylated lysine 9. Our results in vitro and in vivo indicate that multimeric soluble Aβ may be a potent signaling molecule indirectly modulating the transcriptional activity of DNA by modulating histone H3 homeostasis. These findings reveal potential loci of transcriptional disruption relevant to AD. Identifying genes that undergo significant epigenetic alterations in response to Aβ could aid in the understanding of the pathogenesis of AD, as well as suggesting possible new treatment strategies.
Collapse
Affiliation(s)
- Christina Unger Lithner
- Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Zalachoras I, Houtman R, Meijer OC. Understanding stress-effects in the brain via transcriptional signal transduction pathways. Neuroscience 2013; 242:97-109. [PMID: 23545270 DOI: 10.1016/j.neuroscience.2013.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/22/2022]
Abstract
Glucocorticoid hormones exert crucial effects on the brain in relation to physiology, endocrine regulation, mood and cognition. Their two receptor types, glucocorticoid and mineralocorticoid receptors (GR and MR), are members of the nuclear receptor superfamily and act in large measure as transcription factors. The outcome of MR/GR action on the genome depends on interaction with members from different protein families, which are of crucial importance for cross-talk with other neuronal and hormonal signals that impinge on the glucocorticoid sensitive circuitry. Relevant interacting proteins include other transcription factors that may either tether the receptor to the DNA, or that bind in the vicinity of GR and MR to tune the transcriptional response. In addition, transcriptional coregulator proteins constitute the actual signal transduction pathway to the transcription machinery. We review the current evidence for involvement of individual coregulators in GR-dependent effects on stress responses, and learning and memory. We discuss the use of in vitro and in silico tools to predict those coregulators that are of importance for particular brain processes. Finally, we discuss the potential of selective receptor modulators that may only allow a subset of all interactions, thus allowing more selective targeting of glucocorticoid-dependent processes in the brain.
Collapse
Affiliation(s)
- I Zalachoras
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
33
|
Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W. Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics 2012; 12:1261-8. [PMID: 22577027 DOI: 10.1002/pmic.201200010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epigenetic remodeling of chromatin histone proteins by acetylation has been the subject of recent investigations searching for biomarkers indicative of late onset cognitive loss. Histone acetylations affect the regulation of gene transcription, and the loss of learning induced deacetylation at specific histone sites may represent biomarkers for memory loss and Alzheimer's disease (AD). Selected-reaction-monitoring (SRM) has recently been advanced to quantitate peptides and proteins in complex biological systems. In this paper, we provide evidence that SRM-based targeted proteomics can reliably quantify specific histone acetylations in both AD and control brain by identifying the patterns of H3 K18/K23 acetylations Results of targeted proteomics assays have been validated by Western blot (WB) analysis. As compared with LC-MS/MS-TMT (tandem-mass-tagging) and WB methods, the targeted proteomics method has shown higher throughput, and therefore promised to be more suitable for clinical applications. With this methodology, we find that histone acetylation is significantly lower in AD temporal lobe than found in aged controls. Targeted proteomics warrants increased application for studying epigenetics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
35
|
Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ, Lee J, Jun WJ, Yoon HG. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 2011; 55:1798-808. [DOI: 10.1002/mnfr.201100262] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/16/2011] [Accepted: 09/02/2011] [Indexed: 11/09/2022]
|
36
|
Furdas SD, Kannan S, Sippl W, Jung M. Small molecule inhibitors of histone acetyltransferases as epigenetic tools and drug candidates. Arch Pharm (Weinheim) 2011; 345:7-21. [PMID: 22234972 DOI: 10.1002/ardp.201100209] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 01/24/2023]
Abstract
Alteration of the acetylation state of histone proteins contributes to transcriptional regulation and epigenetic inheritance. Dysregulation of these processes may lead to human diseases, especially cancer. One of the major chromatin modifications is histone acetylation and this review gives an overview of the role of histone acetyltransferases, their structural aspects, as well as of chemical modulators targeting their enzymatical activities. Inhibitors and activators of histone acetyltransferases are presented and their capability to influence histone and non-histone protein acetylation levels is discussed. Development of small molecules as epigenetic tools that alter histone acetyltransferase activity will be helpful to better understand the consequences of histone and generally protein acetylation and potentially offer novel therapeutic approaches for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Silviya D Furdas
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Germany
| | | | | | | |
Collapse
|
37
|
Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 2011; 95:373-95. [PMID: 21930182 DOI: 10.1016/j.pneurobio.2011.09.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 12/13/2022]
Abstract
Silent information regulator two proteins (sirtuins or SIRTs) are a group of histone deacetylases whose activities are dependent on and regulated by nicotinamide adenine dinucleotide (NAD(+)). They suppress genome-wide transcription, yet upregulate a select set of proteins related to energy metabolism and pro-survival mechanisms, and therefore play a key role in the longevity effects elicited by calorie restriction. Recently, a neuroprotective effect of sirtuins has been reported for both acute and chronic neurological diseases. The focus of this review is to summarize the latest progress regarding the protective effects of sirtuins, with a focus on SIRT1. We first introduce the distribution of sirtuins in the brain and how their expression and activity are regulated. We then highlight their protective effects against common neurological disorders, such as cerebral ischemia, axonal injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Finally, we analyze the mechanisms underlying sirtuin-mediated neuroprotection, centering on their non-histone substrates such as DNA repair enzymes, protein kinases, transcription factors, and coactivators. Collectively, the information compiled here will serve as a comprehensive reference for the actions of sirtuins in the nervous system to date, and will hopefully help to design further experimental research and expand sirtuins as therapeutic targets in the future.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Neurological disease, and in particular neurodegenerative diseases, cause significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with these conditions remain limited, and generally, only provide modest symptomatic relief. Aberrant epigenetic post-translational modifications of proteins are emerging as important elements in the pathogenesis of neurological disease. Using Alzheimer’s disease and Huntington’s disease as examples in the following article, some of latest data linking both the histone code and the various proteins that regulate this code to the pathogenesis of neurological disease are discussed. The current evidence suggesting that pharmacologically targeting one such family, the histone deacetylases, may be of potential benefit in the treatment of such diseases is also discussed. Finally, some of the potential mechanisms to specifically target these proteins within the neurological setting are discussed.
Collapse
Affiliation(s)
- Steven G Gray
- Translational Cancer Research Group, Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, James’s Street, Dublin 8, Ireland
| |
Collapse
|
39
|
Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, Naert G, Meunier J, Chevallier N, Maurice T, Givalois L. Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid β fragment in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:315-34. [PMID: 21703413 DOI: 10.1016/j.ajpath.2011.03.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 03/22/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology characterized by the presence of senile plaques and neurofibrillary tangles, accompanied by synaptic and neuronal loss. The major component of senile plaques is an amyloid β protein (Aβ) formed by pathological processing of the Aβ precursor protein. We assessed the time-course and regional effects of a single intracerebroventricular injection of aggregated Aβ fragment 25-35 (Aβ(25-35)) in rats. Using a combined biochemical, behavioral, and morphological approach, we analyzed the peptide effects after 1, 2, and 3 weeks in the hippocampus, cortex, amygdala, and hypothalamus. The scrambled Aβ(25-35) peptide was used as negative control. The aggregated forms of Aβ peptides were first characterized using electron microscopy, infrared spectroscopy, and Congo Red staining. Intracerebroventricular injection of Aβ(25-35) decreased body weight, induced short- and long-term memory impairments, increased endocrine stress, cerebral oxidative and cellular stress, neuroinflammation, and neuroprotective reactions, and modified endogenous amyloid processing, with specific time-course and regional responses. Moreover, Aβ(25-35), the presence of which was shown in the different brain structures and over 3 weeks, provoked a rapid glial activation, acetylcholine homeostasis perturbation, and hippocampal morphological alterations. In conclusion, the acute intracerebroventricular Aβ(25-35) injection induced substantial central modifications in rats, highly reminiscent of the human physiopathology, that could contribute to physiological and cognitive deficits observed in AD.
Collapse
Affiliation(s)
- Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, Inserm U710, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|