1
|
Cooper MA, Hooker MK, Whitten CJ, Kelly JR, Jenkins MS, Mahometano SC, Scarbrough MC. Dominance status modulates activity in medial amygdala cells with projections to the bed nucleus of the stria terminalis. Behav Brain Res 2023; 453:114628. [PMID: 37579818 PMCID: PMC10496856 DOI: 10.1016/j.bbr.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, USA.
| | | | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, USA
| | - Jeff R Kelly
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | | | | |
Collapse
|
2
|
Hatcher KM, Costanza L, Kauffman AS, Stephens SBZ. The molecular phenotype of kisspeptin neurons in the medial amygdala of female mice. Front Endocrinol (Lausanne) 2023; 14:1093592. [PMID: 36843592 PMCID: PMC9951589 DOI: 10.3389/fendo.2023.1093592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Reproduction is regulated through the hypothalamic-pituitary-gonadal (HPG) axis, largely via the action of kisspeptin neurons in the hypothalamus. Importantly, Kiss1 neurons have been identified in other brain regions, including the medial amygdala (MeA). Though the MeA is implicated in regulating aspects of both reproductive physiology and behavior, as well as non-reproductive processes, the functional roles of MeA Kiss1 neurons are largely unknown. Additionally, besides their stimulation by estrogen, little is known about how MeA Kiss1 neurons are regulated. Using a RiboTag mouse model in conjunction with RNA-seq, we examined the molecular profile of MeA Kiss1 neurons to identify transcripts that are co-expressed in MeA Kiss1 neurons of female mice and whether these transcripts are modulated by estradiol (E2) treatment. RNA-seq identified >13,800 gene transcripts co-expressed in female MeA Kiss1 neurons, including genes for neuropeptides and receptors implicated in reproduction, metabolism, and other neuroendocrine functions. Of the >13,800 genes co-expressed in MeA Kiss1 neurons, only 45 genes demonstrated significantly different expression levels due to E2 treatment. Gene transcripts such as Kiss1, Gal, and Oxtr increased in response to E2 treatment, while fewer transcripts, such as Esr1 and Cyp26b1, were downregulated by E2. Dual RNAscope and immunohistochemistry was performed to validate co-expression of MeA Kiss1 with Cck and Cartpt. These results are the first to establish a profile of genes actively expressed by MeA Kiss1 neurons, including a subset of genes regulated by E2, which provides a useful foundation for future investigations into the regulation and function of MeA Kiss1 neurons.
Collapse
Affiliation(s)
- Katherine M. Hatcher
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Leah Costanza
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander S. Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Shannon B. Z. Stephens
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Cisneros-Larios B, Elias CF. Sex differences in the coexpression of prokineticin receptor 2 and gonadal steroids receptors in mice. Front Neuroanat 2023; 16:1057727. [PMID: 36686573 PMCID: PMC9853983 DOI: 10.3389/fnana.2022.1057727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Loss-of-function mutations in prokineticin 2 (PROK2) and the cognate receptor prokineticin receptor 2 (PROKR2) genes have been implicated in reproductive deficits characteristic of Kallmann Syndrome (KS). Knock out of Prokr2 gene produces the KS-like phenotype in mice resulting in impaired migration of gonadotropin releasing hormone (GnRH) neurons, olfactory bulb dysgenesis, and infertility. Beyond a developmental role, pharmacological and genetic studies have implicated PROKR2 in the control of the estrous cycle in mice. However, PROKR2 is expressed in several reproductive control sites but the brain nuclei associated with reproductive control in adult mice have not been defined. We set out to determine if ProkR2 neurons in both male and female mouse brains directly sense changes in the gonadal steroids milieu. We focused on estrogen receptor α (ERα) and androgen receptor (AR) due to their well-described function in reproductive control via actions in the brain. We found that the ProkR2-Cre neurons in the posterior nucleus of the amygdala have the highest colocalization with ERα and AR in a sex-specific manner. Few colocalization was found in the lateral septum and in the bed nucleus of the stria terminalis, and virtually no colocalization was observed in the medial amygdala. Our findings indicate that the posterior nucleus of the amygdala is the main site where PROKR2 neurons may regulate aspects of the reproductive function and social behavior in adult mice.
Collapse
Affiliation(s)
- Brenda Cisneros-Larios
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Gynecology and Obstetrics, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Biggs LM, Meredith M. Functional connectivity of intercalated nucleus with medial amygdala: A circuit relevant for chemosignal processing. IBRO Neurosci Rep 2022; 12:170-181. [PMID: 35199098 PMCID: PMC8850325 DOI: 10.1016/j.ibneur.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Medial amygdala processes social/reproductive chemosensory input, and its projections to preoptic and hypothalamic areas evoke appropriate behavioral and physiological responses. We and others have shown that different chemosensory signals elicit differential responses in medial amygdala subregions and in adjacent main intercalated nucleus (mICN). The largely GABAergic mICN receives no direct chemosensory input but, as we show, mICN has functional circuit connections with medial amygdala that could be responsible both for mICN chemosensitivity and for a feedforward inhibitory effect on posterior medial amygdala; which, in turn would affect chemosignal response. mICN is subject to inhibition by dopamine and is probably regulated by neuropeptides and input from frontal cortex. Thus, mICN is in position to modify chemosensory processing in medial amygdala and behavioral responses to social signals, according to internal brain state. Patch-clamp recordings from neurons in each relevant nucleus in horizontal brain-slices, with electrical stimulation in adjacent nuclei, reveal multiple functional connections between medial amygdala subregions and mICN. We highlight a triangular circuit which may underlie mICN chemosensitivity and its potential for modifying chemosensory information transmitted to basal forebrain. Anterior medial amygdala, which receives most of the chemosensory input, connects to posterior medial amygdala directly and both areas send information on to basal forebrain. Anterior medial amygdala can also modulate posterior medial amygdala indirectly via the mICN side-loop, which also provides a pathway for modulation by cortical input or, when inhibited by dopamine, could allow a more automatic response - as proposed for other amygdala circuits with similar ICN side loops.
Collapse
Affiliation(s)
| | - Michael Meredith
- Program in Neuroscience and Dept. Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
6
|
Tesen H, Watanabe K, Okamoto N, Ikenouchi A, Igata R, Konishi Y, Kakeda S, Yoshimura R. Volume of Amygdala Subregions and Clinical Manifestations in Patients With First-Episode, Drug-Naïve Major Depression. Front Hum Neurosci 2022; 15:780884. [PMID: 35046783 PMCID: PMC8762364 DOI: 10.3389/fnhum.2021.780884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
We examined amygdala subregion volumes in patients with a first episode of major depression (MD) and in healthy subjects. Covariate-adjusted linear regression was performed to compare the MD and healthy groups, and adjustments for age, gender, and total estimated intracranial volume showed no differences in amygdala subregion volumes between the healthy and MD groups. Within the MD group, we examined the association between amygdala subregion volume and the 17-item Hamilton Rating Scale for Depression (HAMD) score and the HAMD subscale score, and found no association in the left amygdala. In the right amygdala, however, there was an inverse linear association between the HAMD total and the HAMD core and lateral nucleus and anterior-amygdaloid-regions. Furthermore, an inverse linear association was seen between the HAMD psychic and the lateral nucleus, anterior-amygdaloid-regions, transition, and whole amygdala. The findings of this study suggest that the severity of MD and some symptoms of MD are associated with right amygdala volume. There have been few reports on the relationship between MD and amygdala subregional volume, and further research is needed to accumulate more data for further validation.
Collapse
Affiliation(s)
- Hirofumi Tesen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Open Innovation Institute, Kyoto University, Kyoto, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuki Konishi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Reiji Yoshimura,
| |
Collapse
|
7
|
Biggs LM, Meredith M. ActivatIon of Calcium binding protein-ir neurons IN MEDIAL AMYGDALA during chemosignal processing. Chem Senses 2020; 45:bjaa030. [PMID: 32386197 DOI: 10.1093/chemse/bjaa030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 11/12/2022] Open
Abstract
The medial amygdala receives sensory input from chemical signals important in mammalian social communication. As measured by immediate early gene expression, its responses to different chemosignals differ in the spatial patterns of neuronal activation and in the types of cells activated. Medial amygdala projections to basal forebrain contibute to generation of appropriate behavioral responses and GABA neurons are important for these functions, both as interneurons and projection neurons. Here we investigate reponses of male golden-hamster medial amygdala neurons expressing immunoreactivity (-ir) for calbindin (CB), calretinin (CR) and parvalbumin (PV), calcium binding proteins (CBPs) which can distinguish different GABA-ergic neuron types. CB-ir and CR-ir cells both had significant responses to female hamster chemosignals and showed different spatial patterns across medial amygdala. Responses to chemosignals (from unfamiliar females) were significantly reduced in males with sexual experience, compared to naïve males. Medial amygdala did not express PV-ir cells and the adjacent intercalated nucleus, which has been implicated in medial amygdala chemosensory responses did not express any of the CBPs investigated here. This additional evidence for chemosensory specificity in the response of medial amygdala to social chemical signals, in cells characterized by CBP expression, suggests multiple GABA circuit elements may be involved in information processing for behavioral response.
Collapse
Affiliation(s)
- Lindsey M Biggs
- Program in Neuroscience and Dept. Biological Science, Florida State University, Tallahassee FL
| | - Michael Meredith
- Program in Neuroscience and Dept. Biological Science, Florida State University, Tallahassee FL
| |
Collapse
|
8
|
Hodges TE, Louth EL, Bailey CDC, McCormick CM. Adolescent social instability stress alters markers of synaptic plasticity and dendritic structure in the medial amygdala and lateral septum in male rats. Brain Struct Funct 2018; 224:643-659. [DOI: 10.1007/s00429-018-1789-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
|
9
|
McCarthy EA, Maqsudlu A, Bass M, Georghiou S, Cherry JA, Baum MJ. DREADD-induced silencing of the medial amygdala reduces the preference for male pheromones and the expression of lordosis in estrous female mice. Eur J Neurosci 2017; 46:2035-2046. [PMID: 28677202 DOI: 10.1111/ejn.13636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/03/2023]
Abstract
Sexually naïve estrous female mice seek out male urinary pheromones; however, they initially display little receptive (lordosis) behavior in response to male mounts. Vomeronasal-accessory olfactory bulb inputs to the medial amygdala (Me) regulate courtship in female rodents. We used a reversible inhibitory chemogenetic technique (Designer Receptors Exclusively Activated by Designer Drugs; DREADDs) to assess the contribution of Me signaling to females' preference for male pheromones and improvement in receptivity normally seen with repeated testing. Sexually naïve females received bilateral Me injections of an adeno-associated virus carrying an inhibitory DREADD. Females were later ovariectomized, treated with ovarian hormones, and given behavioral tests following intraperitoneal injections of saline or clozapine-N-oxide (CNO; which hyperpolarizes infected Me neurons). CNO attenuated females' preference to investigate male vs. female urinary odors. Repeated CNO treatment also slowed the increase in lordosis otherwise seen in females given saline. However, when saline was given to females previously treated with CNO, their lordosis quotients were as high as other females repeatedly given saline. No disruptive behavioral effects of CNO were seen in estrous females lacking DREADD infections of the Me. Finally, CNO attenuated the ability of male pheromones to stimulate Fos expression in the Me of DREADD-infected mice but not in non-infected females. Our results affirm the importance of Me signaling in females' chemosensory preferences and in the acute expression of lordosis. However, they provide no indication that Me signaling is required for the increase in receptivity normally seen after repeated hormone priming and testing with a male.
Collapse
Affiliation(s)
| | - Arman Maqsudlu
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Matthew Bass
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Sofia Georghiou
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Michael J Baum
- Department of Biology, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
10
|
Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, Dominguez JM, Gore AC. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 2017; 442:153-164. [PMID: 28007657 PMCID: PMC5276730 DOI: 10.1016/j.mce.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Studies on the role of hormones in male reproductive aging have traditionally focused on testosterone, but estradiol (E2) also plays important roles in the control of masculine physiology and behavior. Our goal was to examine the effects of E2 on the expression of genes selected for E2-sensitivity, involvement in behavioral neuroendocrine functions, and impairments with aging. Mature adult (MAT, 5 mo) and aged (AG, 18 mo) Sprague-Dawley male rats were castrated, implanted with either vehicle or E2 subcutaneous capsules, and euthanized one month later. Bilateral punches were taken from the bed nucleus of the stria terminalis (BnST), posterodorsal medial amygdala (MePD) and the preoptic area (POA). RNA was extracted, and expression of 48 genes analyzed by qPCR using Taqman low-density arrays. Results showed that effects of age and E2 were age- and region-specific. In the POA, 5 genes were increased with E2 compared to vehicle, and there were no age effects. By contrast the BnST showed primarily age-related changes, with 6 genes decreasing with age. The MePD had 5 genes that were higher in aged than mature males, and 17 genes with significant interactions between age and E2. Gene families identified in the MePD included nuclear hormone receptors, neurotransmitters and neuropeptides and their receptors. Ten serum hormones were assayed in these same males, with results revealing both age- and E2-effects, in several cases quite profound. These results support the idea that the male brain continues to be highly sensitive to estradiol even with aging, but the nature of the response can be substantially different in mature and aging animals.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Margaret R Bell
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Wolfe
- Johns Hopkins University School of Medicine, Baltimore, MD, 21298, USA
| | - Ross Gillette
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Westberry JM, Meredith M. GABAergic mechanisms contributing to categorical amygdala responses to chemosensory signals. Neuroscience 2016; 331:186-96. [PMID: 27329335 PMCID: PMC4955787 DOI: 10.1016/j.neuroscience.2016.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 11/15/2022]
Abstract
Chemosensory stimuli from conspecific and heterospecific animals, elicit categorically different immediate-early gene response-patterns in medial amygdala in male hamsters and mice. We previously showed that conspecific signals activate posterior (MeP) as well as anterior medial amygdala (MeA), and especially relevant heterospecific signals such as chemosensory stimuli from potential predators also activate MeP in mice. Other heterospecific chemosignals activate MeA, but not MeP. Here we show that male hamster amygdala responds significantly differentially to different conspecific signals, by activating different proportions of cells of different phenotype, possibly leading to differential activation of downstream circuits. Heterospecific signals that fail to activate MeP do activate GABA-immunoreactive cells in the adjacent caudal main intercalated nucleus (mICNc) and elicit selective suppression of MeP cells bearing GABA-Receptors, suggesting GABA inhibition in MeP by GABAergic cells in mICNc. Overall, work presented here suggests that medial amygdala may discriminate between important conspecific social signals, distinguish them from the social signals of other species and convey that information to brain circuits eliciting appropriate social behavior.
Collapse
Affiliation(s)
- Jenne M Westberry
- Program in Neuroscience and Department Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| | - Michael Meredith
- Program in Neuroscience and Department Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
12
|
Human amygdala activations during nasal chemoreception. Neuropsychologia 2015; 78:171-94. [PMID: 26459095 DOI: 10.1016/j.neuropsychologia.2015.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/25/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
This review serves as a comprehensive discussion of chemosensory stimulation of the amygdala in healthy humans. Following an introduction of the neuroanatomy of chemosensory processing in primary and secondary olfactory structures, functional resonance magnetic imaging and positron imaging tomography studies are systematically categorized based on valence of stimuli, stimulus concentration, and paradigm-dependent amygdala activation. The amygdala shows patterns of lateralization due to stimulus valence. Main findings include pleasant odors being associated with bilateral or left amygdala activation, and unpleasant odors being associated with activation of the right amygdala, suggesting a crucial role of the right amygdala in evolutionary preservation. Potentially threatening social stimuli, however, might be processed apart from the olfactory system and tend to activate the left amygdala. Amygdala response to chemosensory stimuli correlated with simultaneous activation in the orbitofrontal cortex (OFC), piriform cortex (PC), and insula, suggesting a close-knit network of these areas during stimulus processing.
Collapse
|
13
|
Job MO, Cooke BM. PSA-NCAM in the posterodorsal medial amygdala is necessary for the pubertal emergence of attraction to female odors in male hamsters. Horm Behav 2015; 75:91-9. [PMID: 26335887 DOI: 10.1016/j.yhbeh.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
During puberty, attention turns away from same-sex socialization to focus on the opposite sex. How the brain mediates this change in perception and motivation is unknown. Polysialylated neural cell adhesion molecule (PSA-NCAM) virtually disappears from most of the central nervous system after embryogenesis, but it remains elevated in discrete regions of the adult brain. One such brain area is the posterodorsal subnucleus of the medial amygdala (MePD). The MePD has been implicated in male sexual attraction, measured here as the preference to investigate female odors. We hypothesize that PSA-NCAM gates hormone-dependent plasticity necessary for the emergence of males' attraction to females. To evaluate this idea, we first measured PSA-NCAM levels across puberty in several brain regions, and identified when female odor preference normally emerges in male Syrian hamsters. We found that MePD PSA-NCAM staining peaks shortly before the surge of pubertal androgen and the emergence of preference. To test the necessity of PSA-NCAM for female odor preference, we infused endo-neuraminidase-N into the MePD to deplete it of PSAs before female odor preference normally appears. This blocked female odor preference, which suggests that PSA-NCAM facilitates behaviorally relevant, hormone-driven plasticity.
Collapse
Affiliation(s)
- Martin O Job
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Bradley M Cooke
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
14
|
Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct Funct 2014; 221:1033-65. [PMID: 25503449 DOI: 10.1007/s00429-014-0954-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/30/2014] [Indexed: 02/03/2023]
Abstract
The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.
Collapse
|
15
|
|
16
|
Di Giorgio NP, Semaan SJ, Kim J, López PV, Bettler B, Libertun C, Lux-Lantos VA, Kauffman AS. Impaired GABAB receptor signaling dramatically up-regulates Kiss1 expression selectively in nonhypothalamic brain regions of adult but not prepubertal mice. Endocrinology 2014; 155:1033-44. [PMID: 24424047 PMCID: PMC3929734 DOI: 10.1210/en.2013-1573] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates reproduction and is synthesized in the hypothalamic anteroventral periventricular and arcuate nuclei. Kiss1 is also expressed at lower levels in the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST), but the regulation and function of Kiss1 there is poorly understood. γ-Aminobutyric acid (GABA) also regulates reproduction, and female GABAB1 receptor knockout (KO) mice have compromised fertility. However, the interaction between GABAB receptors and Kiss1 neurons is unknown. Here, using double-label in situ hybridization, we first demonstrated that a majority of hypothalamic Kiss1 neurons coexpress GABAB1 subunit, a finding also confirmed for most MeA Kiss1 neurons. Yet, despite known reproductive impairments in GABAB1KO mice, Kiss1 expression in the anteroventral periventricular and arcuate nuclei, assessed by both in situ hybridization and real-time PCR, was identical between adult wild-type and GABAB1KO mice. Surprisingly, however, Kiss1 levels in the BNST and MeA, as well as the lateral septum (a region normally lacking Kiss1 expression), were dramatically increased in both GABAB1KO males and females. The increased Kiss1 levels in extrahypothalamic regions were not caused by elevated sex steroids (which can increase Kiss1 expression), because circulating estradiol and testosterone were equivalent between genotypes. Interestingly, increased Kiss1 expression was not detected in the MeA or BNST in prepubertal KO mice of either sex, indicating that the enhancements in extrahypothalamic Kiss1 levels initiate during/after puberty. These findings suggest that GABAB signaling may normally directly or indirectly inhibit Kiss1 expression, particularly in the BNST and MeA, and highlight the importance of studying kisspeptin populations outside the hypothalamus.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Institute of Biology and Experimental Medicine-CONICET (N.P.D.G., P.V.L., C.L., V.A.L-L.), Buenos Aires, Argentina; Department of Reproductive Medicine (S.J.S., J.K., A.S.K.), University of California San Diego, La Jolla, California; Department of Biomedicine (B.B.), University of Basel, Basel, Switzerland; and Department of Physiology (C.L.), University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Petrulis A. Chemosignals and hormones in the neural control of mammalian sexual behavior. Front Neuroendocrinol 2013; 34:255-67. [PMID: 23911848 DOI: 10.1016/j.yfrne.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
Males and females of most mammalian species depend on chemosignals to find, attract and evaluate mates and, in most cases, these appetitive sexual behaviors are strongly modulated by activational and organizational effects of sex steroids. The neural circuit underlying chemosensory-mediated pre- and peri-copulatory behavior involves the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), medial preoptic area (MPOA) and ventromedial hypothalamus (VMH), each area being subdivided into interconnected chemoreceptive and hormone-sensitive zones. For males, MA-BNST connections mediate chemoinvestigation whereas the MA-MPOA pathway regulates copulatory initiation. For females, MA-MPOA/BNST connections also control aspects of precopulatory behavior whereas MA-VMH projections control both precopulatory and copulatory behavior. Significant gaps in understanding remain, including the role of VMH in male behavior and MPOA in female appetitive behavior, the function of cortical amygdala, the underlying chemical architecture of this circuit and sex differences in hormonal and neurochemical regulation of precopulatory behavior.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Infusion of endomorphin-1 (EM-1) in the MPOA and the Me modulate sexual and socio-sexual behavior in the male rat. Brain Res 2013; 1517:36-43. [DOI: 10.1016/j.brainres.2013.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 11/23/2022]
|
19
|
Petrulis A. Chemosignals, hormones and mammalian reproduction. Horm Behav 2013; 63:723-41. [PMID: 23545474 PMCID: PMC3667964 DOI: 10.1016/j.yhbeh.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, Atlanta, GA 30303, USA.
| |
Collapse
|
20
|
Cao J, Rebuli ME, Rogers J, Todd KL, Leyrer SM, Ferguson SA, Patisaul HB. Prenatal bisphenol A exposure alters sex-specific estrogen receptor expression in the neonatal rat hypothalamus and amygdala. Toxicol Sci 2013; 133:157-73. [PMID: 23457122 DOI: 10.1093/toxsci/kft035] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6-21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biology, NCSU, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Cao J, Patisaul HB. Sex-specific expression of estrogen receptors α and β and Kiss1 in the postnatal rat amygdala. J Comp Neurol 2013; 521:465-78. [PMID: 22791648 PMCID: PMC3492514 DOI: 10.1002/cne.23185] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/16/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
Abstract
The rodent amygdaloid complex is composed of numerous subnuclei important for the sex-specific regulation of sociosexual behavior. Although estrogen receptors (ERs) are critical for organizing functional and cytoarchitectural sex differences in these subnuclei, a detailed developmental profile of ER expression in the amygdaloid complex is not available. Moreover, the kisspeptin gene (Kiss1) was recently identified in the adult amygdala, but it remains unknown if it is expressed during development. To fill these data gaps, rat brains (5-7/group) were assessed on postnatal days (PNDs) 0, 2, 4, 7, and 19 for ER alpha (ERα; Esr1), beta (ERβ; Esr2), and Kiss1 expression using in situ hybridization. Expression was quantified in the posterodorsal portion of the medial amygdala posterodorsal (MePD), lateral (PLCo), and medial (PMCo) components of the posterior cortical nucleus, and the amygdalohippocampal area (AHi). ERα expression was high throughout the amygdala at birth, but sexually dimorphic only in the AHi. ERα expression in the MePD and the PLCo showed a U-shaped expression pattern over time. In the PMCo, ERα expression decreased from PND 2 and remained low through PND 19. Sexually dimorphic expression of ERβ in the MePD was observed on PND 0, with higher levels in females, but reversed by PND 4 due to declining levels in females. No Kiss1 signal was observed in the postnatal amygdala, suggesting that expression arises after puberty. These data reveal that ER expression is region-specific within the neonatal amygdala. These differences likely contribute to sex differences in sociosexual behavior across the lifespan.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
22
|
Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 2012; 6:33. [PMID: 22933993 PMCID: PMC3423790 DOI: 10.3389/fnana.2012.00033] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022] Open
Abstract
The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Facultat de Ciències Biològiques, Laboratory of Functional and Comparative Neuroanatomy, Departament de Biologia Cel·lular, Universitat de València València, Spain
| | | | | | | | | |
Collapse
|
23
|
Chen P, Hover CV, Lindberg D, Li C. Central urocortin 3 and type 2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: critical involvement of the ventromedial hypothalamus. Front Endocrinol (Lausanne) 2012; 3:180. [PMID: 23316185 PMCID: PMC3539675 DOI: 10.3389/fendo.2012.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/18/2012] [Indexed: 12/30/2022] Open
Abstract
The vital role of the corticotropin-releasing factor (CRF) peptide family in the brain in coordinating response to stress has been extensively documented. The effects of CRF are mediated by two G-protein-coupled receptors, type 1 and type 2 CRF receptors (CRF(1) and CRF(2)). While the functional role of CRF(1) in hormonal and behavioral adaptation to stress is well-known, the physiological significance of CRF(2) remains to be fully appreciated. Accumulating evidence has indicated that CRF(2) and its selective ligands including urocortin 3 (Ucn 3) are important molecular mediators in regulating energy balance. Ucn 3 is the latest addition of the CRF family of peptides and is highly selective for CRF(2). Recent studies have shown that central Ucn 3 is important in a number of homeostatic functions including suppression of feeding, regulation of blood glucose levels, and thermoregulation, thus reinforcing the functional role of central CRF(2) in metabolic regulation. The brain loci that mediate the central effects of Ucn 3 remain to be fully determined. Anatomical and functional evidence has suggested that the ventromedial hypothalamus (VMH), where CRF(2) is prominently expressed, appears to be instrumental in mediating the effects of Ucn 3 on energy balance, permitting Ucn 3-mediated modulation of feeding and glycemic control. Thus, the Ucn 3-VMH CRF(2) system is an important neural pathway in the regulation of energy homeostasis and potentially plays a critical role in energy adaptation in response to metabolic perturbations and stress to maintain energy balance.
Collapse
Affiliation(s)
- Peilin Chen
- Department of Pharmacology, University of Virginia Health SystemCharlottesville, VA, USA
| | - Christine Van Hover
- Department of Neuroscience, University of Virginia Health SystemCharlottesville, VA, USA
| | - Daniel Lindberg
- Department of Pharmacology, University of Virginia Health SystemCharlottesville, VA, USA
| | - Chien Li
- Department of Pharmacology, University of Virginia Health SystemCharlottesville, VA, USA
- *Correspondence: Chien Li, Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA. e-mail:
| |
Collapse
|
24
|
Dhungel S, Masaoka M, Rai D, Kondo Y, Sakuma Y. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats. Neuroscience 2011; 199:225-34. [PMID: 21983295 DOI: 10.1016/j.neuroscience.2011.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
Abstract
Chemosensory inputs signaling volatile and nonvolatile molecules play a pivotal role in sexual and social behavior in rodents. We have demonstrated that olfactory preference in male rats, that is, attraction to receptive female odors, is regulated by the medial amygdala (MeA), the cortical amygdala (CoA), and the preoptic area (POA). In this paper, we investigated the involvement of two chemosensory organs, the olfactory epithelium (OE) and the vomeronasal organ (VNO), in olfactory preference and copulatory behavior in male rats. We found that olfactory preferences were impaired by zinc sulfate lesion of the OE but not surgical removal of the VNO. Copulatory behaviors, especially intromission frequency and ejaculation, were also suppressed by zinc sulfate treatment. Neuronal activation in the accessory olfactory bulb (AOB), the MeA, the CoA, and the POA was analyzed after stimulation by airborne odors or soiled bedding of estrous females using cFos immunohistochemistry. Although the OE and VNO belong to different neural systems, the main and accessory olfactory systems, respectively, both OE lesion and VNO removal almost equally suppressed the number of cFos-immunoreactive cells in those areas that regulate olfactory preference. These results suggest that signals received by the OE and VNO interact and converge in the early stage of olfactory processing, in the AOB and its targets, although they have distinct roles in the regulation of social behaviors.
Collapse
Affiliation(s)
- S Dhungel
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo 113-8602, Japan
| | | | | | | | | |
Collapse
|
25
|
Disruption of urinary odor preference and lordosis behavior in female mice given lesions of the medial amygdala. Physiol Behav 2011; 105:554-9. [PMID: 21945865 DOI: 10.1016/j.physbeh.2011.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/08/2011] [Accepted: 09/11/2011] [Indexed: 11/21/2022]
Abstract
Previous research showed that axonal inputs to both anterior and posterior subdivisions of the medial amygdala from the main and accessory olfactory bulbs of female mice, respectively, process volatile and non-volatile pheromonal signals from male conspecifics. In the present study we found that bilateral electrolytic lesions that included posterior portions, but not the anterior subdivision alone of the medial amygdala (Me) blocked the preference of estrous female mice to investigate volatile urinary odors from testes-intact vs. castrated males. Similar results were obtained in separate tests in which nasal contact with urinary stimuli was permitted. In addition, total time investigating volatile urinary stimuli was reduced in subjects with posterior Me lesions. Subjects were able to discriminate volatile urinary odors from testes-intact vs. castrated male mice, suggesting that this disruption of odor preference did not result from the inability of females given amygdaloid lesions to discriminate these male urinary odors. Bilateral lesions of the Me that were either restricted to the anterior or posterior subdivisions, or included areas of both regions, caused significant reductions in the display of lordosis behavior in estrous female mice. Our results suggest that the Me is a critical segment of the olfactory circuit that controls both mate recognition and mating behavior in the female mouse.
Collapse
|
26
|
Blake CB, Meredith M. Change in number and activation of androgen receptor-immunoreactive cells in the medial amygdala in response to chemosensory input. Neuroscience 2011; 190:228-38. [PMID: 21684322 PMCID: PMC3156313 DOI: 10.1016/j.neuroscience.2011.05.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 05/06/2011] [Accepted: 05/21/2011] [Indexed: 01/13/2023]
Abstract
In many species social behaviors are dependent on integration of chemosensory and hormonal cues. Many chemosensory stimuli are detected by the vomeronasal organ, which projects to many regions that contain steroid receptors, including the medial amygdala. In male hamsters, testosterone is known to acutely increase in response to chemosensory stimulation, and can facilitate sexual behavior by direct action within the medial amygdala. Conspecific stimuli activate the anterior (MeA) and posterior (MeP) medial amygdala, while heterospecific stimuli activate only MeA. Chemosensory stimuli with different social significance differentially activate the dorsal and ventral subdivisions of MeA and MeP. Therefore, it is likely that steroids differentially facilitate stimulation of the medial amygdala by various chemosensory stimuli. We used Fos expression to examine activation of androgen receptor (AR)-containing cells in the medial amygdala by heterospecific and conspecific stimuli in intact male hamsters and castrated males with testosterone (T)-replacement. The number of AR-immunoreactive (-ir) cells was significantly different from control and between stimuli in intact males, but not in T-replaced castrates. Fos activation was similar in all animals. The results are consistent with a change in number of AR-ir cells in intact animals due to acute increases in testosterone caused by chemosignals.
Collapse
Affiliation(s)
- Camille B. Blake
- Program in Neuroscience, Department of Biological Science, Florida State University 3012 King Life Science Building, 319 Stadium Drive, Tallahassee, FL 32306-4295
| | - Michael Meredith
- Program in Neuroscience, Department of Biological Science, Florida State University 3012 King Life Science Building, 319 Stadium Drive, Tallahassee, FL 32306-4295
| |
Collapse
|
27
|
Been LE, Petrulis A. Chemosensory and hormone information are relayed directly between the medial amygdala, posterior bed nucleus of the stria terminalis, and medial preoptic area in male Syrian hamsters. Horm Behav 2011; 59:536-48. [PMID: 21316366 PMCID: PMC3081384 DOI: 10.1016/j.yhbeh.2011.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
In many rodent species, including Syrian hamsters, the expression of appropriate social behavior depends critically on the perception and identification of conspecific odors. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (Me), posterior bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Although it is well-known that Me, BNST, and MPOA are densely interconnected and each uniquely modulates odor-guided social behaviors, the degree to which conspecific odor information and steroid hormone cues are directly relayed between these nuclei is unknown. To answer this question, we injected the retrograde tracer, cholera toxin B (CTB), into the BNST or MPOA of male subjects and identified whether retrogradely-labeled cells in Me and BNST 1) expressed immediate early genes (IEGs) following exposure to male and/or female odors or 2) expressed androgen receptor (AR). Although few retrogradely-labeled cells co-localized with IEGs, a higher percentage of BNST- and MPOA-projecting cells in the posterior Me (MeP) expressed IEGs in response to female odors than to male odors. The percentage of retrogradely-labeled cells that expressed IEGs did not, however, differ between and female and male odor-exposed groups in the anterior Me (MeA), posterointermediate BNST (BNSTpi), or posteromedial BNST (BNSTpm). Many retrogradely-labeled cells co-localized with AR, and a higher percentage of retrogradely-labeled MeP and BNSTpm cells expressed AR than retrogradely-labeled MeA and BNSTpi cells, respectively. Together, these data demonstrate that Me, BNST, and MPOA interact as a functional circuit to process sex-specific odor cues and hormone information in male Syrian hamsters.
Collapse
Affiliation(s)
- Laura E Been
- Georgia State University, Neuroscience Institute, 100 Piedmont Avenue, Atlanta, GA 30303, USA.
| | | |
Collapse
|