1
|
Liu FF, Li K. The Abnormal ERα-miRNA Cross-Talk in AD-Affected Human Hippocampus: A Bioinformatics Perspective. Mol Neurobiol 2025; 62:7998-8012. [PMID: 39966328 PMCID: PMC12078360 DOI: 10.1007/s12035-025-04771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Estrogen's impact on Alzheimer's disease (AD) is multifaceted, with its receptors potentially influencing AD pathology in both beneficial and detrimental ways. This study aims to dissect the intricate cross-talk between estrogen receptor alpha (ERα) and microRNAs (miRNAs) in AD-affected human hippocampus. Through a comprehensive literature review in the PubMed database, coupled with a GeneCards database search, we obtained AD-related key miRNAs and genes in the hippocampus. Using bioinformatics tools, we predicted target genes and miRNAs of ERα, and the targets of the identified miRNAs. The integration of these elements resulted in the construction of an ERα-related FFL network, which includes 13 miRNAs and 56 core genes. Gene ontology (GO) and pathway enrichment analyses were conducted, revealing significant enrichment in biological processes such as neuron death and response to metal ions, and cellular components like membrane microdomains. Notably, the AKT-associated signaling pathway was prominently highlighted, with key genes including GSK3A, CDKN1A, AKT2, and MDM2, and key miRNAs including miR-485 and let-7f, suggesting a potential role of ERα in modulating this pathway in AD. The findings of this study provide a novel perspective on the regulatory network of ERα in the hippocampal region of AD and may pave the way for future research into the therapeutic potential of targeting the ERα pathway in neurodegenerative diseases.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Hankou District, Wuhan, 430014, People's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Hankou District, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Mu E, Gurvich C, Kulkarni J. Estrogen and psychosis - a review and future directions. Arch Womens Ment Health 2024; 27:877-885. [PMID: 38221595 PMCID: PMC11579214 DOI: 10.1007/s00737-023-01409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
The link between sex hormones and schizophrenia has been suspected for over a century; however, scientific evidence supporting the pharmacotherapeutic effects of exogenous estrogen has only started to emerge during the past three decades. Accumulating evidence from epidemiological and basic research suggests that estrogen has a protective effect in women vulnerable to schizophrenia. Such evidence has led multiple researchers to investigate the role of estrogen in schizophrenia and its use in treatment. This narrative review provides an overview of the effects of estrogen as well as summarizes the recent work regarding estrogen as a treatment for schizophrenia, particularly the use of new-generation selective estrogen receptor modulators.
Collapse
Affiliation(s)
- Eveline Mu
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Caroline Gurvich
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jayashri Kulkarni
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Chanana V, Zafer D, Kintner DB, Chandrashekhar JH, Eickhoff J, Ferrazzano PA, Levine JE, Cengiz P. TrkB-mediated neuroprotection in female hippocampal neurons is autonomous, estrogen receptor alpha-dependent, and eliminated by testosterone: a proposed model for sex differences in neonatal hippocampal neuronal injury. Biol Sex Differ 2024; 15:30. [PMID: 38566248 PMCID: PMC10988865 DOI: 10.1186/s13293-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.
Collapse
Affiliation(s)
- Vishal Chanana
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Dila Zafer
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Douglas B Kintner
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jayadevi H Chandrashekhar
- Waisman Center, University of Wisconsin, Madison, WI, USA
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jens Eickhoff
- Department of Statistics and Bioinformatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter A Ferrazzano
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Pelin Cengiz
- Waisman Center, University of Wisconsin, Madison, WI, USA.
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA.
| |
Collapse
|
4
|
Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer's Disease? Int J Mol Sci 2023; 24:ijms24043205. [PMID: 36834617 PMCID: PMC9964432 DOI: 10.3390/ijms24043205] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for more than half of all dementia cases in the elderly. Interestingly, the clinical manifestations of AD disproportionately affect women, comprising two thirds of all AD cases. Although the underlying mechanisms for these sex differences are not fully elucidated, evidence suggests a link between menopause and a higher risk of developing AD, highlighting the critical role of decreased estrogen levels in AD pathogenesis. The focus of this review is to evaluate clinical and observational studies in women, which have investigated the impact of estrogens on cognition or attempted to answer the prevailing question regarding the use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. The articles were retrieved through a systematic review of the databases: OVID, SCOPUS, and PubMed (keywords "memory", "dementia," "cognition," "Alzheimer's disease", "estrogen", "estradiol", "hormone therapy" and "hormone replacement therapy" and by searching reference sections from identified studies and review articles). This review presents the relevant literature available on the topic and discusses the mechanisms, effects, and hypotheses that contribute to the conflicting findings of HRT in the prevention and treatment of age-related cognitive deficits and AD. The literature suggests that estrogens have a clear role in modulating dementia risk, with reliable evidence showing that HRT can have both a beneficial and a deleterious effect. Importantly, recommendation for the use of HRT should consider the age of initiation and baseline characteristics, such as genotype and cardiovascular health, as well as the dosage, formulation, and duration of treatment until the risk factors that modulate the effects of HRT can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
|
5
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
6
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
7
|
Maioli S, Leander K, Nilsson P, Nalvarte I. Estrogen receptors and the aging brain. Essays Biochem 2021; 65:913-925. [PMID: 34623401 PMCID: PMC8628183 DOI: 10.1042/ebc20200162] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERβ) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
8
|
Shin YK, Lee GW, Kang SW, Kim SJ, Kim AY. Macular Abnormalities Associated With 5α-Reductase Inhibitor. JAMA Ophthalmol 2021; 138:732-739. [PMID: 32379286 DOI: 10.1001/jamaophthalmol.2020.1279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Importance The neuroprotective action of sex hormones has been described. Data on the association between 5α-reductase inhibitor (5-ARI), a male sex hormone antagonist, and macular abnormalities are lacking to date. Objective To assess the association between the use of 5-ARI for treatment of benign prostate hypertrophy and/or androgenic alopecia in men and macular abnormalities on optical coherence tomography imaging. Design, Setting, and Participants This retrospective case-control, cross-sectional study included electronic health record data from 31 male patients who showed foveal cavitation on spectral-domain optical coherence tomography imaging from January 1, 2016, to June 30, 2019. Exposures Receipt of 5-ARI for at least 2 years as treatment of benign prostate hypertrophy and/or androgenic alopecia. Main Outcomes and Measures Clinical data and multimodal imaging findings and the proportion of 5-ARI users. Results Among 31 male patients with foveal cavitation, 5-ARI was used for 10 of 14 patients (71.4%) with macular abnormalities of unknown origin and for 2 of 17 patients (11.8%) with macular abnormalities of well-known specific origin (P = .001). The mean age of these 14 patients was 74.7 years (range, 60.1-88.0 years). In the 15 eyes of 10 patients who had received 5-ARI for macular abnormalities of unknown origin, mean (SD) age was 72.8 (7.5) years, mean (SD) length of time receiving 5-ARI was 72.3 (39.2) months, and mean (SD) logMAR visual acuity was 0.08 (0.10) (Snellen equivalents, 20/24 [20/25]). Optical coherence tomography imaging showed a disease spectrum ranging from tiny foveal cavitation to an impending macular hole. Of the total male patients, 80.0% (8 of 10) had no symptoms. Conclusions and Relevance The findings suggest that macular abnormalities associated with 5-ARI are characterized by cystoid abnormalities and foveal cavitation in male patients, which may progress to outer foveal defect and macular hole. These macular abnormalities associated with a male sex hormone antagonist suggested by this investigation warrant further corroboration.
Collapse
Affiliation(s)
- Yong Kyun Shin
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Geun Woo Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Woong Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - A Young Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev 2020; 191:111345. [DOI: 10.1016/j.mad.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
|
10
|
Uddin MS, Rahman MM, Jakaria M, Rahman MS, Hossain MS, Islam A, Ahmed M, Mathew B, Omar UM, Barreto GE, Ashraf GM. Estrogen Signaling in Alzheimer's Disease: Molecular Insights and Therapeutic Targets for Alzheimer's Dementia. Mol Neurobiol 2020; 57:2654-2670. [PMID: 32297302 DOI: 10.1007/s12035-020-01911-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023]
Abstract
Estrogens play a crucial physiological function in the brain; however, debates exist concerning the role of estrogens in Alzheimer's disease (AD). Women during pre-, peri-, or menopause periods are more susceptible for developing AD, suggesting the connection of sex factors and a decreased estrogen signaling in AD pathogenesis. Yet, the underlying mechanism of estrogen-mediated neuroprotection is unclarified and is complicated by the existence of estrogen-related factors. Consequently, a deeper analysis of estrogen receptor (ER) expression and estrogen-metabolizing enzymes could interpret the importance of estrogen in age-linked cognitive alterations. Previous studies propose that hormone replacement therapy may attenuate AD onset in postmenopausal women, demonstrating that estrogen signaling is important for the development and progression of AD. For example, ERα exerts neuroprotection against AD by maintaining intracellular signaling cascades and study reported reduced expression of ERα in hippocampal neurons of AD patients. Similarly, reduced expression of ERβ in female AD patients has been associated with abnormal function in mitochondria and improved markers of oxidative stress. In this review, we discuss the critical interaction between estrogen signaling and AD. Moreover, we highlight the potential of targeting estrogen-related signaling for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Md Motiar Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Md Sarwar Hossain
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ariful Islam
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ulfat Mohammed Omar
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
12
|
Perez SM, Donegan JJ, Lodge DJ. Effect of estrous cycle on schizophrenia-like behaviors in MAM exposed rats. Behav Brain Res 2019; 362:258-265. [PMID: 30660776 PMCID: PMC6394843 DOI: 10.1016/j.bbr.2019.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
Although there are clear sex differences in individuals with schizophrenia, preclinical research has historically favored the use of male rats for behavioral studies. The methylazoxymethanol acetate (MAM) model is a gestational disruption model of schizophrenia and has been reported to produce robust behavioral, neurophysiological and anatomical alterations in male rats; however, whether similar effects are observed in female rats is less well known. In this study, we characterize the behavioral, electrophysiological and molecular alterations induced by prenatal MAM administration in female rats while also examining the potential effects of the estrous cycle on schizophrenia-like behaviors. Specifically, MAM-treated female offspring demonstrated deficits in sensorimotor gating, latent inhibition, and social interaction, consistent with those observed in male animals. Interestingly, amphetamine-induced locomotor activity, latent inhibition, and social interaction were also affected by the estrous cycle. To examine the potential cellular mechanisms associated with these behavioral alterations, we analyzed hippocampal parvalbumin (PV) interneurons. Deficits in PV interneuron number and high-frequency gamma oscillations were disrupted in female MAM-treated rats regardless of the stage of the estrous cycle; however, alterations in PV protein expression were more prominent during metestrus/diestrus. Taken together, these data suggest that prenatal MAM exposure in female rats produces robust behavioral, molecular, and physiological deficits consistent with those observed in the male MAM model of schizophrenia. Moreover, our results also suggest that specific schizophrenia-like symptoms can also be influenced by the estrous cycle, and further emphasize the importance of sex as a biological variable when using preclinical models.
Collapse
Affiliation(s)
- Stephanie M Perez
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX, 78229, USA.
| | - Jennifer J Donegan
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX, 78229, USA.
| | - Daniel J Lodge
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX, 78229, USA.
| |
Collapse
|
13
|
Vail G, Roepke TA. Membrane-initiated estrogen signaling via Gq-coupled GPCR in the central nervous system. Steroids 2019; 142:77-83. [PMID: 29378226 PMCID: PMC6064680 DOI: 10.1016/j.steroids.2018.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 12/08/2017] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
Abstract
The last few decades have revealed increasing complexity and depth to our knowledge of receptor-mediated estrogen signaling. Nuclear estrogen receptors (ERs) ERα and ERβ remain the fundamental dogma, but recent research targeting membrane-bound ERs urges for a more expanded view on ER signaling. ERα and ERβ are also involved in membrane-delineated signaling alongside membrane-specific G protein-coupled estrogen receptor 1 (GPER1), ER-X, and the Gq-coupled membrane ER (Gq-mER). Membrane ERs are responsible for eliciting rapid responses to estrogen signaling, and their importance has been increasingly indicated in central nervous system (CNS) regulation of such functions as reproduction, energy homeostasis, and stress. While the Gq-mER signaling pathway is well characterized, the receptor structure and gene remains uncharacterized, although it is not similar to the nuclear ERα/β. This review will describe the current knowledge of this putative membrane ER and its selective ligand, STX, from its initial characterization in hypothalamic melanocortin circuitry to recent research exploring its role in the CNS outside of the hypothalamus.
Collapse
Affiliation(s)
- Gwyndolin Vail
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
14
|
Quillinan N, Dingman AL, Deng G, Tatum S, Orfila JE, Clevenger AC, Klawitter J, Traystman RJ, Herson PS. Single dose of 17β-estradiol provides transient neuroprotection in female juvenile mice after cardiac-arrest and cardiopulmonary resuscitation. Neurochem Int 2018; 127:80-86. [PMID: 30471325 DOI: 10.1016/j.neuint.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/14/2023]
Abstract
Each year there are approximately 7000 out of hospital cardiac arrests in the pediatric population, with 30% resuscitation rate and a 6-10% rate of survival to hospital discharge. Survivors of cardiac arrest exhibit learning and memory deficits that are devastating during the school years. Delayed neuronal cell death occurs in the hippocampus following cardiac arrest and likely contributes to memory impairments. Circulating endogenous estrogen in young adult females has been shown to provide protection against ischemic cell death, as does chronic exogenous administration of 17β-estradiol (E2). Chronic estrogen benefit can have undesirable feminizing effects, particularly in pre-adolescents. Here, we tested if a single-dose of E2 is neuroprotective in our pediatric cardiac arrest mouse model performed in juvenile mice. We subjected P21P25 C57Blk6 male and female mice to 8 min of cardiac arrest followed by cardiopulmonary resuscitation (CA/CPR). This developmental stage preceded the hormonal onset and serum estradiol and testosterone levels were not different in males and females. A single dose of E2 (100μg/kg) or vehicle was administered 30 min after resuscitation. Neuronal cell death measured 3 days after CA/CPR showed reduced hippocampal cell death in E2-treated females, but not males. Benefit of E2 in females was blocked by the P38 MAPK inhibitor, SB203580. Hippocampal-dependent memory function was equally impaired in E2-and vehicle-treated females measured in the contextual fear conditioning task at 7 days. Our findings demonstrate female-specific transient neuroprotection with E2 that does not provide sustained functional benefit.
Collapse
Affiliation(s)
- N Quillinan
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, USA
| | - A L Dingman
- Department of Pediatrics, Division of Child Neurology, Intensive Care Unit, University of Colorado, Anschutz Medical Campus, USA
| | - G Deng
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, USA
| | - S Tatum
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, USA
| | - J E Orfila
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, USA
| | - A C Clevenger
- Department of Pediatrics, Intensive Care Unit, University of Colorado, Anschutz Medical Campus, USA
| | - J Klawitter
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, USA
| | - R J Traystman
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, USA
| | - P S Herson
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, USA.
| |
Collapse
|
15
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
16
|
Decreased levels of G protein-coupled estrogen receptor in children with autism spectrum disorders. Psychiatry Res 2017; 257:67-71. [PMID: 28734238 DOI: 10.1016/j.psychres.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 05/06/2017] [Accepted: 06/04/2017] [Indexed: 12/17/2022]
Abstract
Sex hormones, specially estrogen, and ıt is receptors plays a critical role in the pathogenesis of psychiatric disorders including autism spectrum disorders (ASD). The aim of this study was to investigate the relationship between ASD and G protein-coupled estrogen receptor (GPER), a recently discovered estrogen receptors, and also to study the relation of serum GPER levels with the severity of autistic symptoms. The present study included 45 children with drug naive ASD diagnosed by DSM-V criteria, aged between 3 and 12 years and 40 age- and gender-matched healthy controls. The severity of ASD was evaluated with the Childhood Autism Rating Scale (CARS) total score. The GPER levels in the serum were measured using the quantitative sandwich enzyme immunoassay technique. The serum GPER level was significantly lower in the ASD patients than in the controls. There was a negative significant correlation between the GPER level and the CARS score. There were no significant correlations between GPER level with estradiol and age. In conclusion, this study demonstrated that the decreased serum GPER levels were associated with ASD and GPER may play an important role in the etiology of ASD.
Collapse
|
17
|
Rasmusson AM, Marx CE, Pineles SL, Locci A, Scioli-Salter ER, Nillni YI, Liang JJ, Pinna G. Neuroactive steroids and PTSD treatment. Neurosci Lett 2017; 649:156-163. [PMID: 28215878 DOI: 10.1016/j.neulet.2017.01.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
This review highlights early efforts to translate pre-clinical and clinical findings regarding the role of neuroactive steroids in stress adaptation and PTSD into new therapeutics for PTSD. Numerous studies have demonstrated PTSD-related alterations in resting levels or the reactivity of neuroactive steroids and their targets. These studies also have demonstrated substantial variability in the dysfunction of specific neuroactive steroid systems among PTSD subpopulations. These variabilities have been related to the developmental timing of trauma, severity and type of trauma, genetic background, sex, reproductive state, lifestyle influences such as substance use and exercise, and the presence of comorbid conditions such as depression and chronic pain. Nevertheless, large naturalistic studies and a small placebo-controlled interventional study have revealed generally positive effects of glucocorticoid administration in preventing PTSD after trauma, possibly mediated by glucocorticoid receptor-mediated effects on other targets that impact PTSD risk, including other neuroactive steroid systems. In addition, clinical and preclinical studies show that administration of glucocorticoids, 17β-estradiol, and GABAergic neuroactive steroids or agents that enhance their synthesis can facilitate extinction and extinction retention, depending on dose and timing of dose in relation to these complex PTSD-relevant recovery processes. This suggests that clinical trials designed to test neuroactive steroid therapeutics in PTSD may benefit from such considerations; typical continuous dosing regimens may not be optimal. In addition, validated and clinically accessible methods for identifying specific neuroactive steroid system abnormalities at the individual level are needed to optimize both clinical trial design and precision medicine based treatment targeting.
Collapse
Affiliation(s)
- Ann M Rasmusson
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; VA Boston Healthcare System 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA.
| | - Christine E Marx
- Durham VA Medical Center, VA Mid-Atlantic MIRECC,and Duke University Medical Center, 508 Fulton Street, Durham, NC 27705, USA
| | - Suzanne L Pineles
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| | - Erica R Scioli-Salter
- VA Boston Healthcare System 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Yael I Nillni
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Jennifer J Liang
- Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| |
Collapse
|
18
|
Cheng HY, Hung SH, Chu PJ. Rescue from Sexually Dimorphic Neuronal Cell Death by Estradiol and PI3 Kinase Activity. Cell Mol Neurobiol 2016; 36:767-75. [PMID: 26369912 PMCID: PMC11482345 DOI: 10.1007/s10571-015-0259-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Responses of primary hippocampal and cortical neurons derived from male and female rats to cellular stressors were studied. It is demonstrated that 17β-estradiol (E2), a potent neuroprotectant, protected the female neurons but had no effects on the male neurons from CoCl2- and glutamate-induced toxicity. Agonists of the estrogen receptor (ER) subtypes ERα and ERβ, DPN and PPT, respectively, had similar effects to E2. By contrast, effects of E2 were abolished by the ER antagonist ICI-182780, further corroborating the neuroprotective role of ERs. In male neurons, CoCl2 predominately activated the apoptosis-inducing factor (AIF)-dependent pathway and AIF translocation from the cytosol to the nucleus. In comparison, CoCl2 activated the caspase pathway and cytochrome c release in female neurons. The inhibitors of these pathways, namely DiQ for AIF and zVAD for caspase, specifically rescued CoCl2-induced cell death in male and female neurons, respectively. When zVAD and ICI-182780, and E2 were applied in combination, it was demonstrated E2 acted on the caspase pathway leading to female-specific neuroprotection. Furthermore, the PI3 kinase (PI3K) inhibitor blocked the rescue effects of DiQ and zVAD on the male and female neurons, respectively, suggesting that PI3K is a common upstream regulator for both pathways. The present study suggested that both sex-specific and nonspecific mechanisms played a role in neuronal responses to stressors and protective reagents.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Shin-Hui Hung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Po-Ju Chu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Schiller CE, Johnson SL, Abate AC, Schmidt PJ, Rubinow DR. Reproductive Steroid Regulation of Mood and Behavior. Compr Physiol 2016; 6:1135-60. [PMID: 27347888 PMCID: PMC6309888 DOI: 10.1002/cphy.c150014] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article, we examine evidence supporting the role of reproductive steroids in the regulation of mood and behavior in women and the nature of that role. In the first half of the article, we review evidence for the following: (i) the reproductive system is designed to regulate behavior; (ii) from the subcellular to cellular to circuit to behavior, reproductive steroids are powerful neuroregulators; (iii) affective disorders are disorders of behavioral state; and (iv) reproductive steroids affect virtually every system implicated in the pathophysiology of depression. In the second half of the article, we discuss the diagnosis of the three reproductive endocrine-related mood disorders (premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression) and present evidence supporting the relevance of reproductive steroids to these conditions. Existing evidence suggests that changes in reproductive steroid levels during specific reproductive states (i.e., the premenstrual phase of the menstrual cycle, pregnancy, parturition, and the menopause transition) trigger affective dysregulation in susceptible women, thus suggesting the etiopathogenic relevance of these hormonal changes in reproductive mood disorders. Understanding the source of individual susceptibility is critical to both preventing the onset of illness and developing novel, individualized treatments for reproductive-related affective dysregulation. © 2016 American Physiological Society. Compr Physiol 6:1135-1160, 2016e.
Collapse
Affiliation(s)
- Crystal Edler Schiller
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah L. Johnson
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna C. Abate
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter J. Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - David R. Rubinow
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Litwa E, Rzemieniec J, Wnuk A, Lason W, Krzeptowski W, Kajta M. Apoptotic and neurotoxic actions of 4-para-nonylphenol are accompanied by activation of retinoid X receptor and impairment of classical estrogen receptor signaling. J Steroid Biochem Mol Biol 2014; 144 Pt B:334-47. [PMID: 25092517 DOI: 10.1016/j.jsbmb.2014.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/30/2022]
Abstract
4-para-Nonylphenol (NP) is a non-ionic surfactant that has widespread and uncontrolled distribution in the environment. Little is known, however, about its actions on neuronal cells during critical developmental periods. This study aimed to investigate the mechanisms underlying the apoptotic and toxic actions of NP on mouse embryonic neuronal cells and the possible interactions of NP with estrogen receptor (ER)- and retinoid X receptor (RXR)-mediated intracellular signaling. Treatment of mouse hippocampal neuronal cell cultures with NP (5 and 10μM) induced apoptotic and neurotoxic effects. The 2 and 7 day-old mouse hippocampal cultures were vulnerable to 5 and 10μM NP, whereas 12 day-old cultures responded only to the highest concentration of NP, thus suggesting an age-dependent action of the chemical on neuronal cells. The use of specific inhibitors did not support the involvement of calpains in NP-induced apoptosis, but indicated caspase-8- and caspase-9-dependent effects of NP. Specific ER antagonists MPP and PHTPP potentiated the NP-induced loss of mitochondrial membrane potential and increase in lactate dehydrogenase (LDH) release whereas, ER agonists PPT and DPN inhibited these effects. RXR antagonist HX531 diminished the NP-evoked loss of mitochondrial membrane potential, the activity of caspase-3 and LDH release. In addition, exposure to NP inhibited ERα- and ERβ-specific immunofluorescence but stimulated RXR-specific immunolabeling in mouse hippocampal cells. In conclusion, our study demonstrated that the apoptotic and toxic actions of NP on neuronal cells in early development is accompanied by an impairment of ER- and stimulation of RXR-mediated signaling pathways. Taking into account NP-induced alterations in mRNA expression levels of particular types of RXRs, we suggest that NP affected mainly RXRα and RXRβ, but not RXRγ signaling.
Collapse
Affiliation(s)
- E Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
21
|
Lan YL, Zhao J, Li S. Estrogen receptors' neuroprotective effect against glutamate-induced neurotoxicity. Neurol Sci 2014; 35:1657-62. [PMID: 25228013 DOI: 10.1007/s10072-014-1937-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/29/2014] [Indexed: 01/28/2023]
Abstract
Glutamate is the most abundant excitatory brain neurotransmitter that has important functional significance with respect to neurodegenerative conditions. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease (AD) has been gradually becoming elucidated recently. Excessive release of glutamate induces an increase in intracellular Ca(2+) levels, thus triggers a cascade of cellular responses, ultimately leading to neuronal cell death. This type of neuronal damage induced by over-excitation has been proposed to be involved in a number of neuropathological conditions, ranging from acute insults to chronic neurodegenerative disorders. Estrogen could be effective in modulating glutamate-induced neurotoxicity and the protective responsivenesses are mostly estrogen receptors (ERs)-dependent. However, the mechanism underlying estrogen's neuroprotective effect is not fully clarified and is complicated by the presence of several distinct ER types. So a deeper research into the neuroprotection of ERs might be informative about the positive effect that estrogen might have on ageing-related cognitive changes. Extensive studies have indicated the neuroprotective effects of ERs against glutamate-induced neurotoxicity. The purpose of this review is to elucidate ERs' neuroprotective effects against glutamate-induced cytotoxicity and explore new ways to prevent and cure neurotoxicity-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | | | | |
Collapse
|
22
|
Suwanna N, Thangnipon W, Soi-Ampornkul R. Neuroprotective effects of diarylpropionitrile against β-amyloid peptide-induced neurotoxicity in rat cultured cortical neurons. Neurosci Lett 2014; 578:44-9. [PMID: 24960633 DOI: 10.1016/j.neulet.2014.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease is a major cause of dementia in the elderly that involves a β-amyloid peptide (Aβ)-induced cascade of an increase in oxidative damage and inflammation. The present study demonstrated the neuroprotective effects of diarylpropionitrile (DPN), a non-steroidal estrogen receptor β selective ligand, against 10 μM Aβ1-42-induced oxidative stress and inflammation in primary rat cortical cell culture. Pre-treatment with 1-100 nM DPN significantly decreased neuronal cell death by increasing cell viability through a significant attenuation in the reactive oxygen species level, downregulation of pro-apoptotic activated caspase-3 and Bax, and upregulation of anti-apoptotic Bcl-2, thereby mitigating apoptotic morphological alterations. DPN pre-treatment decreased the expression levels of pro-inflammatory cytokines IL-1β and IL-6 through attenuation of Aβ1-42-induced phosphorylation of mitogen-activated protein kinases JNK and p38. In addition, DPN enhanced ERK1/2 and Akt phosphorylation depressed by Aβ1-42. These findings suggest that DPN protects neurons from Aβ1-42-induced neurotoxicity through a variety of mechanisms, ranging from anti-oxidation, anti-apoptosis, through to anti-inflammation.
Collapse
Affiliation(s)
- Nirut Suwanna
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.
| | - Rungtip Soi-Ampornkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 2014; 389:48-57. [PMID: 24444786 DOI: 10.1016/j.mce.2014.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
Abstract
Neuroprotective actions of 17β-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
| | | | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | |
Collapse
|
24
|
Mott NN, Pinceti E, Rao YS, Przybycien-Szymanska MM, Prins SA, Shults CL, Yang X, Glucksman MJ, Roberts JL, Pak TR. Age-dependent Effects of 17β-estradiol on the dynamics of estrogen receptor β (ERβ) protein-protein interactions in the ventral hippocampus. Mol Cell Proteomics 2014; 13:760-79. [PMID: 24390426 DOI: 10.1074/mcp.m113.031559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent clinical evidence suggests that the neuroprotective and beneficial effects of hormone therapy may be limited by factors related to age and reproductive status. The patient's age and length of time without circulating ovarian hormones are likely to be key factors in the specific neurological outcomes of hormone therapy. However, the mechanisms underlying age-related changes in hormone efficacy have not been determined. We hypothesized that there are intrinsic changes in estrogen receptor β (ERβ) function that determine its ability to mediate the actions of 17β-estradiol (E2) in brain regions such as the ventral hippocampus. In this study, we identified and quantified a subset of ERβ protein interactions in the ventral hippocampus that were significantly altered by E2 replacement in young and aged animals, using two-dimensional differential gel electrophoresis coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry. This study demonstrates quantitative changes in ERβ protein-protein interactions with E2 replacement that are dependent upon age in the ventral hippocampus and how these changes could alter processes such as transcriptional regulation. Thus, our data provide evidence that changes in ERβ protein interactions are a potential mechanism for age-related changes in E2 responsiveness in the brain after menopause.
Collapse
Affiliation(s)
- Natasha N Mott
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McAllister CE, Mi Z, Mure M, Li Q, Muma NA. GPER1 stimulation alters posttranslational modification of RGSz1 and induces desensitization of 5-HT1A receptor signaling in the rat hypothalamus. Neuroendocrinology 2014; 100:228-39. [PMID: 25402859 PMCID: PMC4305009 DOI: 10.1159/000369467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression, and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus of the hypothalamus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone (ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor 1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and nonselective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase-activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High-molecular-weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1 could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced a partial reduction in oxytocin and ACTH responses to 5-HT1AR stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression.
Collapse
Affiliation(s)
| | - Zhen Mi
- Department of Pharmacology and Toxicology, University of Kansas
| | - Minae Mure
- Department of Chemistry, University of Kansas
| | - Qian Li
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine
| | - Nancy A Muma
- Department of Pharmacology and Toxicology, University of Kansas
- Corresponding Author: Nancy A. Muma, Malott Hall Rm 5064, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7572, , Telephone: +1 785 864 4002, Fax: +1 785 864 5219
| |
Collapse
|
26
|
Penaloza CG, Estevez B, Han DM, Norouzi M, Lockshin RA, Zakeri Z. Sex-dependent regulation of cytochrome P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of DNA. FASEB J 2013; 28:966-77. [PMID: 24161885 DOI: 10.1096/fj.13-233320] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sexual differences are only partially attributable to hormones. Cultured male or female cells, even from embryos before sexual differentiation, differ in gene expression and sensitivity to toxins, and these differences persist in isolated primary cells. Male and female cells from Swiss Webster CWF mice manifest sex-distinct patterns of DNA methylation for X-ist and for cytochrome P450 (CYP; family members 1a1, 2e1m, and 7b1. Dnmt3l is differentially expressed but not differentially methylated, and Gapdh is neither differentially methylated nor expressed. CYP family genes differ in expression in whole tissue homogenates and cell cultures, with female Cyp expression 2- to 355-fold higher and Dnmt3l 12- to 32-fold higher in males. DNA methylation in the promoters of these genes is sex dimorphic; reducing methylation differences reduces to 1- to 6-fold differences in the expression of these genes. Stress or estradiol alters both methylation and gene expression. We conclude that different methylation patterns partially explain the sex-based differences in expression of CYP family members and X-ist, which potentially leads to inborn differences between males and females and their different responses to chronic and acute changes. Sex-differential methylation may have medical effects.
Collapse
Affiliation(s)
- Carlos G Penaloza
- 1Queens College, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY 11367, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Ibrahim BA, Tamrakar P, Gujar AD, Cherian AK, Briski KP. Caudal fourth ventricular administration of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside regulates glucose and counterregulatory hormone profiles, dorsal vagal complex metabolosensory neuron function, and hypothalamic Fos expression. J Neurosci Res 2013; 91:1226-38. [PMID: 23825033 DOI: 10.1002/jnr.23230] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 01/02/2023]
Abstract
This study investigated the hypothesis that estrogen controls hindbrain AMP-activated protein kinase (AMPK) activity and regulation of blood glucose, counterregulatory hormone secretion, and hypothalamic nerve cell transcriptional status. Dorsal vagal complex A2 noradrenergic neurons were laser microdissected from estradiol benzoate (E)- or oil (O)-implanted ovariectomized female rats after caudal fourth ventricular (CV4) delivery of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR), for Western blot analysis. E advanced AICAR-induced increases in A2 phospho-AMPK (pAMPK) expression and in blood glucose levels and was required for augmentation of Fos, estrogen receptor-α (ERα), monocarboxylate transporter-2, and glucose transporter-3 protein in A2 neurons and enhancement of corticosterone secretion by this treatment paradigm. CV4 AICAR also resulted in site-specific modifications in Fos immunolabeling of hypothalamic metabolic structures, including the paraventricular, ventromedial, and arcuate nuclei. The current studies demonstrate that estrogen regulates AMPK activation in caudal hindbrain A2 noradrenergic neurons during pharmacological replication of energy shortage in this area of the brain, and that this sensor is involved in neural regulation of glucostasis, in part, through control of corticosterone secretion. The data provide unique evidence that A2 neurons express both ERα and -β proteins and that AMPK upregulates cellular sensitivity to ERα-mediated signaling during simulated energy insufficiency. The results also imply that estrogen promotes glucose and lactate uptake by these cells under those conditions. Evidence for correlation between hindbrain AMPK and hypothalamic nerve cell genomic activation provides novel proof for functional connectivity between this hindbrain sensor and higher order metabolic brain loci while demonstrating a modulatory role for estrogen in this interaction.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, Louisiana, USA
| | | | | | | | | |
Collapse
|
28
|
Hirahara Y, Matsuda KI, Liu YF, Yamada H, Kawata M, Boggs JM. 17β-Estradiol and 17α-estradiol induce rapid changes in cytoskeletal organization in cultured oligodendrocytes. Neuroscience 2013; 235:187-99. [PMID: 23337538 DOI: 10.1016/j.neuroscience.2012.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 12/15/2012] [Indexed: 12/12/2022]
Abstract
Dramatic changes in the cytoskeleton and the morphology of oligodendrocytes (OLs) occur during various stages of the myelination process. OLs in culture produce large membrane sheets containing cytoskeletal veins of microtubules and actin filaments. We recently showed that estrogen receptors (ER) related to ERα/β were expressed in the membrane sheets of mature OLs in culture. Ligation of these or other membrane ERs in OLs with both 17β- and 17α-estradiol mediated rapid non-genomic signaling. Here, we show that estrogens also mediate rapid non-genomic remodeling of the cytoskeleton in mature OLs in culture. 17β-Estradiol caused a rapid loss of microtubules and the actin cytoskeleton in the OL membrane sheets. It also increased phosphorylation of the actin filament-severing protein cofilin, thus inactivating it. Staining for actin barbed ends with rhodamine-actin showed that it decreased the amount of actin barbed ends. 17α-Estradiol, on the other hand, increased the percentage of cells with abundant staining of actin filaments and actin barbed ends, suggesting that it stabilized and/or increased the dynamics of the actin cytoskeleton. The specific ERα and ERβ agonists, 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) and diarylpropionitrile 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN), respectively, also caused the rapid phosphorylation of cofilin. Estrogen-induced phosphorylation of cofilin was inhibited by Y-27632, a specific inhibitor of the Rho-associated protein serine/threonine kinase (ROCK). The Rho/ROCK/cofilin pathway is therefore implicated in actin rearrangement via estrogen ligation of membrane ERs, which may include forms of ERα and ERβ. These results indicate a role for estrogens in modulation of the cytoskeleton in mature OLs, and thus in various processes required for myelinogenesis.
Collapse
Affiliation(s)
- Y Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Moriguchi-City, 570-8506 Osaka, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Kulkarni J, Gavrilidis E, Hayes E, Heaton V, Worsley R. Special biological issues in the management of women with schizophrenia. Expert Rev Neurother 2012; 12:823-33. [PMID: 22853790 DOI: 10.1586/ern.12.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schizophrenia is a debilitating and pervasive mental illness with devastating effects on psychological, cognitive and social wellbeing, and for which current treatment options are far from ideal. Gender differences and the influence of the female reproductive life cycle on the onset, course and symptoms of schizophrenia and the discovery of estrogen's remarkable psychoprotective properties in animal models led to the proposal of the 'estrogen protection hypothesis' of schizophrenia. This has fueled the recent successful investigation of estradiol as a potential adjuvant therapeutic agent in the management of schizophrenia in women. This review explains the scientific rationale behind the estrogen hypothesis and how it can be clinically utilized to address concerns unique to the care of women with schizophrenia.
Collapse
Affiliation(s)
- Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Level One, Old Baker Building, The Alfred Hospital, Commercial Road, Melbourne 3004, Australia.
| | | | | | | | | |
Collapse
|
30
|
Liu SB, Zhao MG. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors. Brain Res Bull 2012; 93:27-31. [PMID: 23085545 DOI: 10.1016/j.brainresbull.2012.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 01/19/2023]
Abstract
Excessive activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in the pathophysiology of chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Some studies reported that NR2A and NR2B play different roles in the central nervous system (CNS). The NR2A subunit is primarily found in the synapses and is required for glutamate-mediated neuronal survival. On the other hand, the NR2B subunit is primarily found in the extrasynaptic sites and is required for glutamate-mediated neuronal death in both in vitro and in vivo experiments. Estrogen is a steroid hormone well known for its widespread effects such as neuroprotection in the brain. Classically, estrogen can bind to two kinds of nuclear receptors, namely, estrogen receptor α (ERα) and estrogen receptor β (ERβ), and produce physiological and neuroprotective effects. Aside from nuclear receptors, estrogen has one membrane receptor, which can either be G-protein-coupled receptor 30 (GPR30), Gq-mER, or ER-X. NMDA exposure clearly promotes NR2B subunit phosphorylation at Ser-1303 and causes neuronal cell death. GPR30 mediates rapid non-genomic effects to protect neurons against injury by inhibiting p-DAPK1 dephosphorylation, which inhibits NR2B subunit phosphorylation at Ser-1303. In addition, NMDA exposure and global ischemia activate the autophagy pathway and induce cell death, which are markedly blocked by the NR2B antagonist Ro 25-6981. Thus, NR2B signaling, autophagy induction and cell death may be closely related. Ro 25-6981 inhibits the dissociation of the NR2B-Beclin-1 signaling complex and delays autophagy in vivo, thus confirming the link between NR2B signaling and autophagy. In short, ERα, ERβ, and GPR30 are involved in the neuroprotection of estrogen in the CNS. Additional research must be conducted to reveal the mechanism of estrogen action fully and to identify better targets for the development of more effective drugs. This article is part of a Special Issue entitled 'Extrasynaptic ionotropic receptors'.
Collapse
Affiliation(s)
- Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | | |
Collapse
|
31
|
Simpkins JW, Singh M, Brock C, Etgen AM. Neuroprotection and estrogen receptors. Neuroendocrinology 2012; 96:119-30. [PMID: 22538356 PMCID: PMC6507404 DOI: 10.1159/000338409] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/18/2012] [Indexed: 11/19/2022]
Abstract
This review is intended to assess the state of current knowledge on the role of estrogen receptors (ERs) in the neuroprotective effects of estrogens in models for acute neuronal injury and death. We evaluate the overall evidence that estrogens are neuroprotective in acute injury and critically assess the role of ERα, ERβ, GPR 30, and nonreceptor-mediated mechanisms in these robust neuroprotective effects of this ovarian steroid hormone. We conclude that all three receptors, as well as nonreceptor-mediated mechanisms can be involved in neuroprotection, depending on the model used, the level of estrogen administrated, and the mode of administration of the steroid. Also, the signaling pathways used by both ER-dependent and ER-independent mechanisms to exert neuroprotection are considered. Finally, further studies that are needed to parse out the relative contribution of receptor versus nonreceptor-mediated signaling are discussed.
Collapse
Affiliation(s)
- James W. Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Meharvan Singh
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Courtney Brock
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Anne M. Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 113, Bronx, NY 10461
| |
Collapse
|
32
|
Abstract
Increasing evidence from epidemiological, preclinical and clinical studies suggests that estrogens may exert psychoprotective effects in schizophrenia. Observations of gender differences in the onset and course of schizophrenia have prompted exploration of the effects of estrogen on the CNS. The aim of this paper is to provide an overview of different applications of adjunctive estrogen as a possible treatment for symptoms of schizophrenia in both men and women. Recent trials have suggested that estrogen augmentation therapy may be able to enhance the management of schizophrenia; however, the clinical application of estrogen as a treatment has been limited by potential side effects, the most worrying being breast and uterine cancer in women, and feminization in men. Selective estrogen receptor modulators (SERMs), however, may offer therapeutic benefits for both men and women with schizophrenia without posing threat to breast and uterine tissue and without feminizing effects. The use of estrogen opens up new possibilities for both men and women in the treatment of severe mental illnesses such as schizophrenia. With further preclinical and clinical research, it is hoped that this promising field of hormone modulation can continue to evolve and eventually be translated into real therapeutic potential.
Collapse
Affiliation(s)
- Jayashri Kulkarni
- The Monash Alfred Psychiatry Research Centre, The Alfred Hospital and Monash University Faculty of Medicine, Nursing and Health Sciences - Central Clinical School, Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
33
|
Adams SM, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM. Soy isoflavones genistein and daidzein exert anti-apoptotic actions via a selective ER-mediated mechanism in neurons following HIV-1 Tat(1-86) exposure. PLoS One 2012; 7:e37540. [PMID: 22629415 PMCID: PMC3358258 DOI: 10.1371/journal.pone.0037540] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/24/2012] [Indexed: 01/02/2023] Open
Abstract
Background HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity. Methodology/Principal Findings We demonstrate in primary cortical cell cultures that 17β-estradiol or isoflavones (genistein or daidzein) attenuate Tat1–86-induced expression of apoptotic proteins and subsequent cell death. Exposure of cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of ERα or ERβ specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of caspase activity; ERβ selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling. Conclusions/Significance Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-1 infected persons.
Collapse
Affiliation(s)
- Sheila M Adams
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America.
| | | | | | | | | |
Collapse
|
34
|
Zuloaga DG, Carbone DL, Quihuis A, Hiroi R, Chong DL, Handa RJ. Perinatal dexamethasone-induced alterations in apoptosis within the hippocampus and paraventricular nucleus of the hypothalamus are influenced by age and sex. J Neurosci Res 2012; 90:1403-12. [PMID: 22388926 DOI: 10.1002/jnr.23026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/18/2023]
Abstract
Exposure to high levels of glucocorticoids (GCs) during development leads to long-term changes in hypothalamic-pituitary-adrenal (HPA) axis regulation, although little is known about the neural mechanisms that underlie these alterations. In this study, we investigated the effects of late gestational (days 18-22) or postnatal (days 4-6) administration of the GC receptor agonist dexamethasone (DEX) on an apoptosis marker in two brain regions critical to HPA axis regulation, the hippocampus and the hypothalamic paraventricular nucleus (PVN). One day after the final DEX injection, male and female rats were sacrificed, and brains were processed for immunohistochemical detection of cleaved caspase-3, an apoptotic cell death indicator. DEX increased cleaved caspase-3 immunoreactivity in the CA1 hippocampal region of both sexes following prenatal but not postnatal treatment. Prenatal DEX also increased caspase-3 immunoreactivity in the CA3 region, an elevation that tended to be greater in females. In contrast, postnatal DEX resulted in a much smaller, albeit significant, induction in CA3 caspase-3 compared with prenatal treatment. Quantitative real-time PCR analysis revealed that prenatal but not postnatal DEX-induced hippocampal cleaved caspase-3 correlated with elevated mRNA of the proapoptotic gene Bad. Few caspase-3-ir cells were identified within the PVN regardless of treatment age, although postnatal but not prenatal DEX increased this number. However, the region immediately surrounding the PVN (peri-PVN) showed significant increases in caspase-3-ir cells following pre- and postnatal DEX. Together these findings indicate that developmental GC exposure increases apoptosis in HPAaxis-associated brain regions in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW It is a well established fact that many serious mental illnesses, in particular psychoses such as schizophrenia, may have a significant hormonal aetiological component. This study aims to discuss the oestrogen protection hypothesis of schizophrenia in particular, with an emphasis on findings from the recent literature in support of this theory. RECENT FINDINGS Epidemiological and life-cycle data point to significant differences in the incidence and course of schizophrenia between men and women, suggesting a protective role of oestrogen. In-vitro and in-vivo preclinical research has confirmed oestradiol's interactions with central neurotransmitter systems implicated in the pathogenesis of schizophrenia, whereas results from randomized controlled trials investigating the antipsychotic potential of oestrogen have been promising. Research into other neuroactive hormones with possible effects on mental state is a field still in its infancy but is evolving rapidly. SUMMARY Schizophrenia and related psychoses are pervasive and debilitating conditions, for which currently available treatments are often only partially effective and entail a high risk of serious side effects. Thus, new therapeutic strategies are needed, and the literature reviewed here suggests that hormones such as oestrogen could be a viable option. It is hoped that, with further research and larger trials, the oestrogen hypothesis can be translated into effective clinical practice.
Collapse
|
36
|
The role of oestrogen and other hormones in the pathophysiology and treatment of schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2012; 2012:540273. [PMID: 22966438 PMCID: PMC3420457 DOI: 10.1155/2012/540273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023]
Abstract
The theory that many serious mental illnesses, in particular psychoses such as schizophrenia, may have a significant hormonal aetiological component is fast gaining popularity and the support of scientific evidence. Oestrogen in particular has been substantially investigated as a potential mediator of brain function in schizophrenia. Epidemiological and life-cycle data point to significant differences in the incidence and course of schizophrenia between men and women suggests a protective role of oestrogen. In vitro and in vivo preclinical research confirms oestradiol's interactions with central neurotransmitter systems implicated in the pathogenesis of schizophrenia, while results from randomised controlled trials investigating the antipsychotic potential of oestrogen have been positive. Research into other neuroactive hormones with possible effects on mental state is a rapidly evolving field that may hold new promise. Given that schizophrenia and related psychoses are pervasive and debilitating conditions for which currently available treatments are often only partially effective and entail a high risk of serious side-effects, novel therapeutic strategies are needed. The literature reviewed in this paper suggests that hormones such as oestrogen could be a viable option, and it is hoped that with further research and larger trials, the oestrogen hypothesis can be translated into effective clinical practice.
Collapse
|
37
|
Johnsen D, Murphy SJ. Isoflurane preconditioning protects neurons from male and female mice against oxygen and glucose deprivation and is modulated by estradiol only in neurons from female mice. Neuroscience 2011; 199:368-74. [PMID: 21985935 DOI: 10.1016/j.neuroscience.2011.09.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/22/2011] [Accepted: 09/25/2011] [Indexed: 11/19/2022]
Abstract
The volatile anesthetic, isoflurane, can protect the brain if administered before an insult such as an ischemic stroke. However, this protective "preconditioning" response to isoflurane is specific to males, with females showing an increase in brain damage following isoflurane preconditioning and subsequent focal cerebral ischemia. Innate cell sex is emerging as an important player in neuronal cell death, but its role in the sexually dimorphic response to isoflurane preconditioning has not been investigated. We used an in vitro model of isoflurane preconditioning and ischemia (oxygen and glucose deprivation, OGD) to test the hypotheses that innate cell sex dictates the response to isoflurane preconditioning and that 17β-estradiol attenuates any protective effect from isoflurane preconditioning in neurons via nuclear estrogen receptors. Sex-segregated neuron cultures derived from postnatal day 0-1 mice were exposed to either 0% or 3% isoflurane preconditioning for 1 h. In separate experiments, 17β-estradiol and the non-selective estrogen receptor antagonist ICI 182,780 were added 24 h before preconditioning and then removed at the end of the preconditioning period. Twenty-three hours after preconditioning, all cultures underwent 2 h of OGD. Twenty-four hours following OGD, cell viability was quantified using calcein-AM fluorescence. We observed that isoflurane preconditioning increased cell survival following subsequent OGD regardless of innate cell sex, but that the presence of 17β-estradiol before and during isoflurane preconditioning attenuated this protection only in female neurons independent of nuclear estrogen receptors. We also found that independent of preconditioning treatment, female neurons were less sensitive to OGD compared with male neurons and that transient treatment with 17β-estradiol protected both male and female neurons from subsequent OGD. More studies are needed to determine how cell type, cell sex, and sex steroids like 17β-estradiol may impact on anesthetic preconditioning and subsequent ischemic outcomes in the brain.
Collapse
Affiliation(s)
- D Johnsen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code: UHN-2, Portland, OR 97239, USA
| | | |
Collapse
|
38
|
Marin R, Marrero-Alonso J, Fernández C, Cury D, Díaz M. Membrane-initiated signaling of estrogen related to neuroprotection. "Social networks" are required. Horm Mol Biol Clin Investig 2011; 7:393-401. [PMID: 25961340 DOI: 10.1515/hmbci.2011.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 11/15/2022]
Abstract
Numerous studies indicate that estrogens are crucial in normal brain functioning and preservation against different injuries. At the neuronal membrane, estrogens, binding to estrogen receptors (ERs) or other surface targets, exert rapid actions involving a plethora of signaling pathways that may converge in neuronal survival. Emerging work reveals that at least part of these actions may require the compartmentalization of ERs in signaling platforms, composed of macromolecular signaling proteins and particular lipid composition integrated in lipid rafts. These particular microstructures may provide the optimal microenvironment to trigger multiple ER interactions that may be crucial for neuroprotection against different brain impairments, such as Alzheimer's disease (AD). In this order of ideas, recent evidence has demonstrated that a membrane ER (mER) physically interacts with a voltage-dependent anion channel (VDAC) in lipid rafts from septal, hippocampal and cortical neurons, and these interactions may have important consequences in the alternative mechanisms developed by estrogens to achieve neuroprotection against amyloid beta (Aβ)-induced toxicity. This review includes a survey of some of the rapid mechanisms developed by estrogen to prevent neuronal death, and the ER interactions that are involved in the structural maintenance and signal transduction mechanisms important for neuronal survival against AD neuro-pathology. A special emphasis is put on the biological relevance of neuronal membrane VDAC in Aβ-related neurotoxicity, and the potential modulation of this channel as a part of a signaling complex with mER, which may be modified in AD brains.
Collapse
|
39
|
Abstract
Estrogens mediate profound effects throughout the body and regulate physiological and pathological processes in both women and men. The low prevalence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, several man-made and plant-derived molecules, such as bisphenol A and genistein, also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1 (GPER; formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in vitro and in preclinical studies and with the use of Gper knockout mice, many more potential roles for GPER are being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer, for which GPER is emerging as a novel therapeutic target and prognostic indicator.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
40
|
Luoma JI, Kelley BG, Mermelstein PG. Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 2011; 76:845-55. [PMID: 21371490 PMCID: PMC3129396 DOI: 10.1016/j.steroids.2011.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 12/12/2022]
Abstract
The therapeutic use of progesterone following traumatic brain injury has recently entered phase III clinical trials as a means of neuroprotection. Although it has been hypothesized that progesterone protects against calcium overload following excitotoxic shock, the exact mechanisms underlying the beneficial effects of progesterone have yet to be determined. We found that therapeutic concentrations of progesterone to be neuroprotective against depolarization-induced excitotoxicity in cultured striatal neurons. Through use of calcium imaging, electrophysiology and the measurement of changes in activity-dependent gene expression, progesterone was found to block calcium entry through voltage-gated calcium channels, leading to alterations in the signaling of the activity-dependent transcription factors NFAT and CREB. The effects of progesterone were highly specific to this steroid hormone, although they did not appear to be receptor mediated. In addition, progesterone did not inhibit AMPA or NMDA receptor signaling. This analysis regarding the effect of progesterone on calcium signaling provides both a putative mechanism by which progesterone acts as a neuroprotectant, as well as affords a greater appreciation for its potential far-reaching effects on cellular function.
Collapse
Affiliation(s)
- Jessie I Luoma
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Brooke G Kelley
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
41
|
Sutcliffe JS. Female rats are smarter than males: influence of test, oestrogen receptor subtypes and glutamate. Curr Top Behav Neurosci 2011; 8:37-56. [PMID: 21365438 DOI: 10.1007/7854_2011_120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Interest in the influence of sex hormones within the central nervous system is a rapidly expanding area of research. A considerable amount of evidence has recently been obtained to support an important role of the gonadal steroids in cognitive processing. Not only are distinct and complementary behavioural phenotypes evident for each gender, in the case of the female but they are also reliant upon hormonal status. Gender influences and hormonal status are thus paramount and should encourage the development of more hypothesis-driven research strategies to understand gender differences in both normal behaviour and where this is altered in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jane Suzanne Sutcliffe
- Maccine Pte Ltd, 10 Science Park Road, #01-05 The Alpha, Singapore Science Park II, Singapore, 117684, Singapore.
| |
Collapse
|