1
|
Konno D, Sugino S, Shibata TF, Misawa K, Imamura-Kawasawa Y, Suzuki J, Kido K, Nagasaki M, Yamauchi M. Antiemetic effects of baclofen in a shrew model of postoperative nausea and vomiting: Whole-transcriptome analysis in the nucleus of the solitary tract. CNS Neurosci Ther 2022; 28:922-931. [PMID: 35238164 PMCID: PMC9062569 DOI: 10.1111/cns.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
Aims The molecular genetic mechanisms underlying postoperative nausea and vomiting (PONV) in the brain have not been fully elucidated. This study aimed to determine the changes in whole transcriptome in the nucleus of the solitary tract (NTS) in an animal model of PONV, to screen a drug candidate and to elucidate the molecular genetic mechanisms of PONV development. Methods Twenty‐one female musk shrews were assigned into three groups: the Surgery group (shrew PONV model, n = 9), the Sham group (n = 6), and the Naïve group (n = 6). In behavioral studies, the main outcome was the number of emetic episodes. In genetic experiments, changes in the transcriptome in the NTS were measured. In a separate study, 12 shrews were used to verify the candidate mechanism underlying PONV. Results A median of six emetic episodes occurred in both the Sham and Surgery groups. Whole‐transcriptome analysis indicated the inhibition of the GABAB receptor‐mediated signaling pathway in the PONV model. Baclofen (GABAB receptor agonist) administration eliminated emetic behaviors in the shrew PONV model. Conclusions Our findings suggest that the GABAB receptor‐mediated signaling pathway is involved in emesis and that baclofen may be a novel therapeutic or prophylactic agent for PONV.
Collapse
Affiliation(s)
- Daisuke Konno
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan.,Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomoko F Shibata
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kazuharu Misawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology, Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, USA
| | - Jun Suzuki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Kanta Kido
- Department of Anesthesiology, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Hyperphagia in offsprings of in utero hyperglycemic mothers is associated with increased expression of heparan sulfate proteoglycans in hypothalamus. Mol Cell Biochem 2022; 477:2025-2032. [PMID: 35419768 DOI: 10.1007/s11010-022-04427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
In utero hyperglycemia has consequences on future outcomes in the offsprings. We had earlier shown that in utero hyperglycemia impacts proteoglycans/glycosaminoglycans, one of the key molecules involved in brain development. Hypothalamic HSPGs such as syndecan-1 and syndecan-3 are well known for their involvement in feeding behavior. Therefore, studies were carried out to determine the effect of maternal hyperglycemia on the expression of HSPGs in the hypothalamus of offspring brain. Results revealed increased protein abundance of Syndecan-1 and -3 as well as glypican-1 in postnatal adults from hyperglycemic mothers. This was associated with increased hyperphagia and increased expression of Neuropeptide Y. These results indicate the likely consequences on offsprings exposed to in utero hyperglycemia on its growth.
Collapse
|
3
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Arokiasamy S, Balderstone MJM, De Rossi G, Whiteford JR. Syndecan-3 in Inflammation and Angiogenesis. Front Immunol 2020; 10:3031. [PMID: 31998313 PMCID: PMC6962229 DOI: 10.3389/fimmu.2019.03031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023] Open
Abstract
Syndecans are a four member multifunctional family of cell surface molecules with diverse biological roles. Syndecan-3 (SDC3) is the largest of these, but in comparison to the other family members relatively little is known about this molecule. SDC3 null mice grow and develop normally, all be it with subtle anatomical phenotypes in the brain. Roles for this molecule in both neuronal and brain tissue have been identified, and is associated with altered satiety responses. Recent studies suggest that SDC3 expression is not restricted to neuronal tissues and has important roles in inflammatory disorders such as rheumatoid arthritis, disease associated processes such as angiogenesis and in the facilitation of infection of dendritic cells by HIV. The purpose of this review article is to explore these new biological insights into SDC3 functions in inflammatory disease.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michaela J. M. Balderstone
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia De Rossi
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - James R. Whiteford
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Bleck D, Ma L, Erdene-Bymbadoo L, Brinks R, Schneider M, Tian L, Pongratz G. Introduction and validation of a new semi-automated method to determine sympathetic fiber density in target tissues. PLoS One 2019; 14:e0217475. [PMID: 31141555 PMCID: PMC6541301 DOI: 10.1371/journal.pone.0217475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/12/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, the role of sympathetic nervous fibers in chronic inflammation has become increasingly evident. At the onset of inflammation, sympathetic activity is increased in the affected tissue. However, sympathetic fibers are largely absent from chronically inflamed tissue. Apparently, there is a very dynamic relationship between sympathetic innervation and the immune system in areas of inflammation, and hence a rapid and easy method for quantification of nerve fiber density of target organs is of great value to answer potential research questions. Currently, nervous fiber densities are either determined by tedious manual counting, which is not suitable for high throughput approaches, or by expensive automated processes relying on specialized software and high-end microscopy equipment. Usually, tyrosine hydroxylase (TH) is used as the marker for sympathetic fibers. In order to overcome the current quantification bottleneck with a cost-efficient alternative, an automated process was established and compared to the classic manual approach of counting TH-positive sympathetic fibers. Since TH is not exclusively expressed on sympathetic fibers, but also in a number of catecholamine-producing cells, a prerequisite for automated determination of fiber densities is to reliably distinct between cells and fibers. Therefore, an additional staining using peripherin exclusively expressed in nervous fibers as a secondary marker was established. Using this novel approach, we studied the spleens from a syndecan-3 knockout (SDC3KO) mouse line, and demonstrated equal results on SNS fiber density for both manual and automated counts (Manual counts: wildtype: 22.57 +/- 11.72 fibers per mm2; ko: 31.95 +/- 18.85 fibers per mm2; p = 0.05; Automated counts: wildtype: 31.6 +/- 18.98 fibers per mm2; ko: 45.49 +/- 19.65 fibers per mm2; p = 0.02). In conclusion, this new and simple method can be used as a high-throughput approach to reliably and quickly estimate SNS nerve fiber density in target tissues.
Collapse
Affiliation(s)
- Dennis Bleck
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Li Ma
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lkham Erdene-Bymbadoo
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralph Brinks
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Matthias Schneider
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Li Tian
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
- * E-mail: (GP); (LT)
| | - Georg Pongratz
- Hiller Research Center Rheumatology at University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (GP); (LT)
| |
Collapse
|
7
|
Neurobiological characteristics underlying metabolic differences between males and females. Prog Neurobiol 2018; 176:18-32. [PMID: 30194984 DOI: 10.1016/j.pneurobio.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/24/2022]
Abstract
The hypothalamus is the main integrating center for metabolic control. Our understanding of how hypothalamic circuits function to control appetite and energy expenditure has increased dramatically in recent years, due to the rapid rise in the incidence of obesity and the search for effective treatments. Increasing evidence indicates that these treatments will most likely differ between males and females. Indeed, sex differences in metabolism have been demonstrated at various levels, including in two of the most studied neuronal populations involved in metabolic control: the anorexigenic proopiomelanocortin neurons and the orexigenic neuropeptide Y/Agouti-related protein neurons. Here we review what is known to date regarding the sex differences in these two neuronal populations, as well as other neuronal populations involved in metabolic control and glial cells.
Collapse
|
8
|
Chang BCC, Hwang LC, Huang WH. Positive Association of Metabolic Syndrome with a Single Nucleotide Polymorphism of Syndecan-3 (rs2282440) in the Taiwanese Population. Int J Endocrinol 2018; 2018:9282598. [PMID: 29666642 PMCID: PMC5830967 DOI: 10.1155/2018/9282598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/19/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND/PURPOSE Metabolic syndrome (MetS) poses a major public health burden on the general population worldwide. Syndecan-3 (SDC3), a heparin sulfate proteoglycan, had been found by previous studies to be linked with energy balance and obesity, but its association with MetS is not known. The objective of this study is to investigate whether SDC3 polymorphism (rs2282440) is associated with MetS in the Taiwanese population. METHODS Genotypes of SDC3 polymorphism (rs2282440) were analyzed in 545 Taiwanese adult subjects, of which 154 subjects had MetS. RESULTS Subjects with SDC3 rs2282440 TT homozygote had higher frequency of MetS than those with CC or CT genotype (p = 0.0217). SDC3 rs2282440 TT homozygote had a 1.96-fold risk of being obese and 1.8-fold risk of having MetS (with CC genotype as reference). As for the individual components of MetS, subjects with SDC3 rs2282440 TT homozygote were more likely to have large waist circumference and low high-density lipoprotein cholesterol (OR = 1.75 and OR = 1.84, resp.). CONCLUSION SDC3 rs2282440 polymorphism is positively associated with MetS in the Taiwanese population. Further investigation is needed to see if this association is mediated by mere adiposity or SDC3 polymorphism is also linked with other components of MetS such as lipid metabolism.
Collapse
Affiliation(s)
| | - Lee-Ching Hwang
- Department of Family Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
- Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Hsin Huang
- Department of Family Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
- Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
9
|
Palomino R, Lee HW, Millhauser GL. The agouti-related peptide binds heparan sulfate through segments critical for its orexigenic effects. J Biol Chem 2017; 292:7651-7661. [PMID: 28264929 DOI: 10.1074/jbc.m116.772822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Syndecans potently modulate agouti-related peptide (AgRP) signaling in the central melanocortin system. Through heparan sulfate moieties, syndecans are thought to anchor AgRP near its receptor, enhancing its orexigenic effects. Original work proposed that the N-terminal domain of AgRP facilitates this interaction. However, this is not compatible with evidence that this domain is posttranslationally cleaved. Addressing this long-standing incongruity, we used calorimetry and magnetic resonance to probe interactions of AgRP peptides with glycosaminoglycans, including heparan sulfate. We show that mature, cleaved, C-terminal AgRP, not the N-terminal domain, binds heparan sulfate. NMR shows that the binding site consists of regions distinct from the melanocortin receptor-binding site. Using a library of designed AgRP variants, we find that the strength of the syndecan interaction perfectly tracks orexigenic action. Our data provide compelling evidence that AgRP is a heparan sulfate-binding protein and localizes critical regions in the AgRP structure required for this interaction.
Collapse
Affiliation(s)
- Rafael Palomino
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Hsiau-Wei Lee
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Glenn L Millhauser
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
10
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
12
|
Leonova EI, Galzitskaya OV. Structure and functions of syndecans in vertebrates. BIOCHEMISTRY (MOSCOW) 2015; 78:1071-85. [PMID: 24237141 DOI: 10.1134/s0006297913100015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Syndecans constitute a family of transmembrane proteoglycans that perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. Through mediating binding of a great number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions regulating, thereby, various processes in a cell: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. In fibroblasts, syndecans are responsible for cell adhesion by modulating functions of integrins through interaction with fibronectin at the external side of a cell and with cytoskeleton and signaling molecules inside the cell. The extracellular domain of syndecans is subjected to periodic shedding from the cell membrane. This process may be stimulated in response to inflammation, tissue damage, and other pathological manifestations. Cleaved domain may act as either competitive inhibitor or activator of signaling cascades. This review summarizes and analyzes the available data regarding structure, main biochemical properties, and functions of syndecans in vertebrates.
Collapse
Affiliation(s)
- E I Leonova
- Lomonosov Moscow State University, Pushchino Branch, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
13
|
Leonova EI, Galzitskaya OV. Cell communication using intrinsically disordered proteins: what can syndecans say? J Biomol Struct Dyn 2014; 33:1037-50. [PMID: 24956062 DOI: 10.1080/07391102.2014.926256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Because intrinsically disordered proteins are incapable of forming unique tertiary structures in isolation, their interaction with partner structures enables them to play important roles in many different biological functions. Therefore, such proteins are usually multifunctional, and their ability to perform their major function, as well as accessory functions, depends on the characteristics of a given interaction. The present paper demonstrates, using predictions from two programs, that the transmembrane proteoglycans syndecans are natively disordered because of their diverse functions and large number of interaction partners. Syndecans perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. By mediating the binding of a large number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions that subsequently regulate various cell processes: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. The occurrences of 20 amino acids in syndecans 1-4 from 25 animals were compared with those in 17 animal proteomes. Gly + Ala, Thr, Glu, and Pro were observed to predominate in the syndecans, contributing to the lack of an ordered structure. In contrast, there were many fewer amino acids in syndecans that promote an ordered structure, such as Cys, Trp, Asn, and His. In addition, a region rich in Asp has been identified between two heparan sulfate-binding sites in the ectodomains, and a region rich in Lys has been identified in the conserved C1 site of the cytoplasmic domain. These particular regions play an essential role in the various functions of syndecans due to their lack of structure.
Collapse
Affiliation(s)
- Elena I Leonova
- a Institute of Protein Research, Russian Academy of Sciences , Moscow Region, Pushchino 142290 , Russia
| | | |
Collapse
|
14
|
Hypothalamic proteoglycan syndecan-3 is a novel cocaine addiction resilience factor. Nat Commun 2013; 4:1955. [PMID: 23736082 PMCID: PMC3709481 DOI: 10.1038/ncomms2955] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 11/08/2022] Open
Abstract
Proteoglycans like syndecan-3 have complex signaling roles in addition to their function as structural components of the extracellular matrix. Here, we show that syndecan-3 in the lateral hypothalamus has an unexpected new role in limiting compulsive cocaine intake. In particular, we observe that syndecan-3 null mice self-administer greater amounts of cocaine than wild-type mice. This effect can be rescued by re-expression of syndecan-3 in the lateral hypothalamus with an adeno-associated viral vector. Adeno-associated viral vector delivery of syndecan-3 to the lateral hypothalamus also reduces motivation for cocaine in normal mice. Syndecan-3 limits cocaine intake by modulating the effects of glial-cell-line-derived neurotrophic factor, which uses syndecan-3 as an alternative receptor. Our findings indicate syndecan-3-dependent signaling as a novel therapeutic target for the treatment of cocaine addiction.
Collapse
|
15
|
Abstract
Syndecan-3 is one of the four members of the syndecan family of heparan sulphate proteoglycans and has been shown to interact with numerous growth factors via its heparan sulphate chains. The extracellular core proteins of syndecan-1,-2 and -4 all possess adhesion regulatory motifs and we hypothesized that syndecan-3 may also possess such characteristics. Here we show that a bacterially expressed GST fusion protein consisting of the entire mature syndecan-3 ectodomain has anti-angiogenic properties and acts via modulating endothelial cell migration. This work identifies syndecan-3 as a possible therapeutic target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| | - James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| |
Collapse
|
16
|
De Rossi G, Whiteford JR. Novel insight into the biological functions of syndecan ectodomain core proteins. Biofactors 2013; 39:374-82. [PMID: 23559542 DOI: 10.1002/biof.1104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/18/2013] [Indexed: 01/02/2023]
Abstract
Syndecans are a four member family of multifunctional transmembrane heparan sulphate bearing cell surface receptors. Each family member has common molecular architecture but a distinct expression profile. Numerous molecular interactions between syndecan heparan sulphate chains, growth factors, cytokines, and extracellular matrix molecules have been reported and syndecans are intimately associated with cell adhesion and migration. Here, we describe the important emerging concept that contained within syndecan extracellular core proteins are "adhesion regulatory domains." Cell adhesion is driven by the integrins and syndecan ectodomain adhesion regulatory domains can alter integrin driven cellular responses. Cell adhesion and migration is central to numerous pathologies and an understanding of how syndecan ectodomains influence integrins will lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6B, UK
| | | |
Collapse
|
17
|
Madonna ME, Schurdak J, Yang YK, Benoit S, Millhauser GL. Agouti-related protein segments outside of the receptor binding core are required for enhanced short- and long-term feeding stimulation. ACS Chem Biol 2012; 7:395-402. [PMID: 22129136 DOI: 10.1021/cb2003412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The agouti-related protein (AgRP) plays a central role in energy balance by reducing signaling through the hypothalamic melanocortin receptors (McRs) 3 and 4, in turn stimulating feeding and decreasing energy expenditure. Mature AgRP(83-132), produced by endoproteolytic processing, contains a central region that folds as an inhibitor cystine knot (ICK) stabilized by a network of disulfide bonds; this domain alone carries the molecular features for high affinity McR binding and inverse agonism. Outside of the ICK domain are two polypeptide segments, an N-terminal extension and a C-terminal loop, both completely conserved but of unknown function. Here we examine the physiological roles of these non-ICK segments by developing a panel of modified AgRPs that were administered to rats through intracerebroventricular (ICV) injection. Analysis of food consumption demonstrates that basic (positively charged) residues are essential for potent short- and long-term AgRP stimulated feeding. Moreover, we demonstrate an approximate linear relationship between protein charge density and 24 h food intake. Next, we developed artificial AgRP(83-132) analogues with increased positive charge and found that these species were substantially more potent than wild type. A single dose of one protein, designated AgRP-4K, results in enhanced feeding for well over a week and weight gain that is nearly double that of AgRP(83-132). These studies suggest new strategies for the development of potent orexigenic species and may serve as leads for the development of therapeutics for treating wasting conditions such as cachexia.
Collapse
Affiliation(s)
- Michael E. Madonna
- Department of Chemistry and
Biochemistry, University of California,
Santa Cruz, California 95064, United States
| | - Jennifer Schurdak
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45237, United
States
| | - Ying-kui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
35205, United States
| | - Stephen Benoit
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45237, United
States
| | - Glenn L. Millhauser
- Department of Chemistry and
Biochemistry, University of California,
Santa Cruz, California 95064, United States
| |
Collapse
|
18
|
De Jonghe BC, Hayes MR, Bence KK. Melanocortin control of energy balance: evidence from rodent models. Cell Mol Life Sci 2011; 68:2569-88. [PMID: 21553232 PMCID: PMC3135719 DOI: 10.1007/s00018-011-0707-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 01/18/2023]
Abstract
Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of longterm energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed.
Collapse
Affiliation(s)
- Bart C. De Jonghe
- Dept. of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Matthew R. Hayes
- Dept. of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Kendra K. Bence
- Dept. of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|