1
|
Hunsberger HC, Lee S, Jin M, Lanio M, Whye A, Cha J, Scarlata M, Matthews LC, Jayaseelan K, Denny CA. Sex-Specific Effects of Anxiety on Cognition and Activity-Dependent Neural Networks: Insights From (Female) Mice and (Wo)men. Biol Psychiatry 2025; 97:900-914. [PMID: 39349155 PMCID: PMC11949853 DOI: 10.1016/j.biopsych.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Neuropsychiatric symptoms, such as depression and anxiety, are observed in 90% of patients with Alzheimer's disease (AD), two-thirds of whom are women. Neuropsychiatric symptoms usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brainwide neuronal mechanisms. METHODS To gain mechanistic insight into how anxiety affects AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity using the ArcCreERT2 x eYFP (enhanced yellow fluorescent protein) x amyloid precursor protein/presenilin 1 (APP/PS1) (AD) mice. The Alzheimer's Disease Neuroimaging Initiative dataset was used to determine the impact of anxiety on AD progression in humans. RESULTS Female APP/PS1 mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control mice and male mice. Brainwide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in APP/PS1 mice. Sex-specific eYFP+/c-Fos+ changes were observed; female APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in dorsal CA3, whereas male APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in the dorsal dentate gyrus. In the Alzheimer's Disease Neuroimaging Initiative dataset, anxiety predicted transition to dementia. Female participants positive for anxiety and amyloid transitioned more quickly to dementia than male participants. CONCLUSIONS While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that there are sex differences in AD network dysfunction and that personalized medicine may benefit male and female patients with AD rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York; Mental Health Data Science, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Michelle Jin
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Marcos Lanio
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Alicia Whye
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Jiook Cha
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Data Science Institute, Columbia University, New York, New York; Department of Psychology, Seoul National University, Seoul, South Korea
| | - Miranda Scarlata
- Department of Neuroscience, Vassar College, Poughkeepsie, New York
| | - Louise C Matthews
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York.
| |
Collapse
|
2
|
T AR, K K, Paul JS. Unveiling metabolic patterns in dementia: Insights from high-resolution quantitative blood-oxygenation-level-dependent MRI. Med Phys 2024; 51:6002-6019. [PMID: 38888202 DOI: 10.1002/mp.17173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Oxygen extraction fraction (OEF) and deoxyhemoglobin (DoHb) levels reflect variations in cerebral oxygen metabolism in demented patients. PURPOSE Delineating the metabolic profiles evident throughout different phases of dementia necessitates an integrated analysis of OEF and DoHb levels. This is enabled by leveraging high-resolution quantitative blood oxygenation level dependent (qBOLD) analysis of magnitude images obtained from a multi-echo gradient-echo MRI (mGRE) scan performed on a 3.0 Tesla scanner. METHODS Achieving superior spatial resolution in qBOLD necessitates the utilization of an mGRE scan with only four echoes, which in turn limits the number of measurements compared to the parameters within the qBOLD model. Consequently, it becomes imperative to discard non-essential parameters to facilitate further analysis. This process entails transforming the qBOLD model into a format suitable for fitting the log-magnitude difference (L-MDif) profiles of the four echo magnitudes present in each brain voxel. In order to bolster spatial specificity, the log-difference qBOLD model undergoes refinement into a representative form, termed as r-qBOLD, particularly when applied to class-averaged L-MDif signals derived through k-means clustering of L-MDif signals from all brain voxels into a predetermined number of clusters. The agreement between parameters estimated using r-qBOLD for different cluster sizes is validated using Bland-Altman analysis, and the model's goodness-of-fit is evaluated using aχ 2 ${\chi ^2}$ -test. Retrospective MRI data of Alzheimer's disease (AD), mild cognitive impairment (MCI), and non-demented patients without neuropathological disorders, pacemakers, other implants, or psychiatric disorders, who completed a minimum of three visits prior to MRI enrolment, are utilized for the study. RESULTS Utilizing a cohort comprising 30 demented patients aged 65-83 years in stages 4-6 representing mild, moderate, and severe stages according to the clinical dementia rating (CDR), matched with an age-matched non-demented control group of 18 individuals, we conducted joint observations of OEF and DoHb levels estimated using r-qBOLD. The observations elucidate metabolic signatures in dementia based on OEF and DoHb levels in each voxel. Our principal findings highlight the significance of spatial patterns of metabolic profiles (metabolic patterns) within two distinct regimes: OEF levels exceeding the normal range (S1-regime), and OEF levels below the normal range (S2-regime). The S1-regime, accompanied by low DoHb levels, predominantly manifests in fronto-parietal and perivascular regions with increase in dementia severity. Conversely, the S2-regime, accompanied by low DoHb levels, is observed in medial temporal (MTL) regions. Other regions with abnormal metabolic patterns included the orbitofrontal cortex (OFC), medial-orbital prefrontal cortex (MOPFC), hypothalamus, ventro-medial prefrontal cortex (VMPFC), and retrosplenial cortex (RSP). Dysfunction in the OFC and MOPFC indicated cognitive and emotional impairment, while hypothalamic involvement potentially indicated preclinical dementia. Reduced metabolic activity in the RSP suggested early-stage AD related functional abnormalities. CONCLUSIONS Integrated analysis of OEF and DoHb levels using r-qBOLD reveals distinct metabolic signatures across dementia phases, highlighting regions susceptible to neuronal loss, vascular involvement, and preclinical indicators.
Collapse
Affiliation(s)
- Arun Raj T
- Division of Medical Informatics, School of Informatics, Kerala University of Digital Sciences Innovation & Technology (DUK), Trivandrum, Kerala, India
| | - Karthik K
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Joseph Suresh Paul
- Division of Medical Informatics, School of Informatics, Kerala University of Digital Sciences Innovation & Technology (DUK), Trivandrum, Kerala, India
| |
Collapse
|
3
|
Sheppard PAS, Oomen CA, Bussey TJ, Saksida LM. The Granular Retrosplenial Cortex Is Necessary in Male Rats for Object-Location Associative Learning and Memory, But Not Spatial Working Memory or Visual Discrimination and Reversal, in the Touchscreen Operant Chamber. eNeuro 2024; 11:ENEURO.0120-24.2024. [PMID: 38844347 PMCID: PMC11208985 DOI: 10.1523/eneuro.0120-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
The retrosplenial cortex (RSC) is a hub of diverse afferent and efferent projections thought to be involved in associative learning. RSC shows early pathology in mild cognitive impairment and Alzheimer's disease (AD), which impairs associative learning. To understand and develop therapies for diseases such as AD, animal models are essential. Given the importance of human RSC in object-location associative learning and the success of object-location associative paradigms in human studies and in the clinic, it would be of considerable value to establish a translational model of object-location learning for the rodent. For this reason, we sought to test the role of RSC in object-location learning in male rats using the object-location paired-associates learning (PAL) touchscreen task. First, increased cFos immunoreactivity was observed in granular RSC following PAL training when compared with extended pretraining controls. Following this, RSC lesions following PAL acquisition were used to explore the necessity of the RSC in object-location associative learning and memory and two tasks involving only one modality: trial-unique nonmatching-to-location for spatial working memory and pairwise visual discrimination/reversal. RSC lesions impaired both memory for learned paired-associates and learning of new object-location associations but did not affect performance in either the spatial or visual single-modality tasks. These findings provide evidence that RSC is necessary for object-location learning and less so for learning and memory involving the individual modalities therein.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Charlotte A Oomen
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Timothy J Bussey
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Lisa M Saksida
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- MRC and Wellcome Trust Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
4
|
Papazoglou A, Henseler C, Weickhardt S, Teipelke J, Papazoglou P, Daubner J, Schiffer T, Krings D, Broich K, Hescheler J, Sachinidis A, Ehninger D, Scholl C, Haenisch B, Weiergräber M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer's disease mice. PLoS One 2024; 19:e0296959. [PMID: 38324617 PMCID: PMC10849391 DOI: 10.1371/journal.pone.0296959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jenni Teipelke
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Panagiota Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Damian Krings
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Park K, Kohl MM, Kwag J. Memory encoding and retrieval by retrosplenial parvalbumin interneurons are impaired in Alzheimer's disease model mice. Curr Biol 2024; 34:434-443.e4. [PMID: 38157861 DOI: 10.1016/j.cub.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Memory deficits in Alzheimer's disease (AD) show a strong link with GABAergic interneuron dysfunctions.1,2,3,4,5,6,7 The ensemble dynamics of GABAergic interneurons represent memory encoding and retrieval,8,9,10,11,12 but how GABAergic interneuron dysfunction affects inhibitory ensemble dynamics in AD is unknown. As the retrosplenial cortex (RSC) is critical for episodic memory13,14,15,16 and is affected by β-amyloid accumulation in early AD,17,18,19,20,21 we address this question by performing Ca2+ imaging in RSC parvalbumin (PV)-expressing interneurons during a contextual fear memory task in healthy control mice and the 5XFAD mouse model of AD. We found that populations of PV interneurons responsive to aversive electric foot shocks during contextual fear conditioning (shock-responsive) significantly decreased in the 5XFAD mice, indicating dysfunctions in the recruitment of memory-encoding PV interneurons. In the control mice, ensemble activities of shock-responsive PV interneurons were selectively upregulated during the freezing epoch of the contextual fear memory retrieval, manifested by synaptic potentiation of PV interneuron-mediated inhibition. However, such changes in ensemble dynamics during memory retrieval and synaptic plasticity were both absent in the 5XFAD mice. Optogenetic silencing of PV interneurons during contextual fear conditioning in the control mice mimicked the memory deficits in the 5XFAD mice, while optogenetic activation of PV interneurons in the 5XFAD mice restored memory retrieval. These results demonstrate the critical roles of contextual fear memory-encoding PV interneurons for memory retrieval. Furthermore, synaptic dysfunction of PV interneurons may disrupt the recruitment of PV interneurons and their ensemble dynamics underlying contextual fear memory retrieval, subsequently leading to memory deficits in AD.
Collapse
Affiliation(s)
- Kyerl Park
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea; Department of Brain and Cognitive Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea
| | - Michael M Kohl
- School of Psychology and Neuroscience, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jeehyun Kwag
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
6
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Early tactile stimulation influences the development of Alzheimer's disease in gestationally stressed APP NL-G-F adult offspring NL-G-F/NL-G-F mice. Exp Neurol 2023; 368:114498. [PMID: 37536439 DOI: 10.1016/j.expneurol.2023.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Alzheimer's disease (AD) is associated with cerebral plaques and tangles, reduced synapse number, and shrinkage in several brain areas and these morphological effects are associated with the onset of compromised cognitive, motor, and anxiety-like behaviours. The appearance of both anatomical and behavioural symptoms is worsened by stress. The focus of this study was to examine the effect of neonatal tactile stimulation on AD-like behavioural and neurological symptoms on APP NL-G-F/NL-G-F mice, a mouse model of AD, who have been gestationally stressed. Our findings indicate that neonatal tactile stimulation improves cognition, motor skills, and anxiety-like symptoms in both gestationally stressed and non-stressed adult APP mice and that these alterations are associated with reduced Aβ plaque formation. Thus, tactile stimulation appears to be a promising non-invasive preventative strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Zahra Jafari
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| |
Collapse
|
7
|
Sagalajev B, Lennartz L, Vieth L, Gunawan CT, Neumaier B, Drzezga A, Visser-Vandewalle V, Endepols H, Sesia T. TgF344-AD Rat Model of Alzheimer's Disease: Spatial Disorientation and Asymmetry in Hemispheric Neurodegeneration. J Alzheimers Dis Rep 2023; 7:1085-1094. [PMID: 37849636 PMCID: PMC10578321 DOI: 10.3233/adr-230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023] Open
Abstract
Background The TgF344-AD ratline represents a transgenic animal model of Alzheimer's disease. We previously reported spatial memory impairment in TgF344-AD rats, yet the underlying mechanism remained unknown. We, therefore, set out to determine if spatial memory impairment in TgF344-AD rats is attributed to spatial disorientation. Also, we aimed to investigate whether TgF344-AD rats exhibit signs of asymmetry in hemispheric neurodegeneration, similar to what is reported in spatially disoriented AD patients. Finally, we sought to examine how spatial disorientation correlates with working memory performance. Methods TgF344-AD rats were divided into two groups balanced by sex and genotype. The first group underwent the delayed match-to-sample (DMS) task for the assessment of spatial orientation and working memory, while the second group underwent positron emission tomography (PET) for the assessment of glucose metabolism and microglial activity as in-vivo markers of neurodegeneration. Rats were 13 months old during DMS training and 14-16 months old during DMS testing and PET. Results In the DMS task, TgF344-AD rats were more likely than their wild-type littermates to display strong preference for one of the two levers, preventing working memory testing. Rats without lever-preference showed similar working memory, regardless of their genotype. PET revealed hemispherically asymmetric clusters of increased microglial activity and altered glucose metabolism in TgF344-AD rats. Conclusions TgF344-AD rats display spatial disorientation and hemispherically asymmetrical neurodegeneration, suggesting a potential causal relationship consistent with past clinical research. In rats with preserved spatial orientation, working memory remains intact.
Collapse
Affiliation(s)
- Boriss Sagalajev
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, Netherlands
| | - Lina Lennartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, Netherlands
| | - Lukas Vieth
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Cecilia Tasya Gunawan
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, Netherlands
| | - Bernd Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Alexander Drzezga
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Jülich, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, Netherlands
| | - Heike Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany
| | - Thibaut Sesia
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, Netherlands
| |
Collapse
|
8
|
Hunsberger HC, Lee S, Jin M, Lanio M, Whye A, Cha J, Scarlata M, Jayaseelan K, Denny CA. Sex-Specific Effects of Anxiety on Cognition and Activity-Dependent Neural Networks: Insights from (Female) Mice and (Wo)Men. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548180. [PMID: 37503264 PMCID: PMC10369916 DOI: 10.1101/2023.07.07.548180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms. METHODS To gain mechanistic insight into how anxiety impacts AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity utilizing the ArcCreERT2 x enhanced yellow fluorescent protein (eYFP) x APP/PS1 (AD) mice. The ADNI dataset was used to determine the impact of anxiety on AD progression in human subjects. RESULTS Female AD mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control (Ctrl) mice and male mice. Brain-wide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in AD mice. Sex-specific memory trace changes were observed; female AD mice exhibited impaired memory traces in dorsal CA3 (dCA3), while male AD mice exhibited impaired memory traces in the dorsal dentate gyrus (dDG). In the ADNI dataset, anxiety predicted transition to dementia. Female subjects positive for anxiety and amyloid transitioned more quickly to dementia than male subjects. CONCLUSIONS While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that AD network dysfunction is sexually dimorphic, and that personalized medicine may benefit male and female AD patients rather than a one size fits all approach.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, USA
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science/The Chicago Medical School; North Chicago, IL, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC); New York, NY, USA
- Mental Health Data Science, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | - Michelle Jin
- Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY, USA
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Marcos Lanio
- Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY, USA
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Alicia Whye
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC); New York, NY, USA
| | - Jiook Cha
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University; New York, NY, USA
- Division of Child and Adolescent Psychiatry, NYSPI/RFMH; New York, NY, USA
- Data Science Institute, Columbia University; New York, NY, USA
- Department of Psychology, Seoul National University; Seoul, South Korea
| | - Miranda Scarlata
- Department of Neuroscience, Vassar College; Poughkeepsie, NY USA
- Department of Social Policy and Intervention, University of Oxford; Oxford, England
| | - Keerthana Jayaseelan
- Barnard College, Columbia University; New York, NY, USA
- Department of Medicine, New York Medical College/Westchester Medical Center; Valhalla, NY, USA
| | - Christine. A. Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC); New York, NY, USA
| |
Collapse
|
9
|
Cassaday HJ, Muir C, Stevenson CW, Bonardi C, Hock R, Waite L. From safety to frustration: The neural substrates of inhibitory learning in aversive and appetitive conditioning procedures. Neurobiol Learn Mem 2023; 202:107757. [PMID: 37044368 DOI: 10.1016/j.nlm.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Inhibitory associative learning counters the effects of excitatory learning, whether appetitively or aversively motivated. Moreover, the affective responses accompanying the inhibitory associations are of opponent valence to the excitatory conditioned responses. Inhibitors for negative aversive outcomes (e.g. shock) signal safety, while inhibitors for appetitive outcomes (e.g. food reward) elicit frustration and/or disappointment. This raises the question as to whether studies using appetitive and aversive conditioning procedures should demonstrate the same neural substrates for inhibitory learning. We review the neural substrates of appetitive and aversive inhibitory learning as measured in different procedural variants and in the context of the underpinning excitatory conditioning on which it depends. The mesocorticolimbic dopamine pathways, retrosplenial cortex and hippocampus are consistently implicated in inhibitory learning. Further neural substrates identified in some procedural variants may be related to the specific motivation of the learning task and modalities of the learning cues. Finally, we consider the translational implications of our understanding of the neural substrates of inhibitory learning, for obesity and addictions as well as for anxiety disorders.
Collapse
Affiliation(s)
- H J Cassaday
- School of Psychology, University of Nottingham, United Kingdom.
| | - C Muir
- School of Psychology, University of Nottingham, United Kingdom; School of Physiology, Pharmacology, and Neuroscience, University of Bristol, United Kingdom
| | - C W Stevenson
- School of Biosciences, University of Nottingham, United Kingdom
| | - C Bonardi
- School of Psychology, University of Nottingham, United Kingdom
| | - R Hock
- School of Psychology, University of Nottingham, United Kingdom
| | - L Waite
- School of Psychology, University of Nottingham, United Kingdom
| |
Collapse
|
10
|
Manelis A, Lima Santos JP, Suss SJ, Holland CL, Stiffler RS, Bitzer HB, Mailliard S, Shaffer MA, Caviston K, Collins MW, Phillips ML, Kontos AP, Versace A. Vestibular/ocular motor symptoms in concussed adolescents are linked to retrosplenial activation. Brain Commun 2022; 4:fcac123. [PMID: 35615112 PMCID: PMC9127539 DOI: 10.1093/braincomms/fcac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Following concussion, adolescents often experience vestibular and ocular motor symptoms as well as working memory deficits that may affect their cognitive, academic and social well-being. Complex visual environments including school activities, playing sports, or socializing with friends may be overwhelming for concussed adolescents suffering from headache, dizziness, nausea and fogginess, thus imposing heightened requirements on working memory to adequately function in such environments. While understanding the relationship between working memory and vestibular/ocular motor symptoms is critically important, no previous study has examined how an increase in working memory task difficulty affects the relationship between severity of vestibular/ocular motor symptoms and brain and behavioural responses in a working memory task. To address this question, we examined 80 adolescents (53 concussed, 27 non-concussed) using functional MRI while performing a 1-back (easy) and 2-back (difficult) working memory tasks with angry, happy, neutral and sad face distractors. Concussed adolescents completed the vestibular/ocular motor screening and were scanned within 10 days of injury. We found that all participants showed lower accuracy and slower reaction time on difficult (2-back) versus easy (1-back) tasks (P-values < 0.05). Concussed adolescents were significantly slower than controls across all conditions (P < 0.05). In concussed adolescents, higher vestibular/ocular motor screening total scores were associated with significantly greater differences in reaction time between 1-back and 2-back across all distractor conditions and significantly greater differences in retrosplenial cortex activation for the 1-back versus 2-back condition with neutral face distractors (P-values < 0.05). Our findings suggest that processing of emotionally ambiguous information (e.g. neutral faces) additionally increases the task difficulty for concussed adolescents. Post-concussion vestibular/ocular motor symptoms may reduce the ability to inhibit emotionally ambiguous information during working memory tasks, potentially affecting cognitive, academic and social functioning in concussed adolescents.
Collapse
Affiliation(s)
- Anna Manelis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Stephen J. Suss
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia L. Holland
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Hannah B. Bitzer
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarrah Mailliard
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madelyn A. Shaffer
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaitlin Caviston
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael W. Collins
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Rumyantseva A, Popovic M, Trifunovic A. CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis. Brain 2022; 145:92-104. [PMID: 35240691 DOI: 10.1093/brain/awab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/12/2022] Open
Abstract
Mitochondria are essential organelles found in every eukaryotic cell, required to convert food into usable energy. Therefore, it is not surprising that mutations in either mtDNA or nuclear DNA-encoded genes of mitochondrial proteins cause diseases affecting the oxidative phosphorylation system, which are heterogeneous from a clinical, genetic, biochemical and molecular perspective and can affect patients at any age. Despite all this, it is surprising that our understanding of the mechanisms governing mitochondrial gene expression and its associated pathologies remain superficial and therapeutic interventions largely unexplored. We recently showed that loss of the mitochondrial matrix protease caseinolytic protease proteolytic subunit (CLPP) ameliorates phenotypes in cells characterized by defects in oxidative phosphorylation maintenance. Here, we build upon this finding by showing that CLPP depletion is indeed beneficial in vivo for various types of neuronal populations, including Purkinje cells in the cerebellum and cortical and hippocampal neurons in the forebrain, as it strongly improves distinct phenotypes of mitochondria encephalopathy, driven by the deficiency of the mitochondrial aspartyl tRNA synthase DARS2. In the absence of CLPP, neurodegeneration of DARS2-deficient neurons is delayed as they present milder oxidative phosphorylation dysfunction. This in turn leads to a decreased neuroinflammatory response and significantly improved motor functions in both double-deficient models (Purkinje cell-specific or forebrain neuron-specific Dars2/Clpp double knockout mice). We propose that diminished turnover of respiratory complex I caused by the loss of CLPP is behind the improved phenotype in Dars2/Clpp double knockout animals, even though this intervention might not restore respiratory complex I activity but rather improve mitochondrial cristae morphology or help maintain the NAD+/NADH ratio inside mitochondria. These results also open the possibility of targeting CLPP activity in many other mitochondrial encephalopathies characterized by respiratory complex I instability.
Collapse
Affiliation(s)
- Anastasia Rumyantseva
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany.,Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany
| | - Milica Popovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany.,Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany.,Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany
| |
Collapse
|
12
|
Amelianchik A, Merkel J, Palanisamy P, Kaneki S, Hyatt E, Norris EH. The protective effect of early dietary fat consumption on Alzheimer's disease-related pathology and cognitive function in mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12173. [PMID: 34084889 PMCID: PMC8144936 DOI: 10.1002/trc2.12173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION It has been suggested that obesity may influence Alzheimer's disease (AD) pathogenesis, yet the numerous publications on this topic have inconsistent results and conclusions. METHODS Our study examined the effect of varying the timing of high-fat diet (HFD) consumption on AD-related pathology and cognition in transgenic Tg6799 AD mice. RESULTS HFD feeding starting at or before 3 months of age, prior to severe AD pathology, had protective effects in AD mice: reduced extracellular amyloid beta (Aβ) deposition, decreased fibrinogen extravasation into the brain parenchyma, and improved cognitive function. However, delaying HFD consumption until 6 months of age, when AD pathology is ubiquitous, reduced these protective effects in AD mice. DISCUSSION Overall, we demonstrate that the timeline of HFD consumption may play an important role in how dietary fats affect AD pathogenesis and cognitive function.
Collapse
Affiliation(s)
- Anna Amelianchik
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Jonathan Merkel
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
- Paul Flechsig Institute of Brain ResearchLeipzig UniversityLeipzigGermany
| | - Premkumar Palanisamy
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Shigeru Kaneki
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Emily Hyatt
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| |
Collapse
|
13
|
Lingo VanGilder J, VanGilder P. Functional differences in spatial processing along an anterior-posterior axis: are there implications for the retrosplenial cortex? J Neurophysiol 2019; 122:1845-1848. [PMID: 31389747 DOI: 10.1152/jn.00385.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrosplenial cortex has recently received attention from the neuroscience community for its role in spatial processing and involvement in diseases such as Alzheimer's. Here, we discuss a recent study by Silson et al. (Silson EH, Gilmore AW, Kalinowski SE, Steel A, Kidder A, Martin A, Baker CI. J Neurosci 39: 705-717, 2019.) that reported functionally specific activation within this region during scene perception and (mnemonic) construction. We then propose considerations for future experiments such as adopting standardized methodology and terminology that may improve the interpretation of retrosplenial cortex function within the broader literature.
Collapse
Affiliation(s)
| | - Paul VanGilder
- School of Biological and Health Systems Engineering, Arizona State University.,Banner Alzheimer's Institute, Arizona Alzheimer's Consortium
| |
Collapse
|
14
|
Alteration of parvalbumin expression and perineuronal nets formation in the cerebral cortex of aged mice. Mol Cell Neurosci 2019; 95:31-42. [DOI: 10.1016/j.mcn.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023] Open
|
15
|
Powell AL, Hindley E, Nelson AJD, Davies M, Amin E, Aggleton JP, Vann SD. Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain Neurosci Adv 2018; 2:2398212818811235. [PMID: 32166157 PMCID: PMC7058225 DOI: 10.1177/2398212818811235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022] Open
Abstract
The retrosplenial cortex forms part of a network of cortical and subcortical structures that have particular importance for spatial learning and navigation in rodents. This study examined how retrosplenial lesions affect activity in this network by visualising the expression of the immediate-early genes c-fos and zif268 after exposure to a novel location. Groups of rats with extensive cytotoxic lesions (areas 29 and 30) and rats with lesions largely confined to area 30 (dysgranular cortex) were compared with their respective control animals for levels of c-fos expression measured by immunohistochemistry. These cortical lesions had very limited effects on distal c-fos activity. Evidence of a restricted reduction in c-fos activity was seen in the septal dentate gyrus (superior blade) but not in other hippocampal and parahippocampal subareas, nor in the anterior cingulate and prelimbic cortices. Related studies examined zif268 activity in those cases with combined area 29 and 30 lesions. The only clear evidence for reduced zif268 activity following retrosplenial cell loss came from the septal CA3 area. The confined impact of retrosplenial tissue loss is notable as, by the same immediate-early gene measures, retrosplenial cortex is itself highly sensitive to damage in related limbic areas, showing a marked c-fos and zif268 hypoactivity across all of its subareas. This asymmetry in covert pathology may help to explain the apparent disparity between the severity of learning deficits after retrosplenial cortex lesions and after lesions in either the hippocampus or the anterior thalamic nuclei.
Collapse
Affiliation(s)
- Anna L Powell
- School of Psychology, Cardiff University, Cardiff, UK
| | - Emma Hindley
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Moira Davies
- School of Psychology, Cardiff University, Cardiff, UK
| | - Eman Amin
- School of Psychology, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
16
|
Moderate Peep After Tracheal Lipopolysaccharide Instillation Prevents Inflammation and Modifies the Pattern of Brain Neuronal Activation. Shock 2016; 44:601-8. [PMID: 26398809 PMCID: PMC4851224 DOI: 10.1097/shk.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Ventilatory strategy and specifically positive end-expiratory pressure (PEEP) can modulate the inflammatory response and pulmonary-to-systemic translocation of lipopolysaccharide (LPS). Both inflammation and ventilatory pattern may modify brain activation, possibly worsening the patient's outcome and resulting in cognitive sequelae. Methods: We prospectively studied Sprague–Dawley rats randomly assigned to undergo 3 h mechanical ventilation with 7 mL/kg tidal ventilation and either 2 cmH2O or 7 cmH2O PEEP after intratracheal instillation of LPS or saline. Healthy nonventilated rats served as baseline. We analyzed lung mechanics, gas exchange, lung and plasma cytokine levels, lung apoptotic cells, and lung neutrophil infiltration. To evaluate brain neuronal activation, we counted c-Fos immunopositive cells in the retrosplenial cortex (RS), thalamus, supraoptic nucleus (SON), nucleus of the solitary tract (NTS), paraventricular nucleus (PVN), and central amygdala (CeA). Results: LPS increased lung neutrophilic infiltration, lung and systemic MCP-1 levels, and neuronal activation in the CeA and NTS. LPS-instilled rats receiving 7 cmH2O PEEP had less lung and systemic inflammation and more c-Fos-immunopositive cells in the RS, SON, and thalamus than those receiving 2 cmH2O PEEP. Applying 7 cmH2O PEEP increased neuronal activation in the CeA and NTS in saline-instilled rats, but not in LPS-instilled rats. Conclusions: Moderate PEEP prevented lung and systemic inflammation secondary to intratracheal LPS instillation. PEEP also modified the neuronal activation pattern in the RS, SON, and thalamus. The relevance of these differential brain c-Fos expression patterns in neurocognitive outcomes should be explored.
Collapse
|
17
|
Aggleton JP, Pralus A, Nelson AJD, Hornberger M. Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit. Brain 2016; 139:1877-90. [PMID: 27190025 PMCID: PMC4939698 DOI: 10.1093/brain/aww083] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
It is widely assumed that incipient protein pathology in the medial temporal lobe instigates the loss of episodic memory in Alzheimer’s disease, one of the earliest cognitive deficits in this type of dementia. Within this region, the hippocampus is seen as the most vital for episodic memory. Consequently, research into the causes of memory loss in Alzheimer’s disease continues to centre on hippocampal dysfunction and how disease-modifying therapies in this region can potentially alleviate memory symptomology. The present review questions this entrenched notion by bringing together findings from post-mortem studies, non-invasive imaging (including studies of presymptomatic, at-risk cases) and genetically modified animal models. The combined evidence indicates that the loss of episodic memory in early Alzheimer’s disease reflects much wider neurodegeneration in an extended mnemonic system (Papez circuit), which critically involves the limbic thalamus. Within this system, the anterior thalamic nuclei are prominent, both for their vital contributions to episodic memory and for how these same nuclei appear vulnerable in prodromal Alzheimer’s disease. As thalamic abnormalities occur in some of the earliest stages of the disease, the idea that such changes are merely secondary to medial temporal lobe dysfunctions is challenged. This alternate view is further strengthened by the interdependent relationship between the anterior thalamic nuclei and retrosplenial cortex, given how dysfunctions in the latter cortical area provide some of the earliest
in vivo
imaging evidence of prodromal Alzheimer’s disease. Appreciating the importance of the anterior thalamic nuclei for memory and attention provides a more balanced understanding of Alzheimer’s disease. Furthermore, this refocus on the limbic thalamus, as well as the rest of Papez circuit, would have significant implications for the diagnostics, modelling, and experimental treatment of cognitive symptoms in Alzheimer’s disease.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Agathe Pralus
- Master of Biosciences, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | | |
Collapse
|
18
|
Prophylactic melatonin significantly reduces Alzheimer's neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Mol Neurodegener 2015; 10:27. [PMID: 26159703 PMCID: PMC4702331 DOI: 10.1186/s13024-015-0027-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) underlies dementia for millions of people worldwide, and its occurrence is set to double in the next 20 years. Currently, approved drugs for treating AD only marginally ameliorate cognitive deficits, and provide limited symptomatic relief, while newer substances under therapeutic development are potentially years away from benefiting patients. Melatonin (MEL) for insomnia has been proven safe with >15 years of over-the-counter access in the US. MEL exerts multiple complementary mechanisms of action against AD in animal models; thus it may be an excellent disease-modifying therapeutic. While presumed to provide neuroprotection via activation of known G-protein-coupled melatonin receptors (MTNRs), some data indicate MEL acts intracellularly to protect mitochondria and neurons by scavenging reactive oxygen species and reducing free radical formation. We examined whether genetic deletion of MTNRs abolishes MEL’s neuroprotective actions in the AβPPswe/PSEN1dE9 mouse model of AD (2xAD). Beginning at 4 months of age, both AD and control mice either with or without both MTNRs were administered either MEL or vehicle in drinking water for 12 months. Results Behavioral and cognitive assessments of 15-month-old AD mice revealed receptor-dependent effects of MEL on spatial learning and memory (Barnes maze, Morris Water Maze), but receptor-independent neuroprotective actions of MEL on non-spatial cognitive performance (Novel Object Recognition Test). Similarly, amyloid plaque loads in hippocampus and frontal cortex, as well as plasma Aβ1–42 levels, were significantly reduced by MEL in a receptor-independent manner, in contrast to MEL’s efficacy in reducing cortical antioxidant gene expression (Catalase, SOD1, Glutathione Peroxidase-1, Nrf2) only when receptors were present. Increased cytochrome c oxidase activity was seen in 16mo AD mice as compared to non-AD control mice. This increase was completely prevented by MEL treatment of 2xAD/MTNR+ mice, but only partially prevented in 2xAD/MTNR- mice, consistent with mixed receptor-dependent and independent effects of MEL on this measure of mitochondrial function. Conclusions These findings demonstrate that prophylactic MEL significantly reduces AD neuropathology and associated cognitive deficits in a manner that is independent of antioxidant pathways. Future identification of direct molecular targets for MEL action in the brain should open new vistas for development of better AD therapeutics.
Collapse
|
19
|
Heggland I, Storkaas IS, Soligard HT, Kobro-Flatmoen A, Witter MP. Stereological estimation of neuron number and plaque load in the hippocampal region of a transgenic rat model of Alzheimer's disease. Eur J Neurosci 2015; 41:1245-62. [PMID: 25808554 DOI: 10.1111/ejn.12876] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/08/2015] [Indexed: 11/29/2022]
Abstract
The main hallmarks of Alzheimer's disease (AD) are senile plaques, neurofibrillary tangles and neuronal death. The McGill-R-Thy1-APP rat is one of the few transgenic rat models of AD that displays progressive amyloid pathology. This study aimed to further characterise this rat model, focusing on the pathological changes in the hippocampal formation and the parahippocampal region. These structures, that are important for episodic memory and spatial navigation, are affected in the early stages of the disease. This study used unbiased stereology to investigate possible neuronal loss in the CA1, subiculum and entorhinal cortex of 18-month-old homozygous McGill-R-Thy1-APP rats, and also quantified the plaque load in all the areas of the hippocampal formation and parahippocampal region from 9 to 18 months old. A significant reduction of neurons at 18 months was only seen in the subiculum. The first plaque pathology was seen at 9 months in the subiculum. Although the quantified plaque load was variable between animals, the pattern of spatiotemporal progression was similar for all animals. The spread of plaque pathology mainly affected anatomically connected regions. Overall, the plaque pathology observed in the transgenic rats was similar to the early phases of amyloid beta (Aβ)-deposition described in human patients. The findings here thus indicate that the McGill-R-Thy1-APP rat could be a good model of the Aβ pathology in AD, but less so with respect to neuron loss.
Collapse
Affiliation(s)
- Ingrid Heggland
- Kavli Institute for Systems Neuroscience & Centre for Neural Computation, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Postboks 8905, 7491, Trondheim, Norway
| | | | | | | | | |
Collapse
|
20
|
Localization of α7 nicotinic acetylcholine receptor immunoreactivity on GABAergic interneurons in layers I-III of the rat retrosplenial granular cortex. Neuroscience 2013; 252:443-59. [PMID: 23985568 DOI: 10.1016/j.neuroscience.2013.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023]
Abstract
The rat retrosplenial granular cortex (RSG) receives cholinergic input from the medial septum-diagonal band (MS-DB) of the cholinergic basal forebrain (CBF), with projections terminating in layers I-III of RSG. The modulatory effects of acetylcholine (ACh) on cortical GABAergic interneurons in these layers are mediated by α7 nicotinic acetylcholine receptors (α7nAChRs). α7nAChRs are most abundant in the cerebral cortex and are largely localized to GABAergic interneurons. However, the CBF projection to the RSG has not been studied in detail, and the cellular or subcellular distribution of α7nAChRs in the rat RSG remains unclear. The main objective of this study was to test that α7nAChRs reside on GABAergic interneurons in CBF terminal fields of the rat RSG. First, we set out to define the characteristics of CBF projections from the MS-DB to layers of the RSG using anterograde neural tracing and immunohistochemical labeling with cholinergic markers. These results revealed that the pattern of axon terminal labeling in layer Ia, as well as layer II/III of the RSG is remarkably similar to the pattern of cholinergic axons in the RSG. Next, we investigated the relationship between α7nAChRs, labeled using either α-bungarotoxin or α7nAChR antibody, and the local neurochemical environment by labeling surrounding cells with antibodies against glutamic acid decarboxylase (GAD), parvalbumin (PV) and reelin (a marker of the ionotropic serotonin receptor-expressing GABAergic interneurons). α7nAChRs were found to be localized on both somatodendritic and neuronal elements within subpopulations of GABAergic PV-, reelin-stained and non PV-stained neurons in layers I-III of the RSG. Finally, electron microscopy revealed that α7nAChRs are GAD- and PV-positive cytoplasmic and neuronal elements. These results strongly suggest that ACh released from CBF afferents is transmitted via α7nAChR to GAD-, PV-, and reelin-positive GABAergic interneurons in layers I-III of the RSG.
Collapse
|
21
|
Hunsaker MR. Comprehensive neurocognitive endophenotyping strategies for mouse models of genetic disorders. Prog Neurobiol 2012; 96:220-41. [PMID: 22266125 PMCID: PMC3289520 DOI: 10.1016/j.pneurobio.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Hippocampal synaptic activity, pattern separation and episodic-like memory: implications for mouse models of Alzheimer's disease pathology. Biochem Soc Trans 2011; 39:902-9. [PMID: 21787321 DOI: 10.1042/bst0390902] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present review summarizes converging evidence from animal and human studies that an early target of amyloid pathology is synaptic activity in the DG (dentate gyrus)/CA3 network. We briefly review the computational significance of the DG/CA3 network in the encoding of episodic memory and present new evidence that the CA3/DG pattern of activation is compromised in a mouse model of amyloid pathology. In addition, we present a new behavioural method to test the prediction that amyloid-related synaptic pathology will disrupt the formation of an integrated episodic-like (what, where and when) memory in mice.
Collapse
|
23
|
Rojas JC, Bruchey AK, Gonzalez-Lima F. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog Neurobiol 2011; 96:32-45. [PMID: 22067440 DOI: 10.1016/j.pneurobio.2011.10.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue's action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment.
Collapse
Affiliation(s)
- Julio C Rojas
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, 1 University Station A8000, Austin, TX 78712, USA
| | | | | |
Collapse
|