1
|
Mottarlini F, Rizzi B, Targa G, Fumagalli F, Caffino L. Long-lasting BDNF signaling alterations in the amygdala of adolescent female rats exposed to the activity-based anorexia model. Front Behav Neurosci 2022; 16:1087075. [PMID: 36570702 PMCID: PMC9772010 DOI: 10.3389/fnbeh.2022.1087075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.
Collapse
|
2
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
3
|
Qin J, Wei T, Chen H, Lin X, Qin D, Wei F, Liu P, Ye W, Su J. Salicylate Induced GABAAR Internalization by Dopamine D1-Like Receptors Involving Protein Kinase C (PKC) in Spiral Ganglion Neurons. Med Sci Monit 2021; 27:e933278. [PMID: 34657931 PMCID: PMC8532520 DOI: 10.12659/msm.933278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Sodium salicylate (SS) induces excitotoxicity of spiral ganglion neurons (SGNs) by inhibiting the response of γ-aminobutyric acid type A receptors (GABAARs). Our previous studies have shown that SS can increase the internalization of GABAARs on SGNs, which involves dopamine D1-like receptors (D1Rs) and related signaling pathways. In this study, we aimed to explore the role of D1Rs and their downstream molecule protein kinase C (PKC) in the process of SS inhibiting GABAARs. MATERIAL AND METHODS The expression of D1Rs and GABARγ2 on rat cochlear SGNs cultured in vitro was tested by immunofluorescence. Then, the SGNs were exposed to SS, D1R agonist (SKF38393), D1R antagonist (SCH23390), clathrin/dynamin-mediated endocytosis inhibitor (dynasore), and PKC inhibitor (Bisindolylmaleimide I). Western blotting and whole-cell patch clamp technique were used to assess the changes of surface and total protein of GABARγ2 and GABA-activated currents. RESULTS Immunofluorescence showed that D1 receptors (DRD1) were expressed on SGNs. Data from western blotting showed that SS promoted the internalization of cell surface GABAARs, and activating D1Rs had the same result. Inhibiting D1Rs and PKC decreased the internalization of GABAARs. Meanwhile, the phosphorylation level of GABAARγ2 S327 affected by PKC was positively correlated with the degree of internalization of GABAARs. Moreover, whole-cell patch clamp recording showed that inhibition of D1Rs or co-inhibition of D1Rs and PKC attenuated the inhibitory effect of SS on GABA-activated currents. CONCLUSIONS D1Rs mediate the GABAAR internalization induced by SS via a PKC-dependent manner and participate in the excitotoxic process of SGNs.
Collapse
Affiliation(s)
- Jiangyuan Qin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoyu Lin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Fangyu Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Wenhua Ye
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
4
|
Thorsdottir D, Einwag Z, Erdos B. BDNF shifts excitatory-inhibitory balance in the paraventricular nucleus of the hypothalamus to elevate blood pressure. J Neurophysiol 2021; 126:1209-1220. [PMID: 34406887 DOI: 10.1152/jn.00247.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Presympathetic neurons in the paraventricular nucleus of the hypothalamus (PVN) play a key role in cardiovascular regulation. We have previously shown that brain-derived neurotrophic factor (BDNF), acting in the PVN, increases sympathetic activity and blood pressure and serves as a key regulator of stress-induced hypertensive responses. BDNF is known to alter glutamatergic and GABA-ergic signaling broadly in the central nervous system, but whether BDNF has similar actions in the PVN remains to be investigated. Here, we tested the hypothesis that increased BDNF expression in the PVN elevates blood pressure by enhancing N-methyl-d-aspartate (NMDA) receptor (NMDAR)- and inhibiting GABAA receptor (GABAAR)-mediated signaling. Sprague-Dawley rats received bilateral PVN injections of AAV2 viral vectors expressing green fluorescent protein (GFP) or BDNF. Three weeks later, cardiovascular responses to PVN injections of NMDAR and GABAAR agonists and antagonists were recorded under α-chloralose-urethane anesthesia. In addition, expressions of excitatory and inhibitory signaling components in the PVN were assessed using immunofluorescence. Our results showed that NMDAR inhibition led to a greater decrease in blood pressure in the BDNF vs. GFP group, while GABAAR inhibition led to greater increases in blood pressure in the GFP group compared to BDNF. Conversely, GABAAR activation decreased blood pressure significantly more in GFP vs. BDNF rats. In addition, immunoreactivity of NMDAR1 was upregulated, while GABAAR-α1 and K+/Cl- cotransporter 2 were downregulated by BDNF overexpression in the PVN. In summary, our findings indicate that hypertensive actions of BDNF within the PVN are mediated, at least in part, by augmented NMDAR and reduced GABAAR signaling.NEW & NOTEWORTHY We have shown that BDNF, acting in the PVN, elevates blood pressure in part by augmenting NMDA receptor-mediated excitatory input and by diminishing GABAA receptor-mediated inhibitory input to PVN neurons. In addition, we demonstrate that elevated BDNF expression in the PVN upregulates NMDA receptor immunoreactivity and downregulates GABAA receptor as well as KCC2 transporter immunoreactivity.
Collapse
Affiliation(s)
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
5
|
Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 2020; 382:161-172. [PMID: 32845430 PMCID: PMC7529623 DOI: 10.1007/s00441-020-03260-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning. This review updates the current understanding of BDNF/TrkB signalling in the amygdala related to fear learning and extinction. In addition, actions of proBDNF/p75NTR and NGF/TrkA as well as NT-3/TrkC signalling in the amygdala are introduced.
Collapse
|
6
|
Secomandi N, Franceschi Biagioni A, Kostarelos K, Cellot G, Ballerini L. Thin graphene oxide nanoflakes modulate glutamatergic synapses in the amygdala cultured circuits: Exploiting synaptic approaches to anxiety disorders. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102174. [DOI: 10.1016/j.nano.2020.102174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 11/26/2022]
|
7
|
Meis S, Endres T, Munsch T, Lessmann V. Impact of Chronic BDNF Depletion on GABAergic Synaptic Transmission in the Lateral Amygdala. Int J Mol Sci 2019; 20:ijms20174310. [PMID: 31484392 PMCID: PMC6747405 DOI: 10.3390/ijms20174310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/14/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABAA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF+/−). Analysis of miniature and evoked inhibitory postsynaptic currents (IPSCs) in the lateral amygdala (LA) revealed neither pre- nor postsynaptic differences in BDNF+/− mice compared to wild-type littermates. In addition, long-term potentiation (LTP) of IPSCs was similar in both genotypes. In contrast, facilitation of spontaneous IPSCs (sIPSCs) by norepinephrine (NE) was significantly reduced in BDNF+/− mice. These results argue against a generally impaired efficacy and plasticity at GABAergic synapses due to a chronic BDNF deficit. Importantly, the increase in GABAergic tone mediated by NE is reduced in BDNF+/− mice. As release of NE is elevated during aversive behavioral states in the amygdala, effects of a chronic BDNF deficit on GABAergic inhibition may become evident in response to states of high arousal, leading to amygdala hyper-excitability and impaired amygdala function.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| |
Collapse
|
8
|
Begdache L, Kianmehr H, Sabounchi N, Chaar M, Marhaba J. Principal component analysis identifies differential gender-specific dietary patterns that may be linked to mental distress in human adults. Nutr Neurosci 2018; 23:295-308. [PMID: 30028276 DOI: 10.1080/1028415x.2018.1500198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Independent reports describe the structural differences between the human male and female brains and the differential gender-susceptibility to mood disorders. Nutrition is one of the modifiable risk factors that has been reported to impact brain chemistry and affect mental health. Objectives: To study dietary patterns in adult men and women in relation to mental distress. Another aim was to develop evidence-based prototypes using System Dynamic Modeling methodology to better describe our findings. Methods: An anonymous internet-based survey was sent through social media platforms to different social and professional networks. Multivariate analyses were used for data mining. Data were stratified by gender and further by tertiles to capture the latent variables within the patterns of interest. Results: Mental distress in men associated with a consumption of a Western-like diet. In women, mental wellbeing associated with a Mediterranean-like diet and lifestyle. No other patterns in both genders were linked to mental distress. Based on the generated prototypes, men are more likely to experience mental wellbeing until nutritional deficiencies arise. However, women are less likely to experience mental wellbeing until a balanced diet and a healthy lifestyle are followed. In men, dietary deficiencies may have a profound effect on the limbic system; whereas dietary sufficiency in women may potentiate the mesocortical regulation of the limbic system. Discussion and conclusion: Our results may explain the several reports in the literature that women are at a greater risk for mental distress when compared to men and emphasize the role of a nutrient-dense diet in mental wellbeing.
Collapse
Affiliation(s)
- Lina Begdache
- Department of Health and Wellness Studies, Binghamton University, Binghamton, NY, USA
| | - Hamed Kianmehr
- Thomas J. Watson School of Engineering and Applied Science, Binghamton University, Binghamton, NY, USA
| | - Nasim Sabounchi
- Thomas J. Watson School of Engineering and Applied Science, Binghamton University, Binghamton, NY, USA
| | - Maher Chaar
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Jade Marhaba
- SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
9
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
10
|
Wang J, Zhang S, Ma H, Yang S, Liu Z, Wu X, Wang S, Zhang Y, Liu Y. Chronic Intermittent Hypobaric Hypoxia Pretreatment Ameliorates Ischemia-Induced Cognitive Dysfunction Through Activation of ERK1/2-CREB-BDNF Pathway in Anesthetized Mice. Neurochem Res 2016; 42:501-512. [DOI: 10.1007/s11064-016-2097-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/24/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
|
11
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
12
|
Ehrlich DE, Josselyn SA. Plasticity-related genes in brain development and amygdala-dependent learning. GENES BRAIN AND BEHAVIOR 2015; 15:125-43. [PMID: 26419764 DOI: 10.1111/gbb.12255] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Collapse
Affiliation(s)
- D E Ehrlich
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone School of Medicine, New York, NY, USA
| | - S A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Lee D. Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol 2015; 6:161. [PMID: 26300775 PMCID: PMC4523784 DOI: 10.3389/fphar.2015.00161] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc) essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC) gene rutabaga and phosphodiesterase (PDE) gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local) regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.
Collapse
Affiliation(s)
- Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University , Athens, OH, USA
| |
Collapse
|
14
|
Pinna G, Rasmusson AM. Ganaxolone improves behavioral deficits in a mouse model of post-traumatic stress disorder. Front Cell Neurosci 2014; 8:256. [PMID: 25309317 PMCID: PMC4161165 DOI: 10.3389/fncel.2014.00256] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022] Open
Abstract
Allopregnanolone and its equipotent stereoisomer, pregnanolone (together termed ALLO), are neuroactive steroids that positively and allosterically modulate the action of gamma-amino-butyric acid (GABA) at GABAA receptors. Levels of ALLO are reduced in the cerebrospinal fluid of female premenopausal patients with post-traumatic stress disorder (PTSD), a severe, neuropsychiatric condition that affects millions, yet is without a consistently effective therapy. This suggests that restoring downregulated brain ALLO levels in PTSD may be beneficial. ALLO biosynthesis is also decreased in association with the emergence of PTSD-like behaviors in socially isolated (SI) mice. Similar to PTSD patients, SI mice also exhibit changes in the frontocortical and hippocampal expression of GABAA receptor subunits, resulting in resistance to benzodiazepine-mediated sedation and anxiolysis. ALLO acts at a larger spectrum of GABAA receptor subunits than benzodiazepines, and increasing corticolimbic ALLO levels in SI mice by injecting ALLO or stimulating ALLO biosynthesis with a selective brain steroidogenic stimulant, such as S-norfluoxetine, at doses far below those that block serotonin reuptake, reduces PTSD-like behavior in these mice. This suggests that synthetic analogs of ALLO, such as ganaxolone, may also improve anxiety, aggression, and other PTSD-like behaviors in the SI mouse model. Consistent with this hypothesis, ganaxolone (3.75–30 mg/kg, s.c.) injected 60 min before testing of SI mice, induced a dose-dependent reduction in aggression toward a same-sex intruder and anxiety-like behavior in an elevated plus maze. The EC50 dose of ganaxolone used in these tests also normalized exaggerated contextual fear conditioning and, remarkably, enhanced fear extinction retention in SI mice. At these doses, ganaxolone failed to change locomotion in an open field test. Therefore, unlike benzodiazepines, ganaxolone at non-sedating concentrations appears to improve dysfunctional emotional behavior associated with deficits in ALLO in mice and may provide an alternative treatment for PTSD patients with deficits in the synthesis of ALLO. Selective serotonin reuptake inhibitors (SSRIs) are the only medications currently approved by the FDA for treatment of PTSD, although they are ineffective in a substantial proportion of PTSD patients. Hence, an ALLO analog such as ganaxolone may offer a therapeutic GABAergic alternative to SSRIs for the treatment of PTSD or other disorders in which ALLO biosynthesis may be impaired.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Ann M Rasmusson
- VA Boston Healthcare System, Women's Health Science Division of the VA National Center for PTSD, and Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
15
|
Bekinschtein P, Kent BA, Oomen CA, Clemenson GD, Gage FH, Saksida LM, Bussey TJ. Brain-derived neurotrophic factor interacts with adult-born immature cells in the dentate gyrus during consolidation of overlapping memories. Hippocampus 2014; 24:905-11. [PMID: 24825389 PMCID: PMC4312906 DOI: 10.1002/hipo.22304] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 12/30/2022]
Abstract
Successful memory involves not only remembering information over time but also keeping memories distinct and less confusable. The computational process for making representations of similar input patterns more distinct from each other has been referred to as "pattern separation." Although adult-born immature neurons have been implicated in this memory feature, the precise role of these neurons and associated molecules in the processing of overlapping memories is unknown. Recently, we found that brain-derived neurotrophic factor (BDNF) in the dentate gyrus is required for the encoding/consolidation of overlapping memories. In this study, we provide evidence that consolidation of these "pattern-separated" memories requires the action of BDNF on immature neurons specifically.
Collapse
Affiliation(s)
- Pedro Bekinschtein
- Department of Psychology, University of CambridgeCambridge, United Kingdom,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, Translational and Cognitive Neuroscience Laboratory, University of CambridgeCambridge, United Kingdom,*Correspondence to: Pedro Bekinschtein, Instituto de Biología Celular y Neurociencia, Facultad de Medicina. Universidad de Buenos Aires, Buenos Aires (C1121ABG), Argentina. E-mail:
| | - Brianne A Kent
- Department of Psychology, University of CambridgeCambridge, United Kingdom,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, Translational and Cognitive Neuroscience Laboratory, University of CambridgeCambridge, United Kingdom
| | - Charlotte A Oomen
- Department of Psychology, University of CambridgeCambridge, United Kingdom,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, Translational and Cognitive Neuroscience Laboratory, University of CambridgeCambridge, United Kingdom
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological StudiesLa Jolla, California
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological StudiesLa Jolla, California
| | - Lisa M Saksida
- Department of Psychology, University of CambridgeCambridge, United Kingdom,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, Translational and Cognitive Neuroscience Laboratory, University of CambridgeCambridge, United Kingdom
| | - Timothy J Bussey
- Department of Psychology, University of CambridgeCambridge, United Kingdom,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, Translational and Cognitive Neuroscience Laboratory, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
16
|
BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:169-92. [PMID: 24484701 DOI: 10.1016/b978-0-12-420170-5.00006-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its single transmembrane receptor, tropomysin-related kinase B (TrkB), are essential for adult synaptic plasticity and the formation of memories. However, there are regional and task-dependent differences underlying differential mechanisms of BDNF-TrkB function in the formation of these memories. Additionally, the BDNF pathway has been implicated in several psychiatric disorders including posttraumatic stress disorder, phobia, and panic disorder. Gaining a better understanding of this pathway and the neurobiology of memory through fundamental research may be helpful to identify effective prevention and treatment approaches both for diseases of memory deficit as well as in cases of enhanced aversive memory, such as in anxiety disorders.
Collapse
|
17
|
Andero R, Dias BG, Ressler KJ. A role for Tac2, NkB, and Nk3 receptor in normal and dysregulated fear memory consolidation. Neuron 2014; 83:444-454. [PMID: 24976214 DOI: 10.1016/j.neuron.2014.05.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 01/06/2023]
Abstract
The centromedial amygdala (CeM), a subdivision of the central amygdala (CeA), is believed to be the main output station of the amygdala for fear expression. We provide evidence that the Tac2 gene, expressed by neurons specifically within the CeM, is required for modulating fear memories. Tac2 is colocalized with GAD65 and CaMKIIα but not with PKCd and Enk neurons in the CeM. Moreover, the Tac2 product, NkB, and its specific receptor, Nk3R, are also involved in the consolidation of fear memories. Increased Tac2 expression, through a stress-induced PTSD-like model, or following lentiviral CeA overexpression, are sufficient to enhance fear consolidation. This effect is blocked by the Nk3R antagonist osanetant. Concordantly, silencing of Tac2-expressing neurons in CeA with DREADDs impairs fear consolidation. Together, these studies further our understanding of the role of the Tac2 gene and CeM in fear processing and may provide approaches to intervention for fear-related disorders.
Collapse
Affiliation(s)
- Raül Andero
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| | - Brian G Dias
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; Howard Hughes Medical Institute, Bethesda, MD 20814, USA
| |
Collapse
|
18
|
Brain-derived neurotrophic factor promotes gephyrin protein expression and GABAA receptor clustering in immature cultured hippocampal cells. Neurochem Int 2014; 72:14-21. [PMID: 24747341 DOI: 10.1016/j.neuint.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Fast synaptic inhibition in the adult brain is largely mediated by GABAA receptors (GABAAR). GABAAR are anchored to synaptic sites by gephyrin, a scaffolding protein that appears to be assembled as a hexagonal lattice beneath the plasma membrane. Brain derived neurotrophic factor (BDNF) alters the clustering and synaptic distribution of GABAAR but mechanisms behind this regulation are just starting to emerge. The current study was aimed to examine if BDNF alters the protein levels and/or clustering of gephyrin and to investigate whether the modulation of gephyrin is accompanied by changes in the distribution and/or clustering of GABAAR. Exogenous application of BDNF to immature neuronal cultures from rat hippocampus increased the protein levels and clustering of gephyrin. BDNF also augmented the association of gephyrin with GABAAR and promoted the formation of GABAAR clusters. Together, these observations indicate that BDNF might regulate the assembly of GABAergic synapses by promoting the association of GABAAR with gephyrin.
Collapse
|
19
|
M1-muscarinic receptors promote fear memory consolidation via phospholipase C and the M-current. J Neurosci 2014; 34:1570-8. [PMID: 24478341 DOI: 10.1523/jneurosci.1040-13.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuromodulators released during and after a fearful experience promote the consolidation of long-term memory for that experience. Because overconsolidation may contribute to the recurrent and intrusive memories of post-traumatic stress disorder, neuromodulatory receptors provide a potential pharmacological target for prevention. Stimulation of muscarinic receptors promotes memory consolidation in several conditioning paradigms, an effect primarily associated with the M1 receptor (M1R). However, neither inhibiting nor genetically disrupting M1R impairs the consolidation of cued fear memory. Using the M1R agonist cevimeline and antagonist telenzepine, as well as M1R knock-out mice, we show here that M1R, along with β2-adrenergic (β2AR) and D5-dopaminergic (D5R) receptors, regulates the consolidation of cued fear memory by redundantly activating phospholipase C (PLC) in the basolateral amygdala (BLA). We also demonstrate that fear memory consolidation in the BLA is mediated in part by neuromodulatory inhibition of the M-current, which is conducted by KCNQ channels and is known to be inhibited by muscarinic receptors. Manipulating the M-current by administering the KCNQ channel blocker XE991 or the KCNQ channel opener retigabine reverses the effects on consolidation caused by manipulating β2AR, D5R, M1R, and PLC. Finally, we show that cAMP and protein kinase A (cAMP/PKA) signaling relevant to this stage of consolidation is upstream of these neuromodulators and PLC, suggesting an important presynaptic role for cAMP/PKA in consolidation. These results support the idea that neuromodulatory regulation of ion channel activity and neuronal excitability is a critical mechanism for promoting consolidation well after acquisition has occurred.
Collapse
|
20
|
D'Amore DE, Tracy BA, Parikh V. Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacology 2013; 75:312-23. [DOI: 10.1016/j.neuropharm.2013.07.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023]
|
21
|
Mou L, Dias BG, Gosnell H, Ressler KJ. Gephyrin plays a key role in BDNF-dependent regulation of amygdala surface GABAARs. Neuroscience 2013; 255:33-44. [PMID: 24096136 DOI: 10.1016/j.neuroscience.2013.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is critically involved in synaptic plasticity and neurotransmission. Our lab has previously found that BDNF activation of neurotrophic tyrosine kinase, receptor, type 2 (TrkB) is required for fear memory formation and that GABAA receptor (GABAAR) subunits and the GABAA clustering protein gephyrin are dynamically regulated during fear memory consolidation. We hypothesize that TrkB-dependent internalization of GABAARs may partially underlie a transient period of amygdala hyperactivation during fear memory consolidation. We have previously reported that BDNF modulates GABAAR α1 subunit sequestration in cultured hippocampal and amygdala neurons by differential phosphorylation pathways. At present, no studies have investigated the regulation of gephyrin and GABAAR α1 subunits following BDNF activation in the amygdala. In this study, we confirm the association of GABAAR α1 and γ2 subunits with gephyrin on mouse amygdala neurons by coimmunoprecipitation and immunocytochemistry. We then demonstrate that rapid BDNF treatment, as well as suppression of gephyrin protein levels on amygdala neurons, induced sequestration of surface α1 subunits. Further, we find that rapid exposure of BDNF to primary amygdala cultures produced decreases in gephyrin levels, whereas longer exposure resulted in an eventual increase. While total α1 subunit levels remained unchanged, gephyrin was downregulated in whole cell homogenates, but enhanced in complexes with GABAARs. Our data with anisomycin suggest that BDNF may rapidly induce gephyrin protein degradation, with subsequent gephyrin synthesis occurring. Together, these findings suggest that gephyrin may be a key factor in BDNF-dependent GABAAR regulation in the amygdala. This work may inform future studies aimed at elucidating the pathways connecting BDNF, GABAA systems, gephyrin, and their role in underlying amygdala-dependent learning.
Collapse
Affiliation(s)
- L Mou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | | |
Collapse
|
22
|
Caceres LG, Cid MP, Uran SL, Zorrilla Zubilete MA, Salvatierra NA, Guelman LR. Pharmacological alterations that could underlie radiation-induced changes in associative memory and anxiety. Pharmacol Biochem Behav 2013; 111:37-43. [PMID: 23958578 DOI: 10.1016/j.pbb.2013.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
It is widely known that ionizing radiation is a physical agent broadly used to kill tumor cells during human cancer therapy. Unfortunately, adjacent normal tissues can concurrently undergo undesirable cell injury. Previous data of our laboratory demonstrated that exposure of developing rats to ionizing radiations induced a variety of behavioral differences respect to controls, including changes in associative memory and in anxiety state. However, there is a lack of data concerning modifications in different related pharmacological intermediaries. Therefore, the aim of the present study was to investigate whether the behavioral differences observed in young animals irradiated at birth might be underlain by early changes in PKCß1 levels which, in turn, could lead to changes in hippocampal GABAergic neurotransmission. Male Wistar rats were irradiated with 5Gy of X rays between 24 and 48 h after birth. Different pharmacological markers related to the affected behavioral tasks were assessed in control and irradiated hippocampus at 15 and 30 days, namely GABAA receptor, GAD65-67, ROS and PKCß1. Results showed that all measured parameters were increased in the hippocampus of 30-days-old irradiated animals. In contrast, in the hippocampus of 15-days-old irradiated animals only the levels of PKCß1 were decreased. These data suggest that PKCß1 might constitute a primary target for neonatal radiation damage on the hippocampus. Therefore, it could be hypothesized that an initial decrease in the levels of this protein can trigger a subsequent compensatory increase that, in turn, could be responsible for the plethora of biochemical changes that might underlie the previously observed behavioral alterations.
Collapse
Affiliation(s)
- L G Caceres
- 1ª Cátedra de Farmacología, Facultad de Medicina, UBA-CEFyBO-CONICET, Paraguay 2155, piso 15, (1121) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
In addition to its neurotrophic role, brain-derived neurotrophic factor (BDNF) is involved in a wide array of functions, including anxiety and pain. The central amygdaloid nucleus (CeA) contains a high concentration of BDNF in terminals, originating from the pontine parabrachial nucleus. Since the spino-parabrachio-amygdaloid neural pathway is known to convey nociceptive information, we hypothesized a possible involvement of BDNF in supraspinal pain-related processes. To test this hypothesis, we generated localized deletion of BDNF in the parabrachial nucleus using local bilateral injections of adeno-associated viruses in adult floxed-BDNF mice. Basal thresholds of thermal and mechanical nociceptive responses were not altered by BDNF loss and no behavioural deficit was noticed in anxiety and motor tests. However, BDNF-deleted animals displayed a major decrease in the analgesic effect of morphine. In addition, intra-CeA injections of the BDNF scavenger TrkB-Fc in control mice also decreased morphine-induced analgesia. Finally, the number of c-Fos immunoreactive nuclei after acute morphine injection was decreased by 45% in the extended amygdala of BDNF-deleted animals. The absence of BDNF in the parabrachial nucleus thus altered the parabrachio-amygdaloid pathway. Overall, our study provides evidence that BDNF produced in the parabrachial nucleus modulates the functions of the parabrachio-amygdaloid pathway in opiate analgesia.
Collapse
|
24
|
Ganguly A, Lee D. Suppression of inhibitory GABAergic transmission by cAMP signaling pathway: alterations in learning and memory mutants. Eur J Neurosci 2013; 37:1383-93. [PMID: 23387411 DOI: 10.1111/ejn.12144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/12/2012] [Accepted: 01/05/2013] [Indexed: 01/29/2023]
Abstract
The cAMP signaling pathway mediates synaptic plasticity and is essential for memory formation in both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, mutations in the cAMP pathway lead to impaired olfactory learning. These mutant genes are preferentially expressed in the mushroom body (MB), an anatomical structure essential for learning. While cAMP-mediated synaptic plasticity is known to be involved in facilitation at the excitatory synapses, little is known about its function in GABAergic synaptic plasticity and learning. In this study, using whole-cell patch-clamp techniques on Drosophila primary neuronal cultures, we demonstrate that focal application of an adenylate cyclase activator forskolin (FSK) suppressed inhibitory GABAergic postsynaptic currents (IPSCs). We observed a dual regulatory role of FSK on GABAergic transmission, where it increases overall excitability at GABAergic synapses, while simultaneously acting on postsynaptic GABA receptors to suppress GABAergic IPSCs. Further, we show that cAMP decreased GABAergic IPSCs in a PKA-dependent manner through a postsynaptic mechanism. PKA acts through the modulation of ionotropic GABA receptor sensitivity to the neurotransmitter GABA. This regulation of GABAergic IPSCs is altered in the cAMP pathway and short-term memory mutants dunce and rutabaga, with both showing altered GABA receptor sensitivity. Interestingly, this effect is also conserved in the MB neurons of both these mutants. Thus, our study suggests that alterations in cAMP-mediated GABAergic plasticity, particularly in the MB neurons of cAMP mutants, account for their defects in olfactory learning.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Biological Sciences, Neuroscience Program, Ohio University, 213 Life Science Building, Athens, OH, 45701, USA.
| | | |
Collapse
|
25
|
Role of IL-6 in the etiology of hyperexcitable neuropsychiatric conditions: experimental evidence and therapeutic implications. Future Med Chem 2012. [DOI: 10.4155/fmc.12.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many neuropsychiatric conditions are primed or triggered by different types of stressors. The mechanisms through which stress induces neuropsychiatric disease are complex and incompletely understood. A ‘double hit’ hypothesis of neuropsychiatric disease postulates that stress induces maladaptive behavior in two phases separated by a dormant period. Recent research shows that the pleiotropic cytokine IL-6 is released centrally and peripherally following physical and psychological stress. In this article, we analyze evidence from clinics and animal models suggesting that stress-induced elevation in the levels of IL-6 may play a key role in the etiology of a heterogeneous family of hyperexcitable central conditions including epilepsy, schizophrenic psychoses, anxiety and disorders of the autistic spectrum. The cellular mechanism leading to hyperexcitable conditions might be a decrease in inhibitory/excitatory synaptic balance in either or both temporal phases of the conditions. Following these observations, we discuss how they may have important implications for optimal prophylactic and therapeutic pharmacological treatment.
Collapse
|
26
|
Callaghan CK, Kelly ÁM. Differential BDNF signaling in dentate gyrus and perirhinal cortex during consolidation of recognition memory in the rat. Hippocampus 2012; 22:2127-35. [PMID: 22573708 DOI: 10.1002/hipo.22033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2012] [Indexed: 01/16/2023]
Abstract
Consolidation of long-term memory is dependent on synthesis of new proteins in the hippocampus and associated cortical regions. The neurotrophin brain-derived neurotrophic factor (BDNF) is tightly regulated by activity-dependent cellular processes and is strongly linked with mechanisms underlying learning and memory. BDNF activation of tyrosine receptor kinase (TrkB) stimulates intracellular signaling cascades implicated in plasticity, including the extracellular-signal related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositide-3-kinase (PI3K)/Akt pathway. Here, we investigate the role of BDNF, ERK/MAPK, and PI3K/AKT signaling cascade in recognition memory in the rat. We report that recognition memory was associated with increased release of BDNF in the dentate gyrus and perirhinal cortex. This was associated with significant increases in p44ERK activation and c-fos expression in the dentate gyrus and PI3K activation and c-fos expression in the perirhinal cortex. Furthermore, both recognition memory and the associated cell signaling events in dentate gyrus and perirhinal cortex were blocked by intraperitoneal injection of the Trk receptor inhibitor tyrphostin AG879. These data are consistent with the hypothesis that BDNF-stimulated intracellular signaling plays a role in consolidation of recognition memory in the rat.
Collapse
Affiliation(s)
- Charlotte K Callaghan
- Department of Physiology, School of Medicine and Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | | |
Collapse
|
27
|
Garcia-Oscos F, Salgado H, Hall S, Thomas F, Farmer GE, Bermeo J, Galindo LC, Ramirez RD, D’Mello S, Rose-John S, Atzori M. The stress-induced cytokine interleukin-6 decreases the inhibition/excitation ratio in the rat temporal cortex via trans-signaling. Biol Psychiatry 2012; 71:574-82. [PMID: 22196984 PMCID: PMC4732871 DOI: 10.1016/j.biopsych.2011.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Although it is known that stress elevates the levels of pro-inflammatory cytokines and promotes hyper-excitable central conditions, a causal relationship between these two factors has not yet been identified. Recent studies suggest that increases in interleukin 6 (IL-6) levels are specifically associated with stress. We hypothesized that IL-6 acutely and directly induces cortical hyper-excitability by altering the balance between synaptic excitation and inhibition. METHODS We used patch-clamp to determine the effects of exogenous or endogenous IL-6 on electrically evoked postsynaptic currents on a cortical rat slice preparation. We used control subjects or animals systemically injected with lipopolysaccharide or subjected to electrical foot-shock as rat models of stress. RESULTS In control animals, IL-6 did not affect excitatory postsynaptic currents but selectively and reversibly reduced the amplitude of inhibitory postsynaptic currents with a postsynaptic effect. The IL-6-induced inhibitory postsynaptic currents decrease was inhibited by drugs interfering with receptor trafficking and/or internalization, including wortmannin, Brefeldin A, 2-Br-hexadecanoic acid, or dynamin peptide inhibitor. In both animal models, stress-induced decrease in synaptic inhibition/excitation ratio was prevented by prior intra-ventricular injection of an analog of the endogenous IL-6 trans-signaling blocker gp130. CONCLUSIONS Our results suggest that stress-induced IL-6 shifts the balance between synaptic inhibition and excitation in favor of the latter, possibly by decreasing the density of functional γ-aminobutyric acid A receptors, accelerating their removal and/or decreasing their insertion rate from/to the plasma membrane. We speculate that this mechanism could contribute to stress-induced detrimental long-term increases in central excitability present in a variety of neurological and psychiatric conditions.
Collapse
|
28
|
Adams CE, Yonchek JC, Schulz KM, Graw SL, Stitzel J, Teschke PU, Stevens KE. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases. Neuroscience 2012; 207:274-82. [PMID: 22314319 DOI: 10.1016/j.neuroscience.2012.01.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/04/2012] [Accepted: 01/14/2012] [Indexed: 01/22/2023]
Abstract
The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing, and increased hippocampal CA3 pyramidal neuron activity in C3H mice Het for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABA(A) receptors, the GABA synthetic enzyme l-glutamic acid decarboxylase-65 (GAD-65), and the vesicular GABA transporter 1 (GAT-1) in wild-type (Chrna7 +/+) and Het (Chrna7 +/-) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy.
Collapse
Affiliation(s)
- C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Oberlander JG, Penatti CAA, Porter DM, Henderson LP. The Buzz about anabolic androgenic steroids: electrophysiological effects in excitable tissues. Neuroendocrinology 2012; 96:141-51. [PMID: 22576754 PMCID: PMC3488447 DOI: 10.1159/000339123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/23/2012] [Indexed: 01/04/2023]
Abstract
Anabolic androgenic steroids (AAS) comprise a large and growing class of synthetic androgens used clinically to promote tissue-building in individuals suffering from genetic disorders, injuries, and diseases. Despite these beneficial therapeutic applications, the predominant use of AAS is illicit: these steroids are self-administered to promote athletic performance and body image. Hand in hand with the desired anabolic actions of the AAS are untoward effects on the brain and behavior. While the signaling routes by which the AAS impose both beneficial and harmful actions may be quite diverse, key endpoints are likely to include ligand-gated and voltage-dependent ion channels that govern the activity of electrically excitable tissues. Here, we review the known effects of AAS on molecular targets that play critical roles in controlling electrical activity, with a specific focus on the effects of AAS on neurotransmission mediated by GABA(A) receptors in the central nervous system.
Collapse
Affiliation(s)
- Joseph G. Oberlander
- Department of Physiology and Neurobiology, Dartmouth Medical School, Hanover, NH 03755 USA
| | - Carlos A. A. Penatti
- Departamento de Ciências Médicas, Universidade Nove de Julho - UNINOVE, São Paulo, SP 01504-000 Brasil
| | - Donna M. Porter
- Department of Physiology and Neurobiology, Dartmouth Medical School, Hanover, NH 03755 USA
| | - Leslie P. Henderson
- Department of Physiology and Neurobiology, Dartmouth Medical School, Hanover, NH 03755 USA
- To Whom Correspondence Should be Addressed:
| |
Collapse
|