1
|
Nutrition influences nervous system development by regulating neural stem cell homeostasis. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
2
|
Hasina Z, Wang N, Wang CC. Developmental Neuropathology and Neurodegeneration of Down Syndrome: Current Knowledge in Humans. Front Cell Dev Biol 2022; 10:877711. [PMID: 35676933 PMCID: PMC9168127 DOI: 10.3389/fcell.2022.877711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 12/25/2022] Open
Abstract
Individuals with Down syndrome (DS) suffer from developmental delay, intellectual disability, and an early-onset of neurodegeneration, Alzheimer’s-like disease, or precocious dementia due to an extra chromosome 21. Studying the changes in anatomical, cellular, and molecular levels involved may help to understand the pathogenesis and develop target treatments, not just medical, but also surgical, cell and gene therapy, etc., for individuals with DS. Here we aim to identify key neurodevelopmental manifestations, locate knowledge gaps, and try to build molecular networks to better understand the mechanisms and clinical importance. We summarize current information about the neuropathology and neurodegeneration of the brain from conception to adulthood of foetuses and individuals with DS at anatomical, cellular, and molecular levels in humans. Understanding the alterations and characteristics of developing Down syndrome will help target treatment to improve the clinical outcomes. Early targeted intervention/therapy for the manifestations associated with DS in either the prenatal or postnatal period may be useful to rescue the neuropathology and neurodegeneration in DS.
Collapse
Affiliation(s)
- Zinnat Hasina
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nicole Wang
- School of Veterinary Medicine, Glasgow University, Glasgow, United Kingdom
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Chi Chiu Wang,
| |
Collapse
|
3
|
Zheng X, Yang J, Zhu Z, Fang Y, Tian Y, Xie M, Wang W, Liu Y. The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood-Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice. Mol Neurobiol 2022; 59:2305-2327. [PMID: 35067892 DOI: 10.1007/s12035-021-02702-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
Earlier studies have shown the neuroprotective role of TWIK-related K+ channel 1 (TREK-1) in global cerebral and spinal cord ischemia, while its function in focal cerebral ischemia has long been debated. This study used TREK-1-deficient mice to directly investigate the role of TREK-1 after focal cerebral ischemia. First, immunofluorescence assays in the mouse cerebral cortex indicated that TREK-1 expression was mostly abundant in astrocytes, neurons, and oligodendrocyte precursor cells but was low in myelinating oligodendrocytes, microglia, or endothelial cells. TREK-1 deficiency did not affect brain weight and morphology or the number of neurons, astrocytes, or microglia but did increase glial fibrillary acidic protein (GFAP) expression in astrocytes of the cerebral cortex. The anatomy of the major cerebral vasculature, number and structure of brain micro blood vessels, and blood-brain barrier integrity were unaltered. Next, mice underwent 60 min of focal cerebral ischemia and 72 h of reperfusion induced by the intraluminal suture method. TREK-1-deficient mice showed less neuronal death, smaller infarction size, milder blood-brain barrier (BBB) breakdown, reduced immune cell invasion, and better neurological function. Finally, the specific pharmacological inhibition of TREK-1 also decreased infarction size and improved neurological function. These results demonstrated that TREK-1 might play a detrimental rather than beneficial role in focal cerebral ischemia, and inhibition of TREK-1 would be a strategy to treat ischemic stroke in the clinic.
Collapse
Affiliation(s)
- Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Neurological Diseases of Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Zhou M, Du Y, Aten S, Terman D. On the electrical passivity of astrocyte potassium conductance. J Neurophysiol 2021; 126:1403-1419. [PMID: 34525325 DOI: 10.1152/jn.00330.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Predominant expression of leak-type K+ channels provides astrocytes a high membrane permeability to K+ ions and a hyperpolarized membrane potential that are crucial for astrocyte function in brain homeostasis. In functionally mature astrocytes, the expression of leak K+ channels creates a unique membrane K+ conductance that lacks voltage-dependent rectification. Accordingly, the conductance is named ohmic or passive K+ conductance. Several inwardly rectifying and two-pore domain K+ channels have been investigated for their contributions to passive conductance. Meanwhile, gap junctional coupling has been postulated to underlie the passive behavior of membrane conductance. It is now clear that the intrinsic properties of K+ channels and gap junctional coupling can each act alone or together to bring about a passive behavior of astrocyte conductance. Additionally, while the passive conductance can generally be viewed as a K+ conductance, the actual representation of this conductance is a combined expression of multiple known and unknown K+ channels, which has been further modified by the intricate morphology of individual astrocytes and syncytial gap junctional coupling. The expression of the inwardly rectifying K+ channels explains the inward-going component of passive conductance disobeying Goldman-Hodgkin-Katz constant field outward rectification. However, the K+ channels encoding the outward-going passive currents remain to be determined in the future. Here, we review our current understanding of ion channels and biophysical mechanisms engaged in the passive astrocyte K+ conductance, propose new studies to resolve this long-standing puzzle in astrocyte physiology, and discuss the functional implication(s) of passive behavior of K+ conductance on astrocyte physiology.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Liu H, Yang X, Yang J, Yuan Y, Wang Y, Zhang R, Xiong H, Xu Y. IL-17 Inhibits Oligodendrocyte Progenitor Cell Proliferation and Differentiation by Increasing K + Channel Kv1.3. Front Cell Neurosci 2021; 15:679413. [PMID: 34239419 PMCID: PMC8258110 DOI: 10.3389/fncel.2021.679413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. IL-17 level is significantly increased in inflammatory conditions of the CNS, including but not limited to post-stroke and multiple sclerosis. IL-17 has been detected direct toxicity on oligodendrocyte (Ol) lineage cells and inhibition on oligodendrocyte progenitor cell (OPC) differentiation, and thus promotes myelin damage. The cellular mechanism of IL-17 in CNS inflammatory diseases remains obscure. Voltage-gated K+ (Kv) channel 1.3 is the predominant Kv channel in Ol and potentially involved in Ol function and cell cycle regulation. Kv1.3 of T cells involves in immunomodulation of inflammatory progression, but the role of Ol Kv1.3 in inflammation-related pathogenesis has not been fully investigated. We hypothesized that IL-17 induces myelin injury through Kv1.3 activation. To test the hypothesis, we studied the involvement of OPC/Ol Kv1.3 in IL-17-induced Ol/myelin injury in vitro and in vivo. Kv1.3 currents and channel expression gradually decreased during the OPC development. Application of IL-17 to OPC culture increased Kv1.3 expression, leading to a decrease of AKT activation, inhibition of proliferation and myelin basic protein reduction, which were prevented by a specific Kv1.3 blocker 5-(4-phenoxybutoxy) psoralen. IL-17-caused myelin injury was validated in LPC-induced demyelination mouse model, particularly in corpus callosum, which was also mitigated by aforementioned Kv1.3 antagonist. IL-17 altered Kv1.3 expression and resultant inhibitory effects on OPC proliferation and differentiation may by interrupting AKT phosphorylating activation. Taken together, our results suggested that IL-17 impairs remyelination and promotes myelin damage by Kv1.3-mediated Ol/myelin injury. Thus, blockade of Kv1.3 as a potential therapeutic strategy for inflammatory CNS disease may partially attribute to the direct protection on OPC proliferation and differentiation other than immunomodulation.
Collapse
Affiliation(s)
- Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueke Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Fernández‐Muñoz B, Rosell‐Valle C, Ferrari D, Alba‐Amador J, Montiel MÁ, Campos‐Cuerva R, Lopez‐Navas L, Muñoz‐Escalona M, Martín‐López M, Profico DC, Blanco MF, Giorgetti A, González‐Muñoz E, Márquez‐Rivas J, Sanchez‐Pernaute R. Retrieval of germinal zone neural stem cells from the cerebrospinal fluid of premature infants with intraventricular hemorrhage. Stem Cells Transl Med 2020; 9:1085-1101. [PMID: 32475061 PMCID: PMC7445027 DOI: 10.1002/sctm.19-0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/10/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Intraventricular hemorrhage is a common cause of morbidity and mortality in premature infants. The rupture of the germinal zone into the ventricles entails loss of neural stem cells and disturbs the normal cytoarchitecture of the region, compromising late neurogliogenesis. Here we demonstrate that neural stem cells can be easily and robustly isolated from the hemorrhagic cerebrospinal fluid obtained during therapeutic neuroendoscopic lavage in preterm infants with severe intraventricular hemorrhage. Our analyses demonstrate that these neural stem cells, although similar to human fetal cell lines, display distinctive hallmarks related to their regional and developmental origin in the germinal zone of the ventral forebrain, the ganglionic eminences that give rise to interneurons and oligodendrocytes. These cells can be expanded, cryopreserved, and differentiated in vitro and in vivo in the brain of nude mice and show no sign of tumoral transformation 6 months after transplantation. This novel class of neural stem cells poses no ethical concerns, as the fluid is usually discarded, and could be useful for the development of an autologous therapy for preterm infants, aiming to restore late neurogliogenesis and attenuate neurocognitive deficits. Furthermore, these cells represent a valuable tool for the study of the final stages of human brain development and germinal zone biology.
Collapse
Affiliation(s)
- Beatriz Fernández‐Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Grupo de Neurociencia aplicadaInstituto de Biomedicina de SevillaSevillaSpain
| | - Cristina Rosell‐Valle
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Daniela Ferrari
- Department of Biotechnology and BiosciencesUniversity Milan‐BicoccaMilanItaly
| | - Julia Alba‐Amador
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Miguel Ángel Montiel
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Rafael Campos‐Cuerva
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Centro de TransfusionesTejidos y Células de Sevilla (CTTS)SevillaSpain
| | - Luis Lopez‐Navas
- Departamento de PreclínicaRed Andaluza de Diseño y Traslación de Terapias AvanzadasSevillaSpain
| | - María Muñoz‐Escalona
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Present address:
Centre for Genomics and Oncological Research (GENYO)GranadaSpain
| | - María Martín‐López
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
- Grupo de Neurociencia aplicadaInstituto de Biomedicina de SevillaSevillaSpain
| | - Daniela Celeste Profico
- Fondazione IRCCS Casa Sollievo della SofferenzaProduction Unit of Advanced Therapies (UPTA)San Giovanni RotondoItaly
| | - Manuel Francisco Blanco
- Unidad de Producción y Reprogramación Celular (UPRC)Red Andaluza para el diseño y traslación de Terapias AvanzadasSevillaSpain
| | - Alessandra Giorgetti
- Regenerative Medicine ProgramBellvitge Biomedical Research Institute (IDIBELL); Program for Translation of Regenerative Medicine in Catalonia (P‐CMRC)BarcelonaSpain
| | - Elena González‐Muñoz
- Department of Cell BiologyGenetics and Physiology, University of MálagaMálagaSpain
- Department of Regenerative NanomedicineAndalusian Center for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN). Carlos III Health Institute (ISCIII)Spain
| | - Javier Márquez‐Rivas
- Grupo de Neurociencia aplicadaInstituto de Biomedicina de SevillaSevillaSpain
- Neurosurgery DepartmentHospital Virgen del RocíoSevillaSpain
| | | |
Collapse
|
7
|
Moroni RF, Regondi MC, de Curtis M, Frassoni C, Librizzi L. Kir4.1 RNA Interference by In Utero Electroporation Fails to Affect Ictogenesis and Reveals a Possible role of Kir4.1 in Corticogenesis. Neuroscience 2020; 441:65-76. [PMID: 32590038 DOI: 10.1016/j.neuroscience.2020.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Astrocyte dysfunction, and in particular impaired extracellular potassium spatial buffering, has been postulated to have a potential role in seizure susceptibility and ictogenesis. Inwardly rectifying potassium (Kir) channels, and specifically KIR4.1, have a predominant role in K+ homeostasis and their involvement in neuronal excitability control have been hypothesized. To avoid the severe side effects observed in Kir4.1 cKO, we studied the effects of Kir4.1 down-regulation in cortical astrocytes by using Kir4.1 RNA interference (RNAi) technique combined with in utero electroporation (IUE) at E16 and a piggyBac transposon system. Kir4.1 down-regulation was confirmed by immunohistochemistry and field fraction analysis. To investigate if Kir4.1 silencing affects 4AP-induced seizure threshold and extracellular potassium homeostasis, simultaneous in vitro field potential and extracellular K+ recordings were performed on somatosensory cortex slices obtained from rats electroporated with a piggyBac-Kir4.1-shRNA (Kir4.1-) and scrambled shRNA (Kir4.1Sc). Electrophysiological data revealed no significant differences in terms of seizure onset and seizure-induced extracellular K+ changes between Kir4.1- and Kir4.1Sc rats. Intriguingly, immunohistochemical analysis performed on slices studied with electrophysiology revealed a reduced number of neurons generated from radial glial cells in Kir4.1- rats. We conclude that focal down-regulation of Kir4.1 channel in cortical astrocytes by Kir4.1 RNAi technique combined with IUE is not effective in altering potassium homeostasis and seizure susceptibility. This technique revealed a possible role of Kir4.1 during corticogenesis.
Collapse
Affiliation(s)
- Ramona Frida Moroni
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Maria Cristina Regondi
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Marco de Curtis
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Carolina Frassoni
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Laura Librizzi
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
8
|
Ort C, Dayekh K, Xing M, Mequanint K. Emerging Strategies for Stem Cell Lineage Commitment in Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:3644-3657. [PMID: 33429592 DOI: 10.1021/acsbiomaterials.8b00532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cells have transformed the fields of tissue engineering and regenerative medicine, and their potential to further advance these fields cannot be overstated. The stem cell niche is a dynamic microenvironment that determines cell fate during development and tissue repair following an injury. Classically, stem cells were studied in isolation of their microenvironment; however, contemporary research has produced a myriad of evidence that shows the importance of multiple aspects of the stem cell niche in regulating their processes. In the context of tissue engineering and regenerative medicine studies, the niche is an artificial environment provided by culture conditions. In vitro culture conditions may involve coculturing with other cell types, developing specific biomaterials, and applying relevant forces to promote the desired lineage commitment. Considerable advance has been made over the past few years toward directed stem cell differentiation; however, the unspecific differentiation of stem cells yielding a mixed population of cells has been a challenge. In this review, we provide a systematic review of the emerging strategies used for lineage commitment within the context of tissue engineering and regenerative medicine. These strategies include scaffold pore-size and pore-shape gradients, stress relaxation, sonic and electromagnetic effects, and magnetic forces. Finally, we provide insights and perspectives into future directions focusing on signaling pathways activated during lineage commitment using external stimuli.
Collapse
Affiliation(s)
| | | | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 66 Chancellors Circle, Winnipeg R3T 2N2, Canada
| | | |
Collapse
|
9
|
Petrik D, Myoga MH, Grade S, Gerkau NJ, Pusch M, Rose CR, Grothe B, Götz M. Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner. Cell Stem Cell 2018; 22:865-878.e8. [DOI: 10.1016/j.stem.2018.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
|
10
|
Pisciotta A, Bertoni L, Riccio M, Mapelli J, Bigiani A, La Noce M, Orciani M, de Pol A, Carnevale G. Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human Dental Pulp Stem Cells. Front Physiol 2018; 9:547. [PMID: 29892229 PMCID: PMC5985438 DOI: 10.3389/fphys.2018.00547] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Human dental pulp is considered an interesting source of adult stem cells, due to the low-invasive isolation procedures, high content of stem cells and its peculiar embryological origin from neural crest. Based on our previous findings, a dental pulp stem cells sub-population, enriched for the expression of STRO-1, c-Kit, and CD34, showed a higher neural commitment. However, their biological properties were compromised when cells were cultured in adherent standard conditions. The aim of this study was to evaluate the ability of three dimensional floating spheres to preserve embryological and biological properties of this sub-population. In addition, the expression of the inwardly rectifying potassium channel Kir4.1, Fas and FasL was investigated in 3D-sphere derived hDPSCs. Our data showed that 3D sphere-derived hDPSCs maintained their fibroblast-like morphology, preserved stemness markers expression and proliferative capability. The expression of neural crest markers and Kir4.1 was observed in undifferentiated hDPSCs, furthermore this culture system also preserved hDPSCs differentiation potential. The expression of Fas and FasL was observed in undifferentiated hDPSCs derived from sphere culture and, noteworthy, FasL was maintained even after the neurogenic commitment was reached, with a significantly higher expression compared to osteogenic and myogenic commitments. These data demonstrate that 3D sphere culture provides a favorable micro-environment for neural crest-derived hDPSCs to preserve their biological properties.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Riccio
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcella La Noce
- Department of Experimental Medicine, Unit of Biotechnologies, Medical Histology and Molecular Biology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Anto de Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Seifert G, Henneberger C, Steinhäuser C. Diversity of astrocyte potassium channels: An update. Brain Res Bull 2016; 136:26-36. [PMID: 27965079 DOI: 10.1016/j.brainresbull.2016.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
Abstract
Astrocyte K+ channels and the K+ currents they mediate dwarf all other transmembrane conductances in these cells. This defining feature of astrocytes and its functional implications have been investigated intensely over the past decades. Nonetheless, many aspects of astrocyte K+ handling and signaling remain incompletely understood. In this review, we provide an update on the diversity of K+ channels expressed by astrocytes and new functional implications. We focus on inwardly-rectifying K+ channels (particularly Kir4.1), two-pore K+ channels and voltage and Ca2+-dependent K+ channels. We further discuss new insights into the involvement of these K+ channels in K+ buffering, control of synaptic transmission, regulation of the vasculature and in diseases of the central nervous system.
Collapse
Affiliation(s)
- Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| |
Collapse
|
12
|
Birbrair A, Sattiraju A, Zhu D, Zulato G, Batista I, Nguyen VT, Messi ML, Solingapuram Sai KK, Marini FC, Delbono O, Mintz A. Novel Peripherally Derived Neural-Like Stem Cells as Therapeutic Carriers for Treating Glioblastomas. Stem Cells Transl Med 2016; 6:471-481. [PMID: 28191774 PMCID: PMC5442817 DOI: 10.5966/sctm.2016-0007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM), an aggressive grade IV astrocytoma, is the most common primary malignant adult brain tumor characterized by extensive invasiveness, heterogeneity, and angiogenesis. Standard treatment options such as radiation and chemotherapy have proven to be only marginally effective in treating GBM because of its invasive nature. Therefore, extensive efforts have been put forth to develop tumor‐tropic stem cells as viable therapeutic vehicles with potential to treat even the most invasive tumor cells that are harbored within areas of normal brain. To this end, we discovered a newly described NG2‐expressing cell that we isolated from a distinct pericyte subtype found abundantly in cultures derived from peripheral muscle. In this work, we show the translational significance of these peripherally derived neural‐like stem cells (NLSC) and their potential to migrate toward tumors and act as therapeutic carriers. We demonstrate that these NLSCs exhibit in vitro and in vivo GBM tropism. Furthermore, NLSCs did not promote angiogenesis or transform into tumor‐associated stromal cells, which are concerns raised when using other common stem cells, such as mesenchymal stem cells and induced neural stem cells, as therapeutic carriers. We also demonstrate the potential of NLSCs to express a prototype therapeutic, tumor necrosis factor α‐related apoptosis‐inducing ligand and kill GBM cells in vitro. These data demonstrate the therapeutic potential of our newly characterized NLSC against GBM. Stem Cells Translational Medicine2017;6:471–481
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal Medicine‐Gerontology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Department of Pathology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Anirudh Sattiraju
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Winston‐Salem, North Carolina, USA
| | - Dongqin Zhu
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Gilberto Zulato
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Izadora Batista
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Van T. Nguyen
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Maria Laura Messi
- Department of Internal Medicine‐Gerontology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Kiran Kumar Solingapuram Sai
- Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Winston‐Salem, North Carolina, USA
| | - Frank C. Marini
- Wake Forest Institute for Regenerative Medicine, Winston‐Salem, North Carolina, USA
| | - Osvaldo Delbono
- Department of Internal Medicine‐Gerontology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Winston‐Salem, North Carolina, USA
| |
Collapse
|
13
|
Annese T, Corsi P, Ruggieri S, Tamma R, Marinaccio C, Picocci S, Errede M, Specchia G, De Luca A, Frassanito MA, Desantis V, Vacca A, Ribatti D, Nico B. Isolation and characterization of neural stem cells from dystrophic mdx mouse. Exp Cell Res 2016; 343:190-207. [PMID: 27015747 DOI: 10.1016/j.yexcr.2016.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
|
14
|
Chen P, Wang L, Deng Q, Ruan H, Cai W. Alteration in rectification of potassium channels in perinatal hypoxia ischemia brain damage. J Neurophysiol 2014; 113:592-600. [PMID: 25355958 DOI: 10.1152/jn.00144.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are susceptible to perinatal hypoxia ischemia brain damage (HIBD), which results in infant cerebral palsy due to the effects on myelination. The origin of OPC vulnerability in HIBD, however, remains controversial. In this study, we defined the HIBD punctate lesions by MRI diffuse excessive high signal intensity (DEHSI) in postnatal 7-day-old rats. The electrophysiological functional properties of OPCs in HIBD were recorded by patch-clamp in acute cerebral cortex slices. The slices were intracellularly injected with Lucifer yellow and immunohistochemically labeled with NG2 antibody to identify local OPCs. Passive membrane properties and K(+) channel functions in OPCs were analyzed to estimate the onset of vulnerability in HIBD. The resting membrane potential, membrane resistance, and membrane capacitance of OPCs were increased in both the gray and white matter of the cerebral cortex. OPCs in both the gray and white matter exhibited voltage-dependent K(+) currents, which consisted of the initiated rectified potassium currents (IA) and the sustained rectified currents (IK). The significant alternation in membrane resistance was influenced by the diversity of potassium channel kinetics. These findings suggest that the rectification of IA and IK channels may play a significant role in OPC vulnerability in HIBD.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Neurobiology, The Third Military Medical University, Chongqing, China; and
| | - Liyan Wang
- Department of Pediatrics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Qiyue Deng
- Department of Neurobiology, The Third Military Medical University, Chongqing, China; and
| | - Huaizhen Ruan
- Department of Neurobiology, The Third Military Medical University, Chongqing, China; and
| | - Wenqin Cai
- Department of Neurobiology, The Third Military Medical University, Chongqing, China; and
| |
Collapse
|
15
|
Marinc C, Derst C, Prüss H, Veh RW. Immunocytochemical localization of TASK-3 protein (K2P9.1) in the rat brain. Cell Mol Neurobiol 2014; 34:61-70. [PMID: 24077856 PMCID: PMC11488879 DOI: 10.1007/s10571-013-9987-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/13/2013] [Indexed: 01/06/2023]
Abstract
Among all K2P channels, TASK-3 shows the most widespread expression in rat brain, regulating neuronal excitability and transmitter release. Using a recently purified and characterized polyclonal monospecific antibody against TASK-3, the entire rat brain was immunocytochemically analyzed for expression of TASK-3 protein. Besides its well-known strong expression in motoneurons and monoaminergic and cholinergic neurons, TASK-3 expression was found in most neurons throughout the brain. However, it was not detected in certain neuronal populations, and neuropil staining was restricted to few areas. Also, it was absent in adult glial cells. In hypothalamic areas, TASK-3 was particularly strongly expressed in the supraoptic and suprachiasmatic nuclei, whereas other hypothalamic nuclei showed lower protein levels. Immunostaining of hippocampal CA1 and CA3 pyramidal neurons showed strongest expression, together with clear staining of CA3 mossy fibers and marked staining also in the dentate gyrus granule cells. In neocortical areas, most neurons expressed TASK-3 with a somatodendritic localization, most obvious in layer V pyramidal neurons. In the cerebellum, TASK-3 protein was found mainly in neurons and neuropil of the granular cell layer, whereas Purkinje cells were only faintly positive. Particularly weak expression was demonstrated in the forebrain. This report provides a comprehensive overview of TASK-3 protein expression in the rat brain.
Collapse
Affiliation(s)
- Christiane Marinc
- Institut für Integrative Neuroanatomie, Charité, Philippstr. 12, 10115 Berlin, Germany
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Charité, Philippstr. 12, 10115 Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Disorders (DZNE), Berlin, Germany
| | - Rüdiger W. Veh
- Institut für Integrative Neuroanatomie, Charité, Philippstr. 12, 10115 Berlin, Germany
| |
Collapse
|
16
|
Yasuda T, Cuny H, Adams DJ. Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation. J Physiol 2013; 591:2579-91. [PMID: 23478135 DOI: 10.1113/jphysiol.2012.249151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs, voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However, the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1, a high voltage-gated KDR channel, was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P < 0.001) and KDR channel currents by 52.2% (P < 0.001). This indicates that Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties, such as resting membrane potential, of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P < 0.01). This inhibition was attributed to decreased cell proliferation, not increased cell apoptosis. We also established a convenient in vitro imaging assay system to evaluate NPC differentiation using NPCs from doublecortin-green fluorescent protein transgenic mice. Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P < 0.01). We have demonstrated that Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.
Collapse
Affiliation(s)
- Takahiro Yasuda
- Center for Clinical Research, School of Medicine, Kobe University Hospital, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | |
Collapse
|
17
|
Marinc C, Prüss H, Derst C, Veh RW. Immunocytochemical localization of TASK-3 channels in rat motor neurons. Cell Mol Neurobiol 2012; 32:309-18. [PMID: 22011781 PMCID: PMC11498357 DOI: 10.1007/s10571-011-9762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/03/2011] [Indexed: 12/12/2022]
Abstract
Motor neurons are large cholinergic neurons located in the brain stem and spinal cord. In recent years, a functional role for TASK channels in cellular excitability and vulnerability to anesthetics of motor neurons has been described. Using a polyclonal monospecific antibody against the tandem pore domain K(+) channel (K2P channel) TWIK-related acid-sensitive K(+) channel (TASK-3), we analyzed the expression of the TASK-3 protein in motor systems of the rat CNS. Immunocytochemical staining showed strong TASK-3 expression in motor neurons of the facial, trigeminal, ambiguus, and hypoglossal nuclei. Oculomotor nuclei (including trochlear and abducens nucleus) were also strongly positive for TASK-3. The parasympathetic Edinger-Westphal nucleus and dorsal vagal nucleus showed significant, but weaker expression compared with somato- and branchiomotoric neurons. In addition, motor neurons in the anterior horn of the spinal cord were also strongly labeled for TASK-3 immunoreactivity. Based on morphological criteria, TASK-3 was found in the somatodendritic compartment of motor neurons. Cellular staining using methyl green and immunofluorescence double-labeling with anti-vesicular acetylcholine transporter (anti-vAChT) indicated ubiquitous TASK-3 expression in motor neurons, whereas in other brain regions TASK-3 showed a widespread but not ubiquitous expression. In situ hybridization using a TASK-3 specific riboprobe verified the expression of TASK-3 in motor neurons at the mRNA level.
Collapse
Affiliation(s)
- Christiane Marinc
- Institut für Integrative Neuroanatomie, Charité, Philippstr. 12, 10115 Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Charité, Philippstr. 12, 10115 Berlin, Germany
| | - Rüdiger W. Veh
- Institut für Integrative Neuroanatomie, Charité, Philippstr. 12, 10115 Berlin, Germany
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|
18
|
Swayne LA, Wicki-Stordeur L. Ion channels in postnatal neurogenesis: potential targets for brain repair. Channels (Austin) 2012; 6:69-74. [PMID: 22614818 DOI: 10.4161/chan.19721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Division of Medical Sciences; Island Medical Program, University of Victoria, Victoria, BC, Canada.
| | | |
Collapse
|
19
|
Lu J, Lian G, Zhou H, Esposito G, Steardo L, Delli-Bovi LC, Hecht JL, Lu QR, Sheen V. OLIG2 over-expression impairs proliferation of human Down syndrome neural progenitors. Hum Mol Genet 2012; 21:2330-40. [PMID: 22343408 DOI: 10.1093/hmg/dds052] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Mental retardation and early Alzheimer's disease (AD) have generally been attributed to progressive neuronal loss in the developing and mature Down syndrome (DS) brain. However, reduced neuronal production during development could also contribute to the smaller brain size and simplified gyral patterning seen in this disorder. Here, we show impairments in proliferation within the ventricular zone (VZ) of early DS fetal cortex and in cultured early passage DS human neural progenitors (HNPs). We find that the reduced proliferative rates correspond temporally with increased expression of the chromosome 21 (HSA21) associated, oligodendrocyte transcription factor OLIG2 at 14-18 weeks gestational age (GA) (period of neurogenesis). Moreover, the DS HNPs adopt more oligodendrocyte-specific features including increased oligodendrocyte marker expression, as well as a reduction in KCNA3 potassium channel expression and function. We further show that OLIG2 inhibition or over-expression regulates potassium channel expression levels and that activation or inhibition of these channels influences the rate of progenitor proliferation. Finally, neural progenitors from Olig2 over-expressing transgenic mice exhibit these same impairments in proliferation and potassium channel expression. These findings suggest that OLIG2 over-expression inhibits neural progenitor proliferation through changes in potassium channel activity, thereby contributing to the reduced neuronal numbers and brain size in DS.
Collapse
Affiliation(s)
- Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|