1
|
Wang D, Saleem S, Sullivan RD, Zhao T, Reed GL. Differences in Acute Expression of Matrix Metalloproteinases-9, 3, and 2 Related to the Duration of Brain Ischemia and Tissue Plasminogen Activator Treatment in Experimental Stroke. Int J Mol Sci 2024; 25:9442. [PMID: 39273389 PMCID: PMC11394866 DOI: 10.3390/ijms25179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Matrix metalloproteinases (MMPs) such as MMP-9, 3, and 2 degrade the cellular matrix and are believed to play a crucial role in ischemic stroke. We examined how the duration of ischemia (up to 4 h) and treatment with recombinant tissue plasminogen activator altered the comparative expression of these MMPs in experimental ischemic stroke with reperfusion. Both prolonged ischemia and r-tPA treatment markedly increased MMP-9 expression in the ischemic hemisphere (all p < 0.0001). The duration of ischemia and r-tPA treatment also significantly increased MMP-2 expression (p < 0.01-0.001) in the ischemic hemisphere (p < 0.01) but to a lesser degree than MMP-9. In contrast, MMP-3 expression significantly decreased in the ischemic hemisphere (p < 0.001) with increasing duration of ischemia and r-tPA treatment (p < 0.05-0001). MMP-9 expression was prominent in the vascular compartment and leukocytes. MMP-2 expression was evident in the vascular compartment and MMP-3 in NeuN+ neurons. Prolonging the duration of ischemia (up to 4 h) before reperfusion increased brain hemorrhage, infarction, swelling, and neurologic disability in both saline-treated (control) and r-tPA-treated mice. MMP-9 and MMP-2 expression were significantly positively correlated with, and MMP-3 was significantly negatively correlated with, infarct volume, swelling, and brain hemorrhage. We conclude that in experimental ischemic stroke with reperfusion, the duration of ischemia and r-tPA treatment significantly altered MMP-9, 3, and 2 expression, ischemic brain injury, and neurological disability. Each MMP showed unique patterns of expression that are strongly correlated with the severity of brain infarction, swelling, and hemorrhage. In summary, in experimental ischemic stroke in male mice with reperfusion, the duration of ischemia, and r-tPA treatment significantly altered the immunofluorescent expression of MMP-9, 3, and 2, ischemic brain injury, and neurological disability. In this model, each MMP showed unique patterns of expression that were strongly correlated with the severity of brain infarction, swelling, and hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (D.W.); (S.S.); (R.D.S.); (T.Z.)
| |
Collapse
|
2
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
3
|
Suofu Y, Jauhari A, Nirmala ES, Mullins WA, Wang X, Li F, Carlisle DL, Friedlander RM. Neuronal melatonin type 1 receptor overexpression promotes M2 microglia polarization in cerebral ischemia/reperfusion-induced injury. Neurosci Lett 2023; 795:137043. [PMID: 36586530 PMCID: PMC9936831 DOI: 10.1016/j.neulet.2022.137043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Microglial activation is readily detected following cerebral ischemia/reperfusion-induced injury. Activated microglia polarize into either classic pro-inflammatory M1 or protective M2 microglia following ischemia/reperfusion-induced injury. Melatonin is protective immediately after ischemia/reperfusion-induced brain injury. However, the ability of melatonin to affect longer-term recovery from ischemic/reperfusion-induced injury as well as its ability to modulate microglia/macrophage polarization are unknown. The goal of this study is to understand the impact of melatonin on mice 14 days after injury, as well as to understand how melatonin affects microglial polarization of neuronal MT1 activation following cerebral ischemia/reperfusion. We utilized NSEMT1-GFP transgenic mice which overexpress MT1 (melatonin type 1 receptor) in neurons. Melatonin-treated or vehicle treated wild type and NSEMT1-GFP mice underwent middle cerebral artery occlusion (MCAO)/reperfusion and followed for 14 days. Neuronal MT1 overexpression significantly reduced infarct volumes, improved motor function, and ameliorated weight loss. Additionally, melatonin treatment reduced infarct volume in NSEMT1-GFP mice as compared to untreated wild type, melatonin treated wild type, and untreated NSEMT1-GFP mice. Melatonin improved neurological function and prevented weight loss in NSEMT1-GFP mice compared with melatonin treated wild type mice. Finally, melatonin treatment in combination with MT1 overexpression reduced the numbers of Iba1+/CD16+ M1 microglia and increased the numbers of Iba1+/ CD206+ M2 microglia after ischemic injury. In conclusion, neuronal MT1 mediates melatonin-induced long-term recovery after cerebral ischemia, at least in part, by shifting microglial polarization toward the neuroprotective M2 phenotype.
Collapse
Affiliation(s)
- Yalikun Suofu
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abhishek Jauhari
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emilia S Nirmala
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William A Mullins
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaomin Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Bormann T, Maus R, Stolper J, Tort Tarrés M, Brandenberger C, Wedekind D, Jonigk D, Welte T, Gauldie J, Kolb M, Maus UA. Role of matrix metalloprotease-2 and MMP-9 in experimental lung fibrosis in mice. Respir Res 2022; 23:180. [PMID: 35804363 PMCID: PMC9270768 DOI: 10.1186/s12931-022-02105-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a diffuse parenchymal lung disease characterized by exuberant deposition of extracellular matrix (ECM) proteins in the lung interstitium, which contributes to substantial morbidity and mortality in IPF patients. Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endopeptidases, many of which have been implicated in the regulation of ECM degradation in lung fibrosis. However, the roles of MMP-2 and -9 (also termed gelatinases A and B) have not yet been explored in lung fibrosis in detail. METHODS AdTGF-β1 was applied via orotracheal routes to the lungs of WT, MMP-2 KO, MMP-9 KO and MMP-2/-9 dKO mice on day 0 to induce lung fibrosis. Using hydroxyproline assay, FlexiVent based lung function measurement, histopathology, western blot and ELISA techniques, we analyzed MMP-2 and MMP-9 levels in BAL fluid and lung, collagen contents in lung and lung function in mice on day 14 and 21 post-treatment. RESULT IPF lung homogenates exhibited significantly increased levels of MMP-2 and MMP-9, relative to disease controls. Enzymatically active MMP-2 and MMP-9 was increased in lungs of mice exposed to adenoviral TGF-β1, suggesting a role for these metalloproteinases in lung fibrogenesis. However, we found that neither MMP-2 or MMP-9 nor combined MMP-2/-9 deletion had any effect on experimental lung fibrosis in mice. CONCLUSION Together, our data strongly suggest that both gelatinases MMP-2 and MMP-9 play only a subordinate role in experimental lung fibrosis in mice.
Collapse
Affiliation(s)
- Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Meritxell Tort Tarrés
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany. .,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Zhang Y, Guo X, Peng Z, Liu C, Ren L, Liang J, Wang P. Nicotinamide Mononucleotide Adenylyltransferase 1 Regulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption Through NAD +/SIRT1 Signaling Pathway. Mol Neurobiol 2022; 59:4879-4891. [PMID: 35657458 DOI: 10.1007/s12035-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms of blood-brain barrier (BBB) disruption in the early stage after ischemic stroke are poorly understood. In the present study, we investigated the potential role of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) in ischemia-induced BBB damage using an animal middle cerebral artery occlusion (MCAO) model of ischemic stroke. Recombinant human NMNAT1 (rh-NMNAT1) was administered intranasally and Sirtuin 1 (SIRT1) siRNA was administered by intracerebroventricular injection. Our results indicate that rh-NMNAT1 reduced infarct volume, improved functional outcome, and decreased BBB permeability in mice after ischemic stroke. Furthermore, rh-NMNAT1 prevented the loss of tight junction proteins (occludin and claudin-5) and reduced cell apoptosis in ischemic microvessels. NMNAT1-mediated BBB permeability was correlated with the elevation of nicotinamide adenine dinucleotide (NAD+)/NADH ratio and SIRT1 level in brain microvascular endothelial cells. In addition, rh-NMNAT1 treatment significantly decreased the levels of acetylated nuclear factor-κB, acetylated p53, and matrix metalloproteinase-9 in ischemic microvessels. Moreover, the protective effects of rh-NMNAT1 could be reversed by SIRT1 siRNA. In conclusion, these findings indicate that rh-NMNAT1 protects BBB integrity after cerebral ischemia via the NAD+/SIRT1 signaling pathway in brain microvascular endothelial cells. NMNAT1 may be a novel potential therapeutic target for reducing BBB disruption after ischemic stroke.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xun Guo
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhifeng Peng
- Department of Physiology, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Chang Liu
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lili Ren
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jia Liang
- Institute of Life Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
6
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2022; 42:621-646. [PMID: 33125600 PMCID: PMC11441267 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Krishnan R, Mays W, Elijovich L. Complications of Mechanical Thrombectomy in Acute Ischemic Stroke. Neurology 2021; 97:S115-S125. [PMID: 34785610 DOI: 10.1212/wnl.0000000000012803] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple randomized clinical trials have supported the use of mechanical thrombectomy (MT) as standard of care in the treatment of large vessel occlusion acute ischemic stroke. Optimal outcomes depend not only on early reperfusion therapy but also on post thrombectomy care. Early recognition of post MT complications including reperfusion hemorrhage, cerebral edema and large space occupying infarcts, and access site complications can guide early initiation of lifesaving therapies that can improve neurologic outcomes. Knowledge of common complications and their management is essential for stroke neurologists and critical care providers to ensure optimal outcomes. We present a review of the available literature evaluating the common complications in patients undergoing MT with emphasis on early recognition and management.
Collapse
Affiliation(s)
- Rashi Krishnan
- From the Department of Neurology, University of Tennessee Health Science Center, Memphis
| | - William Mays
- From the Department of Neurology, University of Tennessee Health Science Center, Memphis
| | - Lucas Elijovich
- From the Department of Neurology, University of Tennessee Health Science Center, Memphis.
| |
Collapse
|
8
|
Janssen L, Ai X, Zheng X, Wei W, Caglayan AB, Kilic E, Wang YC, Hermann DM, Venkataramani V, Bähr M, Doeppner TR. Inhibition of Fatty Acid Synthesis Aggravates Brain Injury, Reduces Blood-Brain Barrier Integrity and Impairs Neurological Recovery in a Murine Stroke Model. Front Cell Neurosci 2021; 15:733973. [PMID: 34483846 PMCID: PMC8415573 DOI: 10.3389/fncel.2021.733973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023] Open
Abstract
Inhibition of fatty acid synthesis (FAS) stimulates tumor cell death and reduces angiogenesis. When SH-SY5Y cells or primary neurons are exposed to hypoxia only, inhibition of FAS yields significantly enhanced cell injury. The pathophysiology of stroke, however, is not only restricted to hypoxia but also includes reoxygenation injury. Hence, an oxygen-glucose-deprivation (OGD) model with subsequent reoxygenation in both SH-SY5Y cells and primary neurons as well as a murine stroke model were used herein in order to study the role of FAS inhibition and its underlying mechanisms. SH-SY5Y cells and cortical neurons exposed to 10 h of OGD and 24 h of reoxygenation displayed prominent cell death when treated with the Acetyl-CoA carboxylase inhibitor TOFA or the fatty acid synthase inhibitor cerulenin. Such FAS inhibition reduced the reduction potential of these cells, as indicated by increased NADH2 +/NAD+ ratios under both in vitro and in vivo stroke conditions. As observed in the OGD model, FAS inhibition also resulted in increased cell death in the stroke model. Stroke mice treated with cerulenin did not only display increased brain injury but also showed reduced neurological recovery during the observation period of 4 weeks. Interestingly, cerulenin treatment enhanced endothelial cell leakage, reduced transcellular electrical resistance (TER) of the endothelium and contributed to poststroke blood-brain barrier (BBB) breakdown. The latter was a consequence of the activated NF-κB pathway, stimulating MMP-9 and ABCB1 transporter activity on the luminal side of the endothelium. In conclusion, FAS inhibition aggravated poststroke brain injury as consequence of BBB breakdown and NF-κB-dependent inflammation.
Collapse
Affiliation(s)
- Lisa Janssen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoyu Ai
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ahmet B Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ya-Chao Wang
- The Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Vivek Venkataramani
- Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany.,Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
9
|
Inui T, Hoffer M, Balaban CD. Mild blast wave exposure produces intensity-dependent changes in MMP2 expression patches in rat brains - Findings from different blast severities. Brain Res 2021; 1767:147541. [PMID: 34077763 DOI: 10.1016/j.brainres.2021.147541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase 2 (MMP2) is a gelatinase with multiple functions at the neurovascular interface, including local modification of the glia limitans to facilitate access of immune cells into the brain and amyloid-beta degradation during responses to injury or disease. This study examines regional changes in immunoreactive MMP2 in the rat brain after a single mild (2.7-7.9 psi peak) or moderate (13-17.5 psi peak) blast overpressure (BOP) exposure. Immunopositive MMP2 expression was examined quantitatively in histological sections of decalcified rat heads as a marker at 2, 24, and 72 h after BOP. The MMP2 immunoreactivity was isolated to patchy deposits in brain parenchyma surrounding blood vessels. Separate analyses were conducted for the cerebellum, brain stem caudal to the thalamo-mesencephalic junction, and the cerebrum (including diencephalon). The deposits varied in number, size, staining homogeneity (standard deviation of immunopositive region), and a cumulative measure, the product of size, average intensity and number, as a function of blast intensity and time. The sequences of changes in MMP2 spots from sham control animals suggested that the mild BOP exposure differences normalized within 72 h. However, the responses to moderate exposure revealed a delayed response at 72 h in the subtentorial brain stem and the cerebrum, but not the cerebellum. Hence, local MMP2 responses may be a contextual biomarker for locally regulated responses to widely distributed brain injury foci.
Collapse
Affiliation(s)
- Takaki Inui
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Osaka Mdical College, Osaka, Japan.
| | - Michael Hoffer
- Naval Medical Center San Diego, Spatial Orientation Center, Department of Otolaryngology, Naval Medical Center San Diego, CA, USA; University of Miami, Miller School of Medicine, Department of Otolaryngology, University of Miami, FL, USA.
| | - Carey D Balaban
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Neurobiology, Communication Sciences & Disorders, and Bioengineering, University of Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Zhang L, Graf I, Kuang Y, Zheng X, Haupt M, Majid A, Kilic E, Hermann DM, Psychogios MN, Weber MS, Ochs J, Bähr M, Doeppner TR. Neural Progenitor Cell-Derived Extracellular Vesicles Enhance Blood-Brain Barrier Integrity by NF-κB (Nuclear Factor-κB)-Dependent Regulation of ABCB1 (ATP-Binding Cassette Transporter B1) in Stroke Mice. Arterioscler Thromb Vasc Biol 2021; 41:1127-1145. [PMID: 33327747 PMCID: PMC7901534 DOI: 10.1161/atvbaha.120.315031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. CONCLUSIONS Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Irina Graf
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Yaoyun Kuang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Matteo Haupt
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (A.M.)
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany (D.M.H.)
| | | | - Martin S. Weber
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
- Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Jasmin Ochs
- Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Thorsten R. Doeppner
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| |
Collapse
|
11
|
Hollidge BS, Cohen CA, Akuoku Frimpong J, Badger CV, Dye JM, Schmaljohn CS. Toll-like receptor 4 mediates blood-brain barrier permeability and disease in C3H mice during Venezuelan equine encephalitis virus infection. Virulence 2021; 12:430-443. [PMID: 33487119 PMCID: PMC7849679 DOI: 10.1080/21505594.2020.1870834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus that can cause debilitating, acute febrile illness and potentially result in encephalitis. Currently, there are no FDA-licensed vaccines or specific therapeutics for VEEV. Previous studies have demonstrated that VEEV infection results in increased blood-brain barrier (BBB) permeability that is mediated by matrix metalloproteinases (MMPs). Furthermore, after subarachnoid hemorrhage in mice, MMP-9 is upregulated in the brain and mediates BBB permeability in a toll-like receptor 4 (TLR4)-dependent manner. Here, we demonstrate that disease in C3H mice during VEEV TC-83 infection is dependent on TLR4 because intranasal infection of C3H/HeN (TLR4WT) mice with VEEV TC-83 resulted in mortality as opposed to survival of TLR4-defective C3H/HeJ (TLR4mut) mice. In addition, BBB permeability was induced to a lesser extent in TLR4mut mice compared with TLR4WT mice during VEEV TC-83 infection as determined by sodium fluorescein and fluorescently-conjugated dextran extravasation. Moreover, MMP-9, MMP-2, ICAM-1, CCL2 and IFN-γ were all induced to significantly lower levels in the brains of infected TLR4mut mice compared with infected TLR4WT mice despite the absence of significantly different viral titers or immune cell populations in the brains of infected TLR4WT and TLR4mut mice. These data demonstrate the critical role of TLR4 in mediating BBB permeability and disease in C3H mice during VEEV TC-83 infection, which suggests that TLR4 is a potential target for the development of therapeutics for VEEV.
Collapse
Affiliation(s)
- Bradley S Hollidge
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA.,REGENXBIO, Inc ., Rockville, Maryland, USA
| | - Courtney A Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA
| | - Justice Akuoku Frimpong
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA.,Immunodiagnostics Department, Biological Defense Research Directorate, Naval Medical Research Center , Fort Detrick, Maryland, USA
| | - Catherine V Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA
| | - John M Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA
| | - Connie S Schmaljohn
- Headquarters Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA.,Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institute of Health , Fort Detrick, Maryland, USA
| |
Collapse
|
12
|
Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021; 460:120-129. [PMID: 33465414 DOI: 10.1016/j.neuroscience.2021.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.
Collapse
|
13
|
Mir-155 knockout protects against ischemia/reperfusion-induced brain injury and hemorrhagic transformation. Neuroreport 2021; 31:235-239. [PMID: 31876686 DOI: 10.1097/wnr.0000000000001382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MiR-155 negatively regulates translation of mRNA targets to proteins involved in processes that modulate ischemic brain injury including neuroinflammation, blood-brain barrier (BBB) permeability, and apoptosis. However, reports of the effect of cerebral miR-155 expression changes after ischemic brain injury are equivocal and miR-155 modulates molecular pathways with opposing effects on these processes. The role of miR-155 in postischemic cerebral hemorrhagic transformation remains unknown. To understand the net effect of complete inactivation of miR-155, miR-155 knockout mice were studied in a cerebral ischemia/reperfusion (I/R) model of infarction and hemorrhagic transformation as compared with those of wild type mice. Wild type and miR-155 knockout mice underwent one hour of middle cerebral artery occlusion (MCAO) followed by up to 71 hours of reperfusion. The effects of miR-155 knockout on cerebral infarct size, incidence and extent of hemorrhagic transformation, and neurological outcome were determined. We found that miR-155 was significantly upregulated after cerebral I/R in wild type mice, and miR-155 knockout mice had comparably smaller cerebral infarct size and improved neurological deficits. Similarly, wild type mice had significant hemorrhagic burden after cerebral I/R, the incidence and volume of which was reduced in miR-155 knockout mice. Although miR-155 can have opposite effects on cerebral I/R-injury-related processes, the net effect of miR-155 knockout is neuroprotective. Thus, the increase in miR-155 expression observed after cerebral I/R may be considered deleterious and inhibition of this expression and its effects a potential therapeutic target.
Collapse
|
14
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
15
|
Zheng Z, Yi X, Lv J. Loss of GFAP and Vimentin Does Not Affect Peri-Infarct Depolarizations after Focal Cerebral Ischemia. Eur Neurol 2020; 83:301-309. [PMID: 32694261 DOI: 10.1159/000507990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/19/2020] [Indexed: 11/19/2022]
Abstract
Peri-infarct depolarization (PID), one kind of spreading depolarization, contributes to infarct volume enlargement after ischemic stroke. Astrocytes participate in PIDs by various mechanisms. The roles of glial fibrillary acidic protein (GFAP) and vimentin (Vim), intermediate filament proteins in astrocytes, however, in PIDs induction and propagation remain unknown. Middle cerebral artery occlusion (MCAO) model was made in 9 GFAP-/-Vim-/- and 9 wild-type (WT) C57BL/6 mice. Using 4-wavelength optical intrinsic signal imaging (OIS), we identified PIDs as consistent, red and blue interaction waves in the cortical reflectance that slowly propagated peripherally from the origin site. Five propagation patterns of PIDs were observed after MCAO in mice, namely, latero-medial, medial-lateral, rostro-caudal, caudo-rostral, and collision. Additionally, the frequency, propagation velocity, and duration of PIDs between GFAP-/-Vim-/- and WT mice were not significantly different (p > 0.05). Furthermore, no significant difference was found in infarct volume and brain edema between the two groups. In conclusion, the 4-wavelength OIS system allows acquisition of high temporal-spatial resolution color images for analyzing temporal-spatial characteristics of PIDs in detail. GFAP and Vim in astrocytes are not involved in PIDs after MCAO in mice.
Collapse
Affiliation(s)
- Zelong Zheng
- Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Xuxia Yi
- Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Jianping Lv
- Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, China,
| |
Collapse
|
16
|
Omori W, Hattori K, Kajitani N, Okada-Tsuchioka M, Boku S, Kunugi H, Okamoto Y, Takebayashi M. Increased matrix metalloproteinases in cerebrospinal fluids of patients with major depressive disorder and schizophrenia. Int J Neuropsychopharmacol 2020; 23:pyaa049. [PMID: 32671384 PMCID: PMC7745248 DOI: 10.1093/ijnp/pyaa049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic inflammation of the brain has a pivotal role in the pathophysiology of major depressive disorder (MDD) and schizophrenia (SCZ). Matrix metalloproteinases (MMPs) are extracellular proteases involved in pro-inflammatory processes and interact with IL-6, which is increased in the cerebrospinal fluid (CSF) of patients with MDD and SCZ. However, MMPs in the CSF in patients with MDD and SCZ remains unclear. Therefore, we compared MMPs in the CSF of patients with MDD and SCZ to those of healthy controls (HC). METHODS Japanese patients were diagnosed with DSM-IV-TR and clinical symptoms were assessed with the Hamilton Rating Scale for Depression for MDD and the Positive and Negative Syndrome Scale for SCZ. CSF was obtained from MDD (n=90), SCZ (n=86) and from age- and sex-matched HC (n=106). The levels of MMPs in CSF were measured with multiplex bead-based immunoassay. RESULTS The levels of MMP-2 in CSF were higher in both MDD and SCZ than HC and were positively correlated with clinical symptomatic scores in MDD, but not in SCZ. Regardless of diagnosis, the levels of MMP-2, -7 and -10 were positively correlated with each other, and the levels of MMP-7 and -10 were higher in MDD, but not in SCZ, compared to HC. CONCLUSION Increased CSF levels of MMP-2 in MDD and SCZ may be associated with brain inflammation. State-dependent alteration of MMP-2 and activation of cascades involving MMP-2, -7, and -10 appeared to have a role in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Wataru Omori
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Psychiatry, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoto Kajitani
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
[Influence of massive blood transfusion and traumatic brain injury on TIMP‑1 and MMP‑9 serum levels in polytraumatized patients]. Unfallchirurg 2019; 122:967-976. [PMID: 30806727 DOI: 10.1007/s00113-019-0623-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The morbidity and mortality of polytrauma patients are substantially influenced by the extent of the posttraumatic inflammatory reaction. Studies have shown that TIMP‑1 and MMP‑9 play a major role in posttraumatic immune disorder in genome-wide mRNA microarray analyses. Furthermore, both showed differential gene expression profiles depending on the clinical parameters massive blood transfusion and traumatic brain injury. OBJECTIVE The aim of this study was to evaluate TIMP‑1 and MMP‑9 serum concentrations in polytraumatized patients depending on the clinical parameters massive blood transfusion and traumatic brain injury in the early posttraumatic phase. MATERIAL AND METHODS Polytrauma patients (≥18 years) with an "Injury Severity Score" (ISS) ≥ 16 points were enrolled in this prospective study. Serum levels of TIMP‑1 and MMP‑9 were quantified (at 0 h, 6 h, 12 h, 24 h, 48 h and 72 h) using an enzyme-linked immunosorbent assay (ELISA). Groups were divided according to the clinical parameter massive blood transfusion (≥10 red blood cell units [RBC units] in the first 24-hour posttrauma) and traumatic brain injury (CCT postive [cranial computed tomography]). RESULTS Following massive blood transfusion (n = 21; 50 ± 15.7 years; ISS 39 ± 12.8 points) patients showed overall significantly increased TIMP‑1 levels (p = 0.003) and significantly higher TIMP‑1 values after 12-72 h. Traumatic brain injury patients (n = 28; 44 ± 19 years; ISS 42 ± 10 points) showed significantly higher MMP‑9 levels (p = 0.049) in the posttraumatic period. CONCLUSION Polytraumatized patients who received massive blood transfusions following major trauma showed significantly higher TIMP‑1 levels than patients who did not receive massive transfusions. This seems to be an expression of a massively excessive inflammatory reaction and therefore represents a substantial factor in the pathogenesis of severe posttraumatic immune dysfunction in this collective. Furthermore, the significant increase in MMP‑9 with accompanying traumatic brain injury reflects the pivotal role of matrix metalloproteinases in the pathophysiology of traumatic brain injury.
Collapse
|
18
|
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2019; 316:C135-C153. [PMID: 30379577 PMCID: PMC6397344 DOI: 10.1152/ajpcell.00136.2018] [Citation(s) in RCA: 546] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
- Departments of Anesthesiology, Neurology, Psychiatry, Psychology, and Pharmaceutics, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
19
|
The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol 2019; 75-76:102-113. [DOI: 10.1016/j.matbio.2017.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 12/11/2022]
|
20
|
Zhu H, Dai R, Fu H, Meng Q. MMP-9 Upregulation is Attenuated by the Monoclonal TLR2 Antagonist T2.5 After Oxygen–Glucose Deprivation and Reoxygenation in Rat Brain Microvascular Endothelial Cells. J Stroke Cerebrovasc Dis 2019; 28:97-106. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
|
21
|
Ni P, Dong H, Wang Y, Zhou Q, Xu M, Qian Y, Sun J. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J Neuroinflammation 2018; 15:332. [PMID: 30501622 PMCID: PMC6267879 DOI: 10.1186/s12974-018-1374-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) occur frequently after surgery, especially in aged patients. Surgery-induced neuroinflammation and blood-brain barrier (BBB) dysfunction play a crucial role in the pathogenesis of PND. Interleukin-17A (IL-17A) increases after surgical stress and will be involved in BBB dysfunction. However, the effect of IL-17A on BBB function during PND remains poorly understood. METHODS Male wild-type C57BL/6J mice (15 months old) received tibial fracture surgery and fixation to establish the PND model. All the mice were injected intraperitoneally with an IL-17A-neutralizing antibody (Abs) or isotype-control Abs 30 min before tibial fracture surgery. Animal behaviour tests conducted 24 h after surgery included the contextual fear conditioning and Y maze tests. Serum and hippocampus IL-17A levels and hippocampus IL-6 and IL-1β levels were detected by ELISA. BBB function was detected by Evans blue (EB) test. Hippocampus matrix metalloproteinase-2 (MMP-2)- and MMP-9-positive cells were detected by immunohistochemistry. Hippocampus albumin, occludin, claudin-5 and IL-17A receptors were detected by Western blot. For the in vitro experiment, bEnd.3 cells were incubated with IL-17A. Cell IL-17A receptors were detected by immunofluorescence. Cellular MMP-2, MMP-9, occludin, and claudin-5 were detected by Western blot. RESULTS Tibial fracture surgery promoted memory impairment, increased levels of IL-17A and IL-17A receptors, inflammatory factor production and BBB dysfunction. IL-17A Abs inhibited this effect, including improving memory function, decreasing inflammatory factor production and alleviating BBB disruption, indicated by decreased tight junctions (TJs) and increased MMPs after surgery. The in vitro study suggested that recombinant IL-17A could upregulate the expression of IL-17A receptors, decrease TJs and increase the level of MMPs in bEnd.3 cells. CONCLUSIONS Our results suggested that IL-17A-promoted BBB disruption might play an important role in the pathogenesis of PND.
Collapse
Affiliation(s)
- Pengfei Ni
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Yiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Mengmeng Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Jie Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
22
|
Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, Chen ZA, Yu WF, Li PY. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24:1115-1128. [PMID: 30387323 PMCID: PMC6490160 DOI: 10.1111/cns.13081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The blood‐brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
McBride DW, Gren ECK, Kelln W, Hayes WK, Zhang JH. Crotalus atrox disintegrin reduces hemorrhagic transformation by attenuating matrix metalloproteinase-9 activity after middle cerebral artery occlusion in hyperglycemic male rats. J Neurosci Res 2018; 98:191-200. [PMID: 30242872 DOI: 10.1002/jnr.24334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023]
Abstract
Hemorrhagic transformation after ischemic stroke is an independent predictor for poor outcome and is characterized by blood vessel rupture leading to brain edema. To date, no therapies for preventing hemorrhagic transformation exist. Disintegrins from the venom of Crotalus atrox have targets within the coagulation cascade, including receptors on platelets. We hypothesized that disintegrins from C. atrox venom can attenuate hemorrhagic transformation by preventing activation of matrix metalloproteinase after middle cerebral artery occlusion (MCAO) in hyperglycemic rats. We subjected 48 male Sprague-Dawley rats weighing 240-260 g to MCAO and hyperglycemia to induce hemorrhagic transformation of the infarction. At reperfusion, we administered either saline (vehicle), whole C. atrox venom (two doses were used), or fractionated C. atrox venom (HPLC Fraction 2). Rats were euthanized 24 hr post-ictus for measurement of infarction and hemoglobin volume. Reversed-phase HPLC was performed to fractionate the whole venom and peaks were combined to form Fraction 2, which contained the disintegrin Crotatroxin. Fraction 2 protected against hemorrhagic transformation after MCAO, and attenuated activation of matrix metalloproteinase-9. Administering matrix metalloproteinase antagonists prevented the protection by Fraction 2. The results of this study indicate that disintegrins found in C. atrox venom may have therapeutic potential for reducing hemorrhagic transformation after ischemic stroke. Moreover, the RP-HPLC fractions retained sufficient protein activity to suggest that gentler and less efficient orthogonal chromatographic methods may be unnecessary to isolate proteins and explore their function.
Collapse
Affiliation(s)
- Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Eric C K Gren
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Wayne Kelln
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William K Hayes
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
24
|
Wang L, Wei C, Deng L, Wang Z, Song M, Xiong Y, Liu M. The Accuracy of Serum Matrix Metalloproteinase-9 for Predicting Hemorrhagic Transformation After Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2018; 27:1653-1665. [PMID: 29598905 DOI: 10.1016/j.jstrokecerebrovasdis.2018.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hemorrhagic transformation is a serious complication of acute ischemic stroke, which may cause detrimental outcomes and the delayed use of anticoagulation therapy. Early predicting and identifying the patients at high risk of hemorrhagic transformation before clinical deterioration occurrence become a research priority. OBJECTIVE To study the value of plasma matrix metalloproteinase-9 predicting hemorrhagic transformation after ischemic stroke. METHODS We searched PubMed, Ovid, Cochrane Library, and other 2 Chinese databases to identify literatures published up to September 2017 and performed meta-analysis by STATA (version 12.0, StataCorp LP, College Station, TX). RESULTS Twelve studies incorporating 1492 participants were included and 7 studies were included in the quantitative statistical analysis. The pooled sensitivity was 85% (95% confidence interval [CI]: 75%, 91%) and the pooled specificity was 79% (95% CI: 67%, 87%). The area under the receiver operating characteristic curve was .89 (95% CI .86, .91). Significant heterogeneity for all estimates value existed (all the P value < .05 and I2 > 50%). There is no threshold effect with P value greater than .05 of the correlation coefficient. Meta-regression and subgroup analysis showed cut-off value and hemorrhagic subtype contributed to heterogeneity. Deeks' funnel plot indicated no significant publication bias for 7 quantitative analysis studies. CONCLUSIONS Matrix metalloproteinase-9 has high predictive value for hemorrhagic transformation after acute ischemic stroke. It may be useful to test matrix metalloproteinase-9 to exclude patients at low risk of hemorrhage for precise treatment in the future clinical work.
Collapse
Affiliation(s)
- Lu Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chenchen Wei
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Linghui Deng
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Ziqiong Wang
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengyuan Song
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yao Xiong
- Department of Neurology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Varano GP, Parisi V, Adornetto A, Cavaliere F, Amantea D, Nucci C, Corasaniti MT, Morrone LA, Bagetta G, Russo R. Post-ischemic treatment with azithromycin protects ganglion cells against retinal ischemia/reperfusion injury in the rat. Mol Vis 2017; 23:911-921. [PMID: 29296071 PMCID: PMC5741380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/09/2017] [Indexed: 11/04/2022] Open
Abstract
Purpose Retinal ischemic phenomena occur in several ocular diseases that share the degeneration and death of retinal ganglion cells (RGCs) as the final event. We tested the neuroprotective effect of azithromycin, a widely used semisynthetic macrolide antibiotic endowed with anti-inflammatory and immunomodulatory properties, in a model of retinal ischemic injury induced by transient elevation of intraocular pressure in the rat. Methods Retinal ischemia was induced in adult rats with transient elevation of intraocular pressure. RGCs were retrogradely labeled with Fluoro-Gold, and survival was assessed following a single dose of azithromycin given systemically at the end of the ischemia. The expression of death-associated proteins and extracellular signal-regulated kinase (ERK) activation was studied with western blotting. Expression and activity of matrix metalloproteinase-2 (MMP-2) and -9 were analyzed with gelatin zymography. Results Acute post-injury administration of azithromycin significantly prevented RGC death. This effect was accompanied by reduced calpain activity and prevention of Bcl-2-associated death promoter (Bad) upregulation. The observed neuroprotection was associated with a significant inhibition of MMP-2/-9 gelatinolytic activity and ERK1/2 phosphorylation. Conclusions Azithromycin provides neuroprotection by modifying the inflammatory state of the retina following ischemia/reperfusion injury suggesting potential for repurposing as a drug capable of limiting or preventing retinal neuronal damage.
Collapse
Affiliation(s)
- Giuseppe Pasquale Varano
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, Arcavacata di Rende, Italy
| | - Vincenzo Parisi
- Visual Neurophysiology and Neurophthalmology Research Unit, IRCCS G.B. Bietti Foundation, Roma
| | - Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, Arcavacata di Rende, Italy
| | - Federica Cavaliere
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, Arcavacata di Rende, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, Arcavacata di Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata” Rome, Italy
| | | | - Luigi Antonio Morrone
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, Arcavacata di Rende, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, Arcavacata di Rende, Italy
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, Arcavacata di Rende, Italy
| |
Collapse
|
26
|
Na W, Shin JY, Lee JY, Jeong S, Kim WS, Yune TY, Ju BG. Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. J Cereb Blood Flow Metab 2017; 37:3695-3708. [PMID: 28338398 PMCID: PMC5718327 DOI: 10.1177/0271678x17701156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently been demonstrated that glucocorticoids have beneficial effects on maintaining tight junctions in both in vitro cell and in vivo animal models. In the present study, we found that dexamethasone suppresses the expression of JMJD3, a histone H3K27 demethylase, via the recruitment of glucocorticoid receptor α (GRα) and nuclear receptor co-repressor (N-CoR) to the negative glucocorticoid response element (nGRE) in the upstream region of JMJD3 gene in brain microvascular endothelial cells subjected to TNFα treatment. The decreased JMJD3 gene expression resulted in the suppression of MMP-2, MMP-3, and MMP-9 gene activation. Dexamethasone also activated the expression of the claudin 5 and occludin genes. Collectively, dexamethasone attenuated the disruption of the tight junctions in the brain microvascular endothelial cells subjected to TNFα treatment. Therefore, glucocorticoids may help to preserve the integrity of the tight junctions in the BBB via transcriptional and post-translational regulation following CNS diseases and injuries.
Collapse
Affiliation(s)
- Wonho Na
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Shin
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Lee
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
| | - Sangyun Jeong
- 3 Department of Molecular Biology, Chonbuk National University, Jeonju, Korea
| | - Won-Sun Kim
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Tae Y Yune
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea.,4 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bong-Gun Ju
- 1 Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
27
|
IMM-H004, A New Coumarin Derivative, Improved Focal Cerebral Ischemia via Blood–Brain Barrier Protection in Rats. J Stroke Cerebrovasc Dis 2017; 26:2065-2073. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.11.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023] Open
|
28
|
Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Ferrando LM, Larkin TM, Sullivan M, Yablonska S, Wang J, Minnigh MB, Guillaumet G, Suzenet F, Richardson RM, Poloyac SM, Stolz DB, Jockers R, Witt-Enderby PA, Carlisle DL, Vilardaga JP, Friedlander RM. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A 2017; 114:E7997-E8006. [PMID: 28874589 PMCID: PMC5617277 DOI: 10.1073/pnas.1705768114] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.
Collapse
Affiliation(s)
- Yalikun Suofu
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Wei Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - Frédéric G Jean-Alphonse
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jiaoying Jia
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Xiangya Second Hospital, Central South University, Hunan Province, China 410008
| | - Nicolas K Khattar
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jiatong Li
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - Sergei V Baranov
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniela Leronni
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amanda C Mihalik
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yanqing He
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Xiangya Second Hospital, Central South University, Hunan Province, China 410008
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, 75006 Paris, France
| | - Vanessa L Wehbi
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - JinHo Kim
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brianna E Heath
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Oxana V Baranova
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiaomin Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Matthew J Gable
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Eric S Kretz
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Timothy R Lezon
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lisa M Ferrando
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Timothy M Larkin
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mara Sullivan
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Svitlana Yablonska
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jingjing Wang
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- School of Medicine, University of Tsinghua, Beijing, China 100084
| | - M Beth Minnigh
- Small Molecule Biomarker Core, University of Pittsburgh, Pittsburgh, PA 15213
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique, Universite d'Orleans, UMR CNRS 7311, 45067 Orleans, France
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Universite d'Orleans, UMR CNRS 7311, 45067 Orleans, France
| | - R Mark Richardson
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Samuel M Poloyac
- Small Molecule Biomarker Core, University of Pittsburgh, Pittsburgh, PA 15213
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, 75006 Paris, France
| | | | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jean-Pierre Vilardaga
- Laboratory for G-Protein Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261;
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
29
|
Li Q, Michaud M, Shankar R, Canosa S, Schwartz M, Madri JA. MMP-2: A modulator of neuronal precursor activity and cognitive and motor behaviors. Behav Brain Res 2017; 333:74-82. [DOI: 10.1016/j.bbr.2017.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
30
|
Al-Mufti F, Amuluru K, Roth W, Nuoman R, El-Ghanem M, Meyers PM. Cerebral Ischemic Reperfusion Injury Following Recanalization of Large Vessel Occlusions. Neurosurgery 2017; 82:781-789. [DOI: 10.1093/neuros/nyx341] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
Abstract
Although stroke has recently dropped to become the nation's fifth leading cause of mortality, it remains the top leading cause of morbidity and disability in the US. Recent advances in stroke treatment, including intravenous fibrinolysis and mechanical thromboembolectomy, allow treatment of a greater proportion of stroke patients than ever before. While intra-arterial fibrinolysis with recombinant tissue plasminogen is an effective for treatment of a broad range of acute ischemic strokes, endovascular mechanical thromboembolectomy procedures treat severe strokes due to large artery occlusions, often resistant to intravenous drug. Together, these procedures result in a greater proportion of revascularized stroke patients than ever before, up to 88% in 1 recent trial (EXTEND-IA). Subsequently, there is a growing need for neurointensivists to develop more effective strategies to manage stroke patients following successful reperfusion. Cerebral ischemic reperfusion injury (CIRI) is defined as deterioration of brain tissue suffered from ischemia that concomitantly reverses the benefits of re-establishing cerebral blood flow following mechanical or chemical therapies for acute ischemic stroke. Herein, we examine the pathophysiology of CIRI, imaging modalities, and potential neuroprotective strategies. Additionally, we sought to lay down a potential treatment approach for patients with CIRI following emergent endovascular recanalization for acute ischemic stroke.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- Department of Neurology, Division of Neuroendovascular Surgery and Neurocritical care, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Krishna Amuluru
- Department of Neurosurgery, Rutgers University School of Medicine, Newark, New Jersey
| | - William Roth
- Departments of Neurology; Columbia University Medical Center, New York, New York
| | - Rolla Nuoman
- Department of Neurology, Rutgers University School of Medicine, Newark, New Jersey
| | - Mohammad El-Ghanem
- Department of Neurosurgery, Rutgers University School of Medicine, Newark, New Jersey
| | - Philip M Meyers
- Departments of Neurosurgery and Radiology, Columbia University Medical Center, New York, New York
| |
Collapse
|
31
|
Wang X, Suofu Y, Akpinar B, Baranov SV, Kim J, Carlisle DL, Zhang Y, Friedlander RM. Systemic antimiR-337-3p delivery inhibits cerebral ischemia-mediated injury. Neurobiol Dis 2017; 105:156-163. [PMID: 28461247 DOI: 10.1016/j.nbd.2017.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022] Open
Abstract
Modulation of miRNA expression has been shown to be beneficial in the context of multiple diseases. The purpose of this study was to determine if an inhibitor of miR-337-3p is neuroprotective for hypoxic injury after tail vein injection. We evaluated miR-337-3p expression levels and in brain tissue in vivo before and after permanent middle cerebral artery occlusion (pMCAO) in mice. Subsequently, a custom locked nucleic acid (LNA) antimir-337-3p oligonucleotide was developed and tested in vitro after induction of oxygen glucose-deprivation (OGD) and in vivo by injection into the mouse tail vein for 3 consecutive days before pMCAO. Ischemic lesion volume was measured by TTC staining. We show that systemically administered LNA antimir-337-3p crosses the blood brain-brain-barrier (BBB), penetrates into neurosn, downregulates endogenous miR-337-3p expression and reduces ischemic brain injury. The findings support the use of similar antimir-LNA constructs as novel therapies in neurological disease.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yalikun Suofu
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Berkcan Akpinar
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Sergei V Baranov
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Jinho Kim
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Diane L Carlisle
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yu Zhang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| | - Robert M Friedlander
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| |
Collapse
|
32
|
Chandra A, Stone CR, Du X, Li WA, Huber M, Bremer R, Geng X, Ding Y. The cerebral circulation and cerebrovascular disease III: Stroke. Brain Circ 2017; 3:66-77. [PMID: 30276307 PMCID: PMC6126259 DOI: 10.4103/bc.bc_12_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 01/18/2023] Open
Abstract
In this paper, our review series on cerebrovascular disease anatomy, physiology, and pathology ends with a thorough discussion of the most significant cerebrovascular pathology: stroke. This discussion proceeds through two layers of organization. First, stroke is divided up into its main etiologic categories (ischemic stroke/transient ischemic attack, hemorrhagic stroke, and ischemic to hemorrhagic transformation). Then, the epidemiological, pathophysiological, clinical, and therapeutic (employed currently as well as emerging) aspects of each etiology are explored; emphasis is placed upon the therapeutic aspects. Finally, once we have covered all aspects of each etiologic category, we end our review with a defense of the thesis that there is much hope for the future of stroke treatment to be derived from familiarity with the literature on emerging therapies.
Collapse
Affiliation(s)
- Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christopher R. Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiangnan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - William A. Li
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Richard Bremer
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
33
|
Sarkar S, Mukherjee A, Das N, Swarnakar S. Protective roles of nanomelatonin in cerebral ischemia-reperfusion of aged brain: Matrixmetalloproteinases as regulators. Exp Gerontol 2017; 92:13-22. [PMID: 28285147 DOI: 10.1016/j.exger.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022]
Abstract
Cerebral ischemia-reperfusion (CIR) injury occurs as a result of oxygen occlusion in the carotid artery through embolus or thrombus formation or cerebrovascular hemorrhage. The oxygen thrust during reperfusion causes the generation of reactive oxidative species (ROS) which exert a potential threat to neuronal survival. ROS may possibly be arrested by antioxidants. After CIR, extracellular matrix remodeling takes place, which is governed by matrix metalloproteinases (MMPs). Augmentation of lipid per oxidation, perturbation of antioxidant enzyme activities and the loss of pyramidal neuronal cells in rat brain were attributed to CIR injury. Melatonin can readily cross the blood-brain barrier (BBB) to exert protective effects as an antioxidant but it is quickly cleared by the circulating blood. Also melatonin is easily degraded by light and hence is found to be ineffective during daytime. Results of the present study showed that unlike free melatonin (FM), the application of nanocapsulated melatonin (NM) exhibited significantly higher potential even at much lower concentrations to rescue neuronal cells and mitochondria during CIR insult and also restored the activities of antioxidative enzymes and MMPs to their normal levels. Hence, nanoencapsulated melatonin may be considered as a suitable drug delivery system for brain to exert protection against CIR injury.
Collapse
Affiliation(s)
- Sibani Sarkar
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Mukherjee
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nirmalendu Das
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Snehasikta Swarnakar
- Drug Development Diagnotics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
34
|
Wang H, Song Y, Hao D, Du L. Molecular mechanisms for N G-nitro-L-arginine methyl ester action against cerebral ischemia–reperfusion injury-induced blood–brain barrier dysfunction. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0802.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background: Ischemic stroke, an acute neurological injury lacking an effective therapy, is a leading cause of death worldwide. The unmet need in stroke research is to identify viable therapeutic targets and to understand their interplay during cerebral ischemia-reperfusion (I/R) injury.
Objective: To explore the protective effects and molecular mechanism of NG-nitro-L-arginine methyl ester (L-NAME) in cerebral ischemia-reperfusion injury-induced blood-brain barrier (BBB) dysfunction.
Methods: Two hundred fifty-six rats were randomly assigned to a sham operation group, I/R group, and I/R with L-NAME treatment group. Brain water content was determined by calculating dry/wet weight. The permeability of the BBB was observed using an electron microscope and by determining the Evans Blue leakage from brain tissue on the ischemic side. The expression of brain MMP-9 and GFAP was determined using an immunohistochemical method. The expression of ZO-1 protein was determined by western blotting.
Results: We found that L-NAME remarkably attenuated the permeability of the BBB after I/R as assessed by Evans Blue leakage and brain water content (p < 0.05). This was further confirmed by examination of the ultrastructural morphology of the BBB using a transmission electron microscope. Furthermore, we found that expression of the zonae occludens-1 (ZO-1) was decreased in endothelial cells, and expression of MMP-9 and GFAP was increased in the basement membrane and astrocyte end-feet in vehicle control groups, respectively, but these changes could be prevented by L-NAME pretreatment.
Conclusion: These results suggested that the neuroprotective effects of L-NAME against BBB damage induced by I/R might be related to the upregulation of tight junction proteins and inhibition of MMP-9 and GFAP expression. L-NAME can be used as a potential MMP-9-based multiple targeting therapeutic strategy in cerebral I/R injury.
Collapse
Affiliation(s)
- Hanghui Wang
- Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China China
- Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi 710054, China
| | - Yixin Song
- Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China China
- Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China China
- Correspondence to: Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai First People’s Hospital Afiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080, China China
- Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi 710054, China
| |
Collapse
|
35
|
Simon D, Evaldt J, Nabinger DD, Fontana MF, Klein MG, do Amaral Gomes J, Regner A. Plasma matrix metalloproteinase-9 levels predict intensive care unit mortality early after severe traumatic brain injury. Brain Inj 2017; 31:390-395. [PMID: 28156136 DOI: 10.1080/02699052.2016.1259501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Matrix metalloproteinase-9 (MMP-9) is an inducible metalloproteinase that can degrade the cerebrovascular matrix leading to disruption of the blood-brain barrier and exacerbation of oedema in neurotrauma. Therefore, our aim was to determine whether MMP-9 plasma levels were associated with intensive care unit (ICU) mortality after severe traumatic brain injury (TBI) despite the presence of extracerebral injuries. METHODS This cohort enrolled 80 patients who suffered severe TBI (Glasgow Coma Scale: 3-8 at hospital admission). The plasma MMP-9 level was determined by enzyme-linked immunosorbent assay assay at ICU admission. RESULTS Severe TBI was associated with a 32.5% ICU mortality rate. There was no association between the presence of extracerebral injuries (72.5% of the patients) and ICU mortality (P = 0.419). Higher plasma MMP-9 concentrations were associated with fatal outcome: 181.1 ± 16.0 ng/mL for survivors and 257.0 ± 23.2 ng/mL for nonsurvivors (mean ± S.E.M., P = 0.009). In contrast, there was no significant difference between MMP-9 levels and associated lesions: 220.8 ± 26.3 ng/mL for isolated TBI and 196.8 ± 15.8 ng/mL for patients with extracerebral injuries (P = 0.397). CONCLUSION Increased plasma MMP-9 levels predicted short-term fatal outcome following severe TBI, regardless the presence of extracerebral injuries.
Collapse
Affiliation(s)
- Daniel Simon
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde.,b Laboratório de Biomarcadores do Trauma.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| | - Joice Evaldt
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde
| | | | | | | | | | - Andrea Regner
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde.,b Laboratório de Biomarcadores do Trauma.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| |
Collapse
|
36
|
Sun Q, Liao Y, Wang T, Tang H, Wang G, Zhao F, Jin Y. 2-Chloroethanol Induced Upregulation of Matrix Metalloproteinase-2 in Primary Cultured Rat Astrocytes Via MAPK Signal Pathways. Front Neurosci 2017; 10:593. [PMID: 28101000 PMCID: PMC5209348 DOI: 10.3389/fnins.2016.00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023] Open
Abstract
This study was to explore the mechanisms underlying 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of matrix metalloproteinase-2 (MMP-2) in rat astrocytes induced by 2-chloroethanol (2-CE), an intermediate metabolite of 1,2-DCE in vivo. Protein and mRNA levels of MMP-2, and the phosphorylated protein levels of p38 MAPK (p-p38), extracellular signal regulated protein kinase (p-ERK1/2) and c-Jun N-terminal kinase (p-JNK1/2) in astrocytes were examined by immunostaining, western blot or real-time RT-PCR analysis. Findings from this study disclosed that protein levels of MMP-2 were upregulated by 2-CE in astrocytes. Meanwhile, protein levels of p-p38, p-ERK1/2 and p-JNK1/2 were also increased apparently in the cells treated with 2-CE. Moreover, pretreatment of astrocytes with SB202190 (inhibitor of p38 MAPK), U0126 (inhibitor of ERK1/2) or SP600125 (inhibitor of JNK1/2) could suppress the upregulated expression of p-p38, p-ERK1/2, and p-JNK1/2. In response to suppressed protein levels of p-p38 and p-JNK1/2, the protein levels of MMP-2 also decreased significantly, indicating that activation of MAPK signal pathways were involved in the mechanisms underlying 2-CE-induced upregulation of MMP-2 expression.
Collapse
Affiliation(s)
- Qi Sun
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Yingjun Liao
- Department of Physiology, China Medical University Shenyang, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Hongge Tang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University Shenyang, China
| |
Collapse
|
37
|
Abstract
The neurovascular unit, which consists of astrocytic end-feet, neurons, pericytes, and endothelial cells, plays a key role in maintaining brain homeostasis by forming the blood-brain barrier and carefully controlling local cerebral blood flow. When the blood-brain barrier is disrupted, blood components can leak into the brain, damage the surrounding tissue and lead to cognitive impairment. This disruption in the blood-brain barrier and subsequent impairment in cognition are common after stroke and during cerebral amyloid angiopathy and Alzheimer's disease. Matrix metalloproteinases are proteases that degrade the extracellular matrix as well as tight junctions between endothelial cells and have been implicated in blood-brain barrier breakdown in neurodegenerative diseases. This review will focus on the roles of MMP2 and MMP9 in dementia, primarily post-stroke events that lead to dementia, cerebral amyloid angiopathy, and Alzheimer's disease.
Collapse
|
38
|
Epigallocatechin Gallate Extends the Therapeutic Window of Recombinant Tissue Plasminogen Activator Treatment in Ischemic Rats. J Stroke Cerebrovasc Dis 2016; 25:990-7. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/27/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
|
39
|
Maestrini I, Ducroquet A, Moulin S, Leys D, Cordonnier C, Bordet R. Blood biomarkers in the early stage of cerebral ischemia. Rev Neurol (Paris) 2016; 172:198-219. [PMID: 26988891 DOI: 10.1016/j.neurol.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/29/2015] [Indexed: 01/25/2023]
Abstract
In ischemic stroke patients, blood-based biomarkers may be applied for the diagnosis of ischemic origin and subtype, prediction of outcomes and targeted treatment in selected patients. Knowledge of the pathophysiology of cerebral ischemia has led to the evaluation of proteins, neurotransmitters, nucleic acids and lipids as potential biomarkers. The present report focuses on the role of blood-based biomarkers in the early stage of ischemic stroke-within 72h of its onset-as gleaned from studies published in English in such patients. Despite growing interest in their potential role in clinical practice, the application of biomarkers for the management of cerebral ischemia is not currently recommended by guidelines. However, there are some promising clinical biomarkers, as well as the N-methyl-d-aspartate (NMDA) peptide and NMDA-receptor (R) autoantibodies that appear to identify the ischemic nature of stroke, and the glial fibrillary acidic protein (GFAP) that might be able to discriminate between acute ischemic and hemorrhagic strokes. Moreover, genomics and proteomics allow the characterization of differences in gene expression, and protein and metabolite production, in ischemic stroke patients compared with controls and, thus, may help to identify novel markers with sufficient sensitivity and specificity. Additional studies to validate promising biomarkers and to identify novel biomarkers are needed.
Collapse
Affiliation(s)
- I Maestrini
- Inserm U 1171, Department of Neurology, University of Lille, UDSL, CHU Lille, 59000 Lille, France
| | - A Ducroquet
- Inserm U 1171, Department of Neurology, University of Lille, UDSL, CHU Lille, 59000 Lille, France
| | - S Moulin
- Inserm U 1171, Department of Neurology, University of Lille, UDSL, CHU Lille, 59000 Lille, France
| | - D Leys
- Inserm U 1171, Department of Neurology, University of Lille, UDSL, CHU Lille, 59000 Lille, France.
| | - C Cordonnier
- Inserm U 1171, Department of Neurology, University of Lille, UDSL, CHU Lille, 59000 Lille, France
| | - R Bordet
- Inserm U 1171, Department of Neurology, University of Lille, UDSL, CHU Lille, 59000 Lille, France
| |
Collapse
|
40
|
Cui W, Liu R, Jin H, Lv P, Sun Y, Men X, Yang S, Qu X, Yang Z, Huang Y. pH gradient difference around ischemic brain tissue can serve as a trigger for delivering polyethylene glycol-conjugated urokinase nanogels. J Control Release 2016; 225:53-63. [DOI: 10.1016/j.jconrel.2016.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
|
41
|
Strecker JK, Olk J, Hoppen M, Gess B, Diederich K, Schmidt A, Schäbitz WR, Schilling M, Minnerup J. Combining Growth Factor and Bone Marrow Cell Therapy Induces Bleeding and Alters Immune Response After Stroke in Mice. Stroke 2016; 47:852-62. [PMID: 26839353 DOI: 10.1161/strokeaha.115.011230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/31/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Bone marrow cell (BMC)-based therapies, either the transplantation of exogenous cells or stimulation of endogenous cells by growth factors like the granulocyte colony-stimulating factor (G-CSF), are considered a promising means of treating stroke. In contrast to large preclinical evidence, however, a recent clinical stroke trial on G-CSF was neutral. We, therefore, aimed to investigate possible synergistic effects of co-administration of G-CSF and BMCs after experimental stroke in mice to enhance the efficacy compared with single treatments. METHODS We used an animal model for experimental stroke as paradigm to study possible synergistic effects of co-administration of G-CSF and BMCs on the functional outcome and the pathophysiological mechanism. RESULTS G-CSF treatment alone led to an improved functional outcome, a reduced infarct volume, increased blood vessel stabilization, and decreased overall inflammation. Surprisingly, the combination of G-CSF and BMCs abrogated G-CSFs' beneficial effects and resulted in increased hemorrhagic infarct transformation, altered blood-brain barrier, excessive astrogliosis, and altered immune cell polarization. These increased rates of infarct bleeding were mainly mediated by elevated matrix metalloproteinase-9-mediated blood-brain barrier breakdown in G-CSF- and BMCs-treated animals combined with an increased number of dilated and thus likely more fragile vessels in the subacute phase after cerebral ischemia. CONCLUSIONS Our results provide new insights into both BMC-based therapies and immune cell biology and help to understand potential adverse and unexpected side effects.
Collapse
Affiliation(s)
- Jan-Kolja Strecker
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.).
| | - Joanna Olk
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| | - Maike Hoppen
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| | - Burkhard Gess
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| | - Kai Diederich
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| | - Antje Schmidt
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| | - Wolf-Rüdiger Schäbitz
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| | - Matthias Schilling
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| | - Jens Minnerup
- From the Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany (J.-K.S., J.O., M.H., B.G., K.D., A.S., M.S., J.M.); and EVK Bielefeld, Bethel, Neurologische Klinik, Bielefeld, Germany (W.-R.S.)
| |
Collapse
|
42
|
Tveitarås MK, Skogstrand T, Leh S, Helle F, Iversen BM, Chatziantoniou C, Reed RK, Hultström M. Matrix Metalloproteinase-2 Knockout and Heterozygote Mice Are Protected from Hydronephrosis and Kidney Fibrosis after Unilateral Ureteral Obstruction. PLoS One 2015; 10:e0143390. [PMID: 26673451 PMCID: PMC4687651 DOI: 10.1371/journal.pone.0143390] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
Matrix Metalloproteinase-2 (Mmp2) is a collagenase known to be important in the development of renal fibrosis. In unilateral ureteral obstruction (UUO) the obstructed kidney (OK) develops fibrosis, while the contralateral (CL) does not. In this study we investigated the effect of UUO on gene expression, fibrosis and pelvic remodeling in the kidneys of Mmp2 deficient mice (Mmp2-/-), heterozygous animals (Mmp2+/-) and wild-type mice (Mmp2+/+). Sham operated animals served as controls (Cntrl). UUO was prepared under isoflurane anaesthesia, and the animals were sacrificed after one week. UUO caused hydronephrosis, dilation of renal tubules, loss of parenchymal thickness, and fibrosis. Damage was most severe in Mmp2+/+ mice, while both Mmp2-/- and Mmp2+/- groups showed considerably milder hydronephrosis, no tubular necrosis, and less tubular dilation. Picrosirius red quantification of fibrous collagen showed 1.63±0.25% positivity in OK and 0.29±0.11% in CL (p<0.05) of Mmp2+/+, Mmp2-/- OK and Mmp2-/- CL exhibited only 0.49±0.09% and 0.23±0.04% (p<0.05) positivity, respectively. Mmp2+/- OK and Mmp2+/- CL showed 0.43±0.09% and 0.22±0.06% (p<0.05) positivity, respectively. Transcriptomic analysis showed that 26 genes (out of 48 examined) were differentially expressed by ANOVA (p<0.05). 25 genes were upregulated in Mmp2+/+ OK compared to Mmp2+/+ CL: Adamts1, -2, Col1a1, -2, -3a1, -4a1, -5a1, -5a2, Dcn, Fbln1, -5, Fmod, Fn1, Itga2, Loxl1, Mgp, Mmp2, -3, Nid1, Pdgfb, Spp1, Tgfb1, Timp2, Trf, Vim. In Mmp2-/- and Mmp2+/- 18 and 12 genes were expressed differentially between OK and CL, respectively. Only Mmp2 was differentially regulated when comparing Mmp2-/- OK and Mmp2+/- OK. Under stress, it appears that Mmp2+/- OK responds with less Mmp2 upregulation than Mmp2+/+ OK, suggesting that there is a threshold level of Mmp2 necessary for damage and fibrosis to occur. In conclusion, reduced Mmp2 expression during UUO protects mice against hydronephrosis and renal fibrosis.
Collapse
Affiliation(s)
- Maria K. Tveitarås
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Frank Helle
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bjarne M. Iversen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Rolf K. Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center for Cancer Biomarkers, CCBIO, University of Bergen, Bergen, Norway
| | - Michael Hultström
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medical Cellbiology, Uppsala University, Uppsala, Sweden
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Wang SJ, Qu ZS, Zhang QD, Li L, Wang F, Zhang B, Wu BL, Zhao YW. The serum levels of MMP-9, MMP-2 and vWF in patients with low doses of urokinase peritoneal dialysis decreased uremia complicated with cerebral infarction. Int J Clin Exp Med 2015; 8:13017-13027. [PMID: 26550224 PMCID: PMC4612909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
To investigate the effect of MMP-9, MMP-2 and vWF in patients with low doses of urokinase peritoneal dialysis decreased uremia complicated with cerebral infarction. 112 cases of uremia complicated with cerebral infarction were randomly divided into the peritoneal dialysate with urokinase treatment group (66 cases) and the conventional treatment group (46 cases). At the same time, 50 cases of healthy people who were more than 45 years old were enrolled in the control group. The basic treatment in both treatment groups was the same. In urokinase therapy group based on the conventional treatment, urokinase was added into peritoneal dialysis fluid, and changes of serum MMP-9, MMP-2 and vWF were observed by drawing blood at different time points within 8 weeks. The changes of serum MMP-2, MMP-9 and vWF were detected by enzyme-linked immunosorbent assay. At the time of the onset of uremia complicated with cerebral infarction patients the serum MMP-9, MMP-2, vWF were significantly higher (P<0.05, P<0.05, P<0.01). Conventional antiplatelet therapy in brain protection only reduce MMP-9 to the normal range (P>0.05) within 8 weeks. But the MMP-2 and vWF cannot be reduced to the normal range (P<0.01, P<0.01). Low doses of urokinase can reduce MMP-9 (7 d) and MMP-2 (14 d) to the normal range (P>0.05, P>0.05) at the early stage and decrease the vWF to a normal range within 8 weeks (P>0.05). At the time of the onset of uremia complicated with cerebral infarction patients the serum MMP-9, MMP-2 and vWF increased significantly. Low doses of urokinase dialysis can reduce serum MMP-9, MMP-2, and vWF in acute uremia complicated with cerebral infarction without recurrence of cerebral infarction and cerebral hemorrhagic transformation, indicating that low dose of urokinase peritoneal dialysis may have a certain effect on the early treatment of this disease.
Collapse
Affiliation(s)
- Shu-Jin Wang
- Department of Neurology, The First Hospital of Zibo Affiliated Weifang Medical UniversityZibo 25520, China
| | - Zhong-Sen Qu
- Department of Neurology, Shanghai Jiao Tong University Affiliated The Sixth People’s HospitalYi Shan Road 600, Shanghai 200233, China
| | - Qing-De Zhang
- Department of Internal Medicine, Heze High Medical SchoolHeze 274030, China
| | - Liang Li
- Department of Neurology, Qingdao University Affiliated The Central HospitalQingdao 266042, China
| | - Feng Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated The Sixth People’s HospitalYi Shan Road 600, Shanghai 200233, China
| | - Bin Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated The Sixth People’s HospitalYi Shan Road 600, Shanghai 200233, China
| | - Bang-Li Wu
- Department of Neurology, The First Hospital of Zibo Affiliated Weifang Medical UniversityZibo 25520, China
| | - Yu-Wu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated The Sixth People’s HospitalYi Shan Road 600, Shanghai 200233, China
| |
Collapse
|
44
|
Na W, Lee JY, Kim WS, Yune TY, Ju BG. 17β-Estradiol Ameliorates Tight Junction Disruption via Repression of MMP Transcription. Mol Endocrinol 2015; 29:1347-61. [PMID: 26168035 DOI: 10.1210/me.2015-1124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) formed by capillary endothelial cells provides a physical wall between the central nervous system (CNS) and circulating blood with highly selective permeability. BBB/BSCB disruption by activation of matrix metalloproteinases (MMPs) has been shown to result in further neurological damage after CNS injury. Recently it has been discovered that estrogen attenuates BBB/BSCB disruption in in vitro and in vivo models. However, the molecular mechanism underlying the estrogen-mediated attenuation of BBB/BSCB disruption has not been elucidated fully. In the present study, we found that 17β-estradiol (E2) suppresses nuclear factor-κB-dependent MMP-1b, MMP-2, MMP-3, MMP-9, MMP-10, and MMP-13 gene activation in microvessel endothelial bEnd.3 cells subjected to oxygen and glucose deprivation/reperfusion injury. E2 induced the recruitment of ERα and nuclear receptor corepressor to the nuclear factor-κB binding site on the MMPs' gene promoters. Consistently, ER antagonist ICI 182.780 showed opposite effects of E2. We further found that E2 attenuates tight junction disruption through the decreased degradation of tight junction proteins in bEnd.3 cells subjected to oxygen and glucose deprivation-reperfusion injury. In addition, E2 suppressed the up-regulation of MMP expression, leading to a decreased BSCB disruption in the injured spinal cord. In conclusion, we discovered the molecular mechanism underlying the protective role of estrogenin BBB/BSCB disruption using an in vitro and in vivo model. Our study suggests that estrogens may provide a potential therapeutic intervention for preserving BBB/BSCB integrity after CNS injury.
Collapse
Affiliation(s)
- Wonho Na
- Department of Life Science (W.N., W.-S.K., B.-G.J.), Sogang University, Seoul 121-742, Korea; and Age-Related and Brain Diseases Research Center (J.Y.L., T.Y.Y.) and Department of Biochemistry and Molecular Biology (T.Y.Y.), School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Jee Youn Lee
- Department of Life Science (W.N., W.-S.K., B.-G.J.), Sogang University, Seoul 121-742, Korea; and Age-Related and Brain Diseases Research Center (J.Y.L., T.Y.Y.) and Department of Biochemistry and Molecular Biology (T.Y.Y.), School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Won-Sun Kim
- Department of Life Science (W.N., W.-S.K., B.-G.J.), Sogang University, Seoul 121-742, Korea; and Age-Related and Brain Diseases Research Center (J.Y.L., T.Y.Y.) and Department of Biochemistry and Molecular Biology (T.Y.Y.), School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Tae Young Yune
- Department of Life Science (W.N., W.-S.K., B.-G.J.), Sogang University, Seoul 121-742, Korea; and Age-Related and Brain Diseases Research Center (J.Y.L., T.Y.Y.) and Department of Biochemistry and Molecular Biology (T.Y.Y.), School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Bong-Gun Ju
- Department of Life Science (W.N., W.-S.K., B.-G.J.), Sogang University, Seoul 121-742, Korea; and Age-Related and Brain Diseases Research Center (J.Y.L., T.Y.Y.) and Department of Biochemistry and Molecular Biology (T.Y.Y.), School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
45
|
Wang W, Li M, Chen Q, Wang J. Hemorrhagic Transformation after Tissue Plasminogen Activator Reperfusion Therapy for Ischemic Stroke: Mechanisms, Models, and Biomarkers. Mol Neurobiol 2014; 52:1572-1579. [PMID: 25367883 DOI: 10.1007/s12035-014-8952-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/20/2014] [Indexed: 01/29/2023]
Abstract
Intracerebral hemorrhagic transformation (HT) is well recognized as a common cause of hemorrhage in patients with ischemic stroke. HT after acute ischemic stroke contributes to early mortality and adversely affects functional recovery. The risk of HT is especially high when patients receive thrombolytic reperfusion therapy with tissue plasminogen activator, the only available treatment for ischemic stroke. Although many important publications address preclinical models of ischemic stroke, there are no current recommendations regarding the conduct of research aimed at understanding the mechanisms and prediction of HT. In this review, we discuss the underlying mechanisms for HT after ischemic stroke, provide an overview of the models commonly used for the study of HT, and discuss biomarkers that might be used for the early detection of this challenging clinical problem.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Bldg 370B, Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Zhang J, Yang Y, Sun H, Xing Y. Hemorrhagic transformation after cerebral infarction: current concepts and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:81. [PMID: 25333056 DOI: 10.3978/j.issn.2305-5839.2014.08.08] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/11/2023]
Abstract
Hemorrhagic transformation (HT) is a frequent complication of acute ischemic stroke that is especially common after thrombolytic therapy. The risk of HT limits the applicability of tissue plasminogen activator (tPA). Here, we sought to review the rate, classification, predictors, possible mechanism, and clinical outcomes of HT, as well as existing therapeutic approaches, in order to call attention to the current challenges in the treatment of this complication.
Collapse
Affiliation(s)
- Jie Zhang
- 1 Neuroscience Center, Department of Neurology, 2 Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yi Yang
- 1 Neuroscience Center, Department of Neurology, 2 Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Huijie Sun
- 1 Neuroscience Center, Department of Neurology, 2 Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yingqi Xing
- 1 Neuroscience Center, Department of Neurology, 2 Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
47
|
Hou H, Zhang G, Wang H, Gong H, Wang C, Zhang X. High matrix metalloproteinase-9 expression induces angiogenesis and basement membrane degradation in stroke-prone spontaneously hypertensive rats after cerebral infarction. Neural Regen Res 2014; 9:1154-62. [PMID: 25206775 PMCID: PMC4146104 DOI: 10.4103/1673-5374.135318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Basement membrane degradation and blood-brain barrier damage appear after cerebral infarction, severely impacting neuronal and brain functioning; however, the underlying pathogenetic mechanisms remain poorly understood. In this study, we induced cerebral infarction in stroke-prone spontaneously hypertensive rats by intragastric administration of high-sodium water (1.3% NaCl) for 7 consecutive weeks. Immunohistochemical and immunofluorescence assays demonstrated that, compared with the non-infarcted contralateral hemisphere, stroke-prone spontaneously hypertensive rats on normal sodium intake and Wistar-Kyoto rats, matrix metalloproteinase-9 expression, the number of blood vessels with discontinuous collagen IV expression and microvessel density were significantly higher, and the number of continuous collagen IV-positive blood vessels was lower in the infarct border zones of stroke-prone spontaneously hypertensive rats given high-sodium water. Linear correlation analysis showed matrix metalloproteinase-9 expression was positively correlated with the number of discontinuously collagen IV-labeled blood vessels and microvessel density in cerebral infarcts of stroke-prone spontaneously hypertensive rats. These results suggest that matrix metalloproteinase-9 upregulation is associated with increased regional angiogenesis and degradation of collagen IV, the major component of the basal lamina, in stroke-prone spontaneously hypertensive rats with high-sodium water-induced focal cerebral infarction.
Collapse
Affiliation(s)
- Huilian Hou
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hongyan Wang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Huilin Gong
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chunbao Wang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xuebin Zhang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
48
|
Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 2014; 34:1283-96. [PMID: 24896566 PMCID: PMC4126105 DOI: 10.1038/jcbfm.2014.99] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023]
Abstract
Plasmin, the principal downstream product of tissue-type plasminogen activator (tPA), is known for its potent fibrin-degrading capacity but is also recognized for many non-fibrinolytic activities. Curiously, plasmin has not been conclusively linked to blood-brain barrier (BBB) disruption during recombinant tPA (rtPA)-induced thrombolysis in ischemic stroke. This is surprising given the substantial involvement of tPA in the modulation of BBB permeability and the co-existence of tPA and plasminogen in both blood and brain throughout the ischemic event. Here, we review the work that argues a role for plasmin together with endogenous tPA or rtPA in BBB alteration, presenting the overall controversy around the topic yet creating a rational case for an involvement of plasmin in this process.
Collapse
|
49
|
Deng J, Zhang J, Feng C, Xiong L, Zuo Z. Critical role of matrix metalloprotease-9 in chronic high fat diet-induced cerebral vascular remodelling and increase of ischaemic brain injury in mice†. Cardiovasc Res 2014; 103:473-84. [PMID: 24935427 DOI: 10.1093/cvr/cvu154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIMS About one-third of American adults and 20% of teenagers are obese. Obesity and its associated metabolic disturbances including hyperlipidaemia are risk factors for cardiovascular diseases including stroke. They can worsen neurological outcome after stroke. We determined whether obesity and hyperlipidaemia could induce cerebral vascular remodelling via matrix metalloproteases (MMP) and whether this remodelling affected neurological outcome after brain ischaemia. METHODS AND RESULTS Six-week-old male CD1, C57BL/6J, and MMP-9(-/-) mice were fed regular diet (RD) or high-fat diet (HFD) for 10 weeks. They were subjected to vascular casting or a 90 min middle cerebral arterial occlusion (MCAO). Mice on HFD were heavier and had higher blood glucose and lipid levels than those on RD. HFD-fed CD1 and C57BL/6J mice had an increased cerebral vascular tortuosity index and decreased inner diameters of the middle cerebral arterial root. HFD increased microvessel density in CD1 mouse cerebral cortex. After MCAO, CD1 and C57BL/6J mice on HFD had a bigger infarct volume, more severe brain oedema and blood-brain barrier damage, higher haemorrhagic transformation rate, greater haemorrhagic volume, and worse neurological function. HFD increased MMP-9 activity in the ischaemic and non-ischaemic brain tissues. Although HFD increased the body weights, blood glucose, and lipid levels in the MMP-9(-/-) mice on a C57BL/6J genetic background, the HFD-induced cerebral vascular remodelling and worsening of neurological outcome did not occur in these mice. CONCLUSION HFD induces cerebral vascular remodelling and worsens neurological outcome after transient focal brain ischaemia. MMP-9 activation plays a critical role in these HFD effects.
Collapse
Affiliation(s)
- Jiao Deng
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22908-0710, USA Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Junfeng Zhang
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22908-0710, USA
| | - Chenzhuo Feng
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22908-0710, USA
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22908-0710, USA
| |
Collapse
|
50
|
Rakkar K, Srivastava K, Bayraktutan U. Attenuation of urokinase activity during experimental ischaemia protects the cerebral barrier from damage through regulation of matrix metalloproteinase-2 and NAD(P)H oxidase. Eur J Neurosci 2014; 39:2119-28. [PMID: 24649947 DOI: 10.1111/ejn.12552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 01/22/2023]
Abstract
Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.
Collapse
Affiliation(s)
- Kamini Rakkar
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK
| | | | | |
Collapse
|