1
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Stockbridge MD, Bunker LD, Hillis AE. Reversing the Ruin: Rehabilitation, Recovery, and Restoration After Stroke. Curr Neurol Neurosci Rep 2022; 22:745-755. [PMID: 36181577 PMCID: PMC9525934 DOI: 10.1007/s11910-022-01231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Stroke is a common cause of disability in aging adults. A given individual's needs after stroke vary as a function of the stroke extent and location. The purpose of this review was to discuss recent clinical investigations addressing rehabilitation of an array of overlapping functional domains. RECENT FINDINGS Research is ongoing in the domains of movement, cognition, attention, speech, language, swallowing, and mental health. To best assist patients' recovery, innovative research has sought to develop and evaluate behavioral approaches, identify and refine synergistic approaches that augment the response to behavioral therapy, and integrate technology where appropriate, particularly to introduce and titrate real-world complexity and improve the overall experience of therapy. Recent and ongoing trials have increasingly adopted a multidisciplinary nature - augmenting refined behavioral therapy approaches with methods for increasing their potency, such as pharmaceutical or electrical interventions. The integration of virtual reality, robotics, and other technological advancements has generated immense excitement, but has not resulted in consistent improvements over more universally accessible, lower technology therapy.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA.
| | - Lisa D Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA
| |
Collapse
|
3
|
Ye X, Li M, Bian W, Wu A, Zhang T, Li J, Zhou P, Cui H, Ding YQ, Liao M, Sun C. RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells in vitro and in vivo studies. Eur J Neurosci 2022; 56:3839-3860. [PMID: 35661443 DOI: 10.1111/ejn.15727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/02/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022]
Abstract
Although Notch signaling pathway could control the proliferation and differentiation of neural stem cells (NSCs), it is largely unknown about the effect of Notch signaling pathway on the neurogenesis of CD133-positive cells. By using the primary cultured ependymal cells and the transgenic mouse, we found that CD133 immunoreactivity was exclusively localized in the ependymal layer of ventricles, moreover, most CD133-positive cells were co-labeled with Nestin. In addition, recombination signal binding protein J (RBP-J), a key nuclear effector of Notch signaling pathway, was highly active in CD133-positive cells. CD133-positive cells can differentiate into the immature and mature neurons, in particular, the number of CD133-positive cells differentiating into the immature and mature neurons was significantly increased following the deficiency or interference of RBP-J in vivo or in vitro. By using real-time qPCR and western blot, we found that RBP-J and Hes1 were down-regulated while Notch1 was up-regulated in the expression levels of mRNAs and proteins following the deficiency or interference of RBP-J. These results demonstrated RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells. Therefore, we speculated that RBP-J could maintain CD133-positive cells in the characteristics of NSCs possibly by regulating Notch1/RBP-J/Hes1 pathway. It will provide a novel molecular insight into the function of RBP-J, as well as facilitate a future investigation of CD133-positive cells with respect to their potential application in neurodegenerative disorder.
Collapse
Affiliation(s)
- Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anting Wu
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Zhang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwei Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huairui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyou Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Deng S, Gan L, Liu C, Xu T, Zhou S, Guo Y, Zhang Z, Yang GY, Tian H, Tang Y. Roles of Ependymal Cells in the Physiology and Pathology of the Central Nervous System. Aging Dis 2022; 14:468-483. [PMID: 37008045 PMCID: PMC10017161 DOI: 10.14336/ad.2022.0826-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ependymal cells are indispensable components of the central nervous system (CNS). They originate from neuroepithelial cells of the neural plate and show heterogeneity, with at least three types that are localized in different locations of the CNS. As glial cells in the CNS, accumulating evidence demonstrates that ependymal cells play key roles in mammalian CNS development and normal physiological processes by controlling the production and flow of cerebrospinal fluid (CSF), brain metabolism, and waste clearance. Ependymal cells have been attached to great importance by neuroscientists because of their potential to participate in CNS disease progression. Recent studies have demonstrated that ependymal cells participate in the development and progression of various neurological diseases, such as spinal cord injury and hydrocephalus, raising the possibility that they may serve as a potential therapeutic target for the disease. This review focuses on the function of ependymal cells in the developmental CNS as well as in the CNS after injury and discusses the underlying mechanisms of controlling the functions of ependymal cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Tang
- Correspondence should be addressed to: Dr. Yaohui Tang, Med-X Research Institute and School of Biomedical Engineering Shanghai Jiao Tong University, Shanghai, China. .
| |
Collapse
|
5
|
Stockbridge MD. Better language through chemistry: Augmenting speech-language therapy with pharmacotherapy in the treatment of aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:261-272. [PMID: 35078604 PMCID: PMC11289691 DOI: 10.1016/b978-0-12-823384-9.00013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Speech and language therapy is the standard treatment of aphasia. However, many individuals have barriers in seeking this measure of extensive rehabilitation treatment. Investigating ways to augment therapy is key to improving poststroke language outcomes for all patients with aphasia, and pharmacotherapies provide one such potential solution. Although no medications are currently approved for the treatment of aphasia by the United States Food and Drug Administration, numerous candidate mechanisms for pharmaceutical manipulation continue to be identified based on our evolving understanding of the neurometabolic experience of stroke recovery across molecular, cellular, and functional levels of inquiry. This chapter will review evidence for catecholaminergic, glutamatergic, cholinergic, and serotonergic drug therapies and discuss future directions for both candidate drug selection and pharmacotherapy practice in people with aphasia.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
6
|
Sandvig A, Sandvig I. Connectomics of Morphogenetically Engineered Neurons as a Predictor of Functional Integration in the Ischemic Brain. Front Neurol 2019; 10:630. [PMID: 31249553 PMCID: PMC6582372 DOI: 10.3389/fneur.2019.00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Recent advances in cell reprogramming technologies enable the in vitro generation of theoretically unlimited numbers of cells, including cells of neural lineage and specific neuronal subtypes from human, including patient-specific, somatic cells. Similarly, as demonstrated in recent animal studies, by applying morphogenetic neuroengineering principles in situ, it is possible to reprogram resident brain cells to the desired phenotype. These developments open new exciting possibilities for cell replacement therapy in stroke, albeit not without caveats. Main challenges include the successful integration of engineered cells in the ischemic brain to promote functional restoration as well as the fact that the underlying mechanisms of action are not fully understood. In this review, we aim to provide new insights to the above in the context of connectomics of morphogenetically engineered neural networks. Specifically, we discuss the relevance of combining advanced interdisciplinary approaches to: validate the functionality of engineered neurons by studying their self-organizing behavior into neural networks as well as responses to stroke-related pathology in vitro; derive structural and functional connectomes from these networks in healthy and perturbed conditions; and identify and extract key elements regulating neural network dynamics, which might predict the behavior of grafted engineered neurons post-transplantation in the stroke-injured brain.
Collapse
Affiliation(s)
- Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother 2017; 17:1091-1107. [PMID: 28847186 DOI: 10.1080/14737175.2017.1373020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Aphasia is among the most debilitating outcomes of stroke. Aphasia is a language disorder occurring in 10-30% of stroke survivors. Speech and Language Therapy (SLT) is the gold standard, mainstay treatment for aphasia, but gains from SLT may be incomplete. Pharmaceutical and noninvasive brain stimulation (NIBS) techniques may augment the effectiveness of SLT. Areas covered: Herein reviewed are studies of the safety and efficacy of these adjunctive interventions for aphasia, including randomized placebo-controlled and open-label trials, as well as case series from Pubmed, using search terms 'pharmacological,' 'tDCS' or 'TMS' combined with 'aphasia' and 'stroke.' Expert commentary: Relatively small studies have included participants with a range of aphasia types and severities, using inconsistent interventions and outcome measures. Results to-date have provided promising, but weak to moderate evidence that medications and/or NIBS can augment the effects of SLT for improving language outcomes. We end with recommendations for future approaches to studying these interventions, with multicenter, double-blind, randomized controlled trials.
Collapse
Affiliation(s)
- Sadhvi Saxena
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Argye E Hillis
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
8
|
Newborn dopaminergic neurons are associated with the migration and differentiation of SVZ-derived neural progenitors in a 6-hydroxydopamin-injected mouse model. Neuroscience 2017; 352:64-78. [DOI: 10.1016/j.neuroscience.2017.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 03/26/2017] [Indexed: 12/15/2022]
|
9
|
Merson TD, Bourne JA. Endogenous neurogenesis following ischaemic brain injury: insights for therapeutic strategies. Int J Biochem Cell Biol 2014; 56:4-19. [PMID: 25128862 DOI: 10.1016/j.biocel.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
Ischaemic stroke is among the most common yet most intractable types of central nervous system (CNS) injury in the adult human population. In the acute stages of disease, neurons in the ischaemic lesion rapidly die and other neuronal populations in the ischaemic penumbra are vulnerable to secondary injury. Multiple parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. Accumulating evidence indicates that cerebral ischaemia initiates an endogenous regenerative response within the adult brain that potentiates adult neurogenesis from populations of neural stem and progenitor cells. A major research focus has been to understand the cellular and molecular mechanisms that underlie the potentiation of adult neurogenesis and to appreciate how interventions designed to modulate these processes could enhance neural regeneration in the post-ischaemic brain. In this review, we highlight recent advances over the last 5 years that help unravel the cellular and molecular mechanisms that potentiate endogenous neurogenesis following cerebral ischaemia and are dissecting the functional importance of this regenerative mechanism following brain injury. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville, VIC 3010, Australia.
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Building 75, Level 1 North STRIP 1, Clayton, VIC 3800, Australia.
| |
Collapse
|
10
|
Wang JM. Allopregnanolone and neurogenesis in the nigrostriatal tract. Front Cell Neurosci 2014; 8:224. [PMID: 25161608 PMCID: PMC4130099 DOI: 10.3389/fncel.2014.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022] Open
Abstract
Reinstalling the neurobiological circuits to effectively change the debilitating course of neurodegenerative diseases is of utmost importance. This reinstallation requires generation of new cells which are able to differentiate into specific types of neurons and modification of the local environment suitable for integration of these new neurons into the neuronal circuits. Allopregnanolone (APα) seems to be involved in both of these processes, and therefore, is a potential neurotrophic agent. Loss of dopamine neurons in the substantia nigra (SN) is one of the main pathological features of Parkinson’s and also in, at least, a subset of Alzheimer’s patients. Therefore, reinstallation of the dopamine neurons in nigrostriatal tract is of unique importance for these neurodegenerative diseases. However, for the neurogenic status and the roles of allopregnanolone in the nigrostriatal tract, the evidence is accumulating and debating. This review summarizes recent studies regarding the neurogenic status in the nigrostriatal tract. Furthermore, special attention is placed on evidence suggesting that reductions in allopregnenalone levels are one of the major pathological features in PD and AD. This evidence has also been confirmed in brains of mice that were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or those bearing neurodegenerative mutations. Lastly, we highlight studies showing that allopregnanalone can augment the number of total cells and dopaminergic neurons via peripheral exogenous administration.
Collapse
Affiliation(s)
- Jun Ming Wang
- Departments of Pathology, Psychiatry and Human Behavior, and Pharmacology and Toxicology, Memory Impairment and Neurodegenerative Dementia Center, University Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
11
|
Abstract
Stroke is a leading cause of morbidity in the developed world and results in chronic disability in many cases. The literature related to the critical factors that regulate tissue self-regeneration in stroke is still limited, which restricts effective therapy. However, optimism in this area has been provided by recent research. The mechanisms involved in tissue regeneration and the mode of the participation of stem/progenitor cells and soluble protein neurotrophic factors in this process may yield a more complete understanding of the nature of stroke. This review summarizes the current understanding of both cellular and humoral issues with a particular emphasis on how these issues contribute to tissue regeneration in stroke.
Collapse
Affiliation(s)
- Bogusław Machalinski
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, Szczecin 70-111, Poland
| |
Collapse
|
12
|
Devaraju K, Barnabé-Heider F, Kokaia Z, Lindvall O. FoxJ1-expressing cells contribute to neurogenesis in forebrain of adult rats: evidence from in vivo electroporation combined with piggyBac transposon. Exp Cell Res 2013; 319:2790-800. [PMID: 24075965 DOI: 10.1016/j.yexcr.2013.08.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 01/03/2023]
Abstract
Ependymal cells in the lateral ventricular wall are considered to be post-mitotic but can give rise to neuroblasts and astrocytes after stroke in adult mice due to insult-induced suppression of Notch signaling. The transcription factor FoxJ1, which has been used to characterize mouse ependymal cells, is also expressed by a subset of astrocytes. Cells expressing FoxJ1, which drives the expression of motile cilia, contribute to early postnatal neurogenesis in mouse olfactory bulb. The distribution and progeny of FoxJ1-expressing cells in rat forebrain are unknown. Here we show using immunohistochemistry that the overall majority of FoxJ1-expressing cells in the lateral ventricular wall of adult rats are ependymal cells with a minor population being astrocytes. To allow for long-term fate mapping of FoxJ1-derived cells, we used the piggyBac system for in vivo gene transfer with electroporation. Using this method, we found that FoxJ1-expressing cells, presumably the astrocytes, give rise to neuroblasts and mature neurons in the olfactory bulb both in intact and stroke-damaged brain of adult rats. No significant contribution of FoxJ1-derived cells to stroke-induced striatal neurogenesis was detected. These data indicate that in the adult rat brain, FoxJ1-expressing cells contribute to the formation of new neurons in the olfactory bulb but are not involved in the cellular repair after stroke.
Collapse
Affiliation(s)
- Karthikeyan Devaraju
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
13
|
Kirik OV, Korzhevskii DE. Vimentin in ependymal and subventricular proliferative zone cells of rat telencephalon. Bull Exp Biol Med 2013; 154:553-7. [PMID: 23486602 DOI: 10.1007/s10517-013-1998-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ependymal cells of cerebral ventricles are the most probable candidate progenitor cells. We studied ependymal and subventricular zone cells expressing intermediate filament protein vimentin. The results suggest that the ventricular ependyma represent a homogenous cell population. Some ependymocytes have long processes contacting with blood vessels, which makes them similar to tanycytes of the third cerebral ventricle. New data on the structure of ependymocyte processes attest to their active involvement into creation of a special microenvironment for neural stem cells of the subventricular proliferative zone.
Collapse
Affiliation(s)
- O V Kirik
- Laboratory of Functional Morphology and Central and Peripheral Nervous System, Institute of Experimental Medicine, Northwestern Division of the Russian Academy of Medical Sciences, St. Petersburg, Russia.
| | | |
Collapse
|