1
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
2
|
Martz J, Shelton MA, Geist L, Seney ML, Kentner AC. Sex differences in offspring risk and resilience following 11β-hydroxylase antagonism in a rodent model of maternal immune activation. Neuropsychopharmacology 2024; 49:1078-1090. [PMID: 38007547 PMCID: PMC11109257 DOI: 10.1038/s41386-023-01771-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Maternal immune activation (MIA) puts offspring at greater risk for neurodevelopmental disorders associated with impaired social behavior. While it is known that immune signaling through maternal, placental, and fetal compartments contributes to these phenotypical changes, it is unknown to what extent the stress response to illness is involved and how it can be harnessed for potential interventions. To this end, on gestational day 15, pregnant rat dams were administered the bacterial mimetic lipopolysaccharide (LPS; to induce MIA) alongside metyrapone, a clinically available 11β-hydroxylase (11βHSD) inhibitor used to treat hypercortisolism in pregnant, lactating, and neonatal populations. Maternal, placental, and fetal brain levels of corticosterone and placental 11βHSD enzymes type 1 and 2 were measured 3-hrs post treatment. Offspring social behaviors were evaluated across critical phases of development. MIA was associated with increased maternal, placental, and fetal brain corticosterone concentrations that were diminished with metyrapone exposure. Metyrapone protected against reductions in placental 11βHSD2 in males only, suggesting that less corticosterone was inactivated in female placentas. Behaviorally, metyrapone-exposure attenuated MIA-induced social disruptions in juvenile, adolescent, and adult males, while females were unaffected or performed worse. Metyrapone-exposure reversed MIA-induced transcriptional changes in monoamine-, glutamate-, and GABA-related genes in adult male ventral hippocampus, but not in females. Taken together, these findings illustrate that MIA-induced HPA responses act alongside the immune system to produce behavioral deficits. As a clinically available drug, the sex-specific benefits and constraints of metyrapone should be investigated further as a potential means of reducing neurodevelopmental risks due to gestational MIA.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, USA
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Kuhlman KR, Cole SW, Craske MG, Fuligni AJ, Irwin MR, Bower JE. Enhanced immune activation following acute social stress among adolescents with early life adversity. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:213-221. [PMID: 37124349 PMCID: PMC10140462 DOI: 10.1016/j.bpsgos.2022.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022] Open
Abstract
Background Early-life adversity (ELA) has been linked to higher depression risk across the life span and chronic inflammatory conditions that contribute to earlier mortality. In this study, we characterized innate immune responses to acute social stress in a community sample of adolescents (mean age = 13.9 ± 1.6 years; 46.4% female) as a potential pathway linking ELA and depression pathogenesis. Methods Parents reported their child's exposure to 9 ELAs, and adolescents participated in the Trier Social Stress Test for Children, with blood collected immediately before and then at 60 and 90 minutes thereafter. Overall, 65 adolescents had complete data for analysis of stress-induced changes in gene expression and 84 adolescents had complete data for circulating inflammatory markers. Results Relative to adolescents exposed to no ELA (11.9%) or low ELA (ELA = 1-3; 67.9%), those exposed to high ELA (ELA = 4+; 20.2%) showed larger stress-associated increases in expression of both proinflammatory and innate antiviral gene transcripts in circulating blood. Consistent with a potential mediating role of sympathetic nervous system activity, promoter-based bioinformatics analyses implicated CREB transcription factor activity in structuring observed gene expression differences. These effects were accompanied by a smaller initial but protracted increase in circulating interleukin 6 in adolescents with high ELA. Conclusions Results are consistent with the hypothesis that ELA may enhance cellular and gene regulatory reactivity to stress, which may, in turn, increase vulnerability to depression and other inflammation-related disease processes.
Collapse
|
4
|
Yu Z, Lin YT, Chen JC. Knockout of NPFFR2 Prevents LPS-Induced Depressive-Like Responses in Mice. Int J Mol Sci 2021; 22:ijms22147611. [PMID: 34299230 PMCID: PMC8306864 DOI: 10.3390/ijms22147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/metabolism
- Disease Models, Animal
- Female
- Hippocampus/metabolism
- Lipopolysaccharides/adverse effects
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Toll-Like Receptor 4/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Zachary Yu
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118700
| |
Collapse
|
5
|
Shulman A, Wang W, Luo H, Bao S, Searchfield G, Zhang J. Neuroinflammation and Tinnitus. Curr Top Behav Neurosci 2021; 51:161-174. [PMID: 34282564 DOI: 10.1007/7854_2021_238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuroinflammation is the central nervous system's response to: injury, infection, and abnormal neural activity. Inflammatory processes are known to mediate many diseases, and recently evidence indicates that neuroinflammation underlies hearing disorders such as presbyacusis, middle-ear disease, ototoxicity, noise-induced hearing loss, and tinnitus. This chapter provides a review of the role of neuroinflammation in the etiology and treatment of tinnitus. Specifically, our research team has demonstrated that both tumor necrosis factor alpha (TNF-α) and calpain signaling pathways are involved in noise-induced tinnitus and that blocking them yielded therapeutic effects on tinnitus. Other efforts such as controlling acute inflammatory response via specialized pro-resolving mediators may help provide insight into preventing and treating tinnitus-related inflammatory processes.
Collapse
Affiliation(s)
- Abraham Shulman
- Department of Otolaryngology, State University New York-Downstate, Brooklyn, NY, USA.
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Hao Luo
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Grant Searchfield
- Section of Audiology, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Jinsheng Zhang
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA
| |
Collapse
|
6
|
Zinsmaier AK, Wang W, Zhang L, Hossainy NN, Bao S. Resistance to noise-induced gap detection impairment in FVB mice is correlated with reduced neuroinflammatory response and parvalbumin-positive neuron loss. Sci Rep 2020; 10:20445. [PMID: 33235216 PMCID: PMC7686384 DOI: 10.1038/s41598-020-75714-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Exposure to loud noises results in neuroinflammatory responses in the central auditory pathway. Noise-induced neuroinflammation is implicated in auditory processing deficits such as impairment in gap detection. In this study, we examined whether strain differences between the FVB and C57BL/6 mice in noise-induced impairment in gap detection are correlated with strain differences in neuroinflammatory responses. We found that noise induced more robust TNF-α expression in C57BL/6 than in FVB mice. Noise-induced microglial deramification was observed in C57BL/6 mice, but not in FVB mice. Furthermore, noise exposure resulted in a reduction in parvalbumin-positive (PV+) neuron density in the C57BL/6 mice, but not in FVB mice. These results suggest that neuroinflammatory responses and loss of PV+ neurons may contribute to strain differences in noise-induced impairment in gap detection.
Collapse
Affiliation(s)
- Alexander K Zinsmaier
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Weihua Wang
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Li Zhang
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Nadia N Hossainy
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Shaowen Bao
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
7
|
Koyanagi M, Arimura Y. Comparative Expression Analysis of Stress-Inducible Genes in Murine Immune Cells. Immunol Invest 2019; 49:907-925. [PMID: 31833438 DOI: 10.1080/08820139.2019.1702673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Psychological stress affects the immune system. Upon stress occurrence, glucocorticoid is released that binds to the glucocorticoid receptor and regulates gene expression. Thus, we aimed to examine the stress-induced immunomodulatory mechanisms by investigating the expression patterns of stress-inducible genes in murine immune cells. Methods: BALB/c, C57BL/6, glucocorticoid-receptor congenic mice, and corticotropin-releasing hormone (CRH)-deficient mice were exposed to synthetic glucocorticoid, dexamethasone, or placed under a restraint condition. The expression level of stress-related genes, such as Rtp801, Gilz, Mkp-1, Bnip3, and Trp53inp1 was measured in the immune cells in these mice. Results: Short restraint stress induced Rtp801 and Gilz expressions that were higher in the spleen of BALB/c mice than those in C57BL/6 mice. Mkp-1 expression increased equally in these two strains, despite the difference in the glucocorticoid level. These three genes induced by short restraint stress were not induced in the CRH-deficient mice. In contrast, Bnip3 and Trp53inp1 were only upregulated upon longer restraint events. In the thymus, Trp53inp1 expression was induced upon short restraint stress, whereas Gilz expression constantly increased upon short and repetitive restraint stresses. Conclusion: These results suggest that singular and repetitive bouts of stress lead to differential gene expression in mice and stress-induced gene expression in thymocytes is distinct from that observed in splenocytes. Gilz, Rtp801, and Mkp-1 genes induced by short restraint stress are dependent on CRH in the spleen.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University , Tokyo, Japan
| | - Yutaka Arimura
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University , Tokyo, Japan
| |
Collapse
|
8
|
O'Callaghan JP, Miller DB. Neuroinflammation disorders exacerbated by environmental stressors. Metabolism 2019; 100S:153951. [PMID: 31610852 PMCID: PMC6800732 DOI: 10.1016/j.metabol.2019.153951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is a condition characterized by the elaboration of proinflammatory mediators within the central nervous system. Neuroinflammation has emerged as a dominant theme in contemporary neuroscience due to its association with neurodegenerative disease states such as Alzheimer's disease, Parkinson's disease and Huntington's disease. While neuroinflammation often is associated with damage to the CNS, it also can occur in the absence of neurodegeneration, e.g., in association with systemic infection. The "acute phase" inflammatory response to tissue injury or infections instigates neuroinflammation-driven "sickness behavior," i.e. a constellation of symptoms characterized by loss of appetite, fever, muscle pain, fatigue and cognitive problems. Typically, sickness behavior accompanies an inflammatory response that resolves quickly and serves to restore the body to homeostasis. However, recurring and sometimes chronic sickness behavior disorders can occur in the absence of an underlying cause or attendant neuropathology. Here, we review myalgic enchepalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Illness (GWI), and chemobrain as examples of such disorders and propose that they can be exacerbated and perhaps initiated by a variety of environmental stressors. Diverse environmental stressors may disrupt the hypothalamic pituitary adrenal (HPA) axis and contribute to the degree and duration of a variety of neuroinflammation-driven diseases.
Collapse
Affiliation(s)
- James P O'Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
| | - Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| |
Collapse
|
9
|
Khedr LH, Nassar NN, Rashed L, El-Denshary ED, Abdel-Tawab AM. TLR4 signaling modulation of PGC1-α mediated mitochondrial biogenesis in the LPS-Chronic mild stress model: Effect of fluoxetine and pentoxiyfylline. Life Sci 2019; 239:116869. [PMID: 31678277 DOI: 10.1016/j.lfs.2019.116869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022]
Abstract
AIM The addition of repeated lipopolysaccharide (LPS) to chronic mild stress was recently proposed in our lab as an alternative model of depression, highlighting the possible interaction between stress and immune-inflammatory pathways in predisposing depression. Given that CMS-induced depressive behavior was previously related to impaired hippocampal energy metabolism and mitochondrial dysfunction, our current study aimed to investigate the interplay between toll-like receptor 4 (TLR4) signaling and peroxisome proliferator-activated receptor gamma coactivators-1-alpha (PGC1-α) as a physiological regulator of energy metabolism and mitochondrial biogenesis in the combined LPS/CMS model. MAIN METHODS Male Wistar rats were exposed to either LPS (50 μg/kg i.p.) over 2 weeks, CMS protocol for 4 weeks or LPS over 2 weeks followed by 4 weeks of CMS (LPS/CMS). Three additional groups of rats were exposed to LPS/CMS protocol and treated with either pentoxifylline (PTX), fluoxetine (FLX) or a combination of both. Rats were examined for behavioral, neurochemical, gene expression and mitochondrial ultra-structural changes. KEY FINDINGS LPS/CMS increased the expression of TLR4 and its downstream players; MyD88, NFκB and TNF-α along with an escalation in hippocampal-energy metabolism and p-AMPK. Simultaneously LPS/CMS attenuated the expression of PGC1-α/NRF1/Tfam and mt-DNA. The antidepressant (AD) 'FLX', the TNF-α inhibitor 'PTX' and their combination ameliorated the LPS/CMS-induced changes. Interestingly, all the aforementioned changes induced by the LPS/CMS combined model were significantly less than those induced by CMS alone. SIGNIFICANCE Blocking the TLR4/NFκB signaling enhanced the activation of the PGC1-α/NRF1/Tfam and mt-DNA content independent on the activation of the energy-sensing kinase AMPK.
Collapse
Affiliation(s)
- L H Khedr
- Departmment of Pharmacology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - N N Nassar
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - E D El-Denshary
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - A M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Magaña-Guerrero FS, Quiroz-Mercado J, Garfias-Zenteno N, Garfias Y. Comparative analysis of inflammatory response in the BALB/c and C57BL/6 mouse strains in an endotoxin-induced uveitis model. J Immunol Methods 2019; 476:112677. [PMID: 31626758 DOI: 10.1016/j.jim.2019.112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
Abstract
Uveitis is an inflammatory disease associated with diverse systemic and autoimmune diseases, defined as the inflammation of any given segment of the uveal tract, uveitis contributes with 5-20% cases of blindness in the USA/Europe and >25% of cases in third-world countries. To understand its pathogenic mechanisms, BALB/c and C57BL/6 mice were induced to develop the condition by a single intraperitoneal injection of E. coli lipopolysaccharide, the aim of the present work is to determine leukocyte infiltration in an endotoxin-induced uveitis (EIU) in two non-related mouse strains. Histopathological findings and clinical analysis were conducted 24 and 48 h postinjection. Both strains presented conventional clinical signs of uveitis 24 h post LPS injection and the highest inflammatory leukocyte infiltration in the uveal tract was found in the BALB/c mouse strain. This article will give an insight on the difference of the inflammatory response in the EIU model in two different mouse strains and the relationship between the pathologic response.
Collapse
Affiliation(s)
- Fátima Sofía Magaña-Guerrero
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico.
| | - Joaquín Quiroz-Mercado
- Department of Medicine, Surgery and Zootechnics for Small Animals, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - Nicolás Garfias-Zenteno
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis S/N, 11340 Mexico City, Mexico
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico.
| |
Collapse
|
11
|
Kulikova EA, Kulikov AV. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 2019; 23:655-667. [PMID: 31216212 DOI: 10.1080/14728222.2019.1634691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders. Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy. Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Kulikova
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| | - Alexander V Kulikov
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| |
Collapse
|
12
|
Dostal CR, Gamsby NS, Lawson MA, McCusker RH. Glia- and tissue-specific changes in the Kynurenine Pathway after treatment of mice with lipopolysaccharide and dexamethasone. Brain Behav Immun 2018; 69:321-335. [PMID: 29241670 PMCID: PMC5857427 DOI: 10.1016/j.bbi.2017.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022] Open
Abstract
Behavioral symptoms associated with mood disorders have been intimately linked with immunological and psychological stress. Induction of immune and stress pathways is accompanied by increased tryptophan entry into the Kynurenine (Kyn) Pathway as governed by the rate-limiting enzymes indoleamine/tryptophan 2,3-dioxygenases (DO's: Ido1, Ido2, Tdo2). Indeed, elevated DO expression is associated with inflammation- and stress-related depression symptoms. Here we examined central (brain, astrocyte and microglia) and peripheral (lung, liver and spleen) DO expression in mice treated intraperitoneally with lipopolysaccharide (LPS) and dexamethasone (DEX) to model the response of the Kyn Pathway to inflammation and glucocorticoids. LPS-induced expression of cytokines in peripheral tissues was attenuated by DEX, confirming inflammatory and anti-inflammatory responses, respectively. Increased Kyn levels following LPS and DEX administration verified Kyn Pathway activation. Expression of multiple mRNA isoforms for each DO, which we have shown to be differentially utilized and regulated, were quantified including reference/full-length (FL) and variant (v) transcripts. LPS increased Ido1-FL in brain (∼1000-fold), a response paralleled by increased expression in both astrocytes and microglia. Central Ido1-FL was not changed by DEX; however, LPS-induced Ido1-FL was decreased by DEX in peripheral tissues. In contrast, DEX increased Ido1-v1 expression by astrocytes and microglia, but not peripheral tissues. In comparison, brain Ido2 was minimally induced by LPS or DEX. Uniquely, Ido2-v6 was LPS- and DEX-inducible in astrocytes, suggesting a unique role for astrocytes in response to inflammation and glucocorticoids. Only DEX increased central Tdo2 expression; however, peripheral Tdo2 was upregulated by either LPS or DEX. In summary, specific DO isoforms are increased by LPS and DEX, but LPS-dependent Ido1 and Ido2 induction are attenuated by DEX only in the periphery indicating that elevated DO expression and Kyn production within the brain can occur independent of the periphery. These findings demonstrate a plausible interaction between immune activation and glucocorticoids associated with depression.
Collapse
Affiliation(s)
- Carlos R. Dostal
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States,Medical Scholars Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States,Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Nicolaus S. Gamsby
- School of Earth, Society and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Marcus A. Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States,Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Robert H. McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States,Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States,Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| |
Collapse
|
13
|
Musaelyan K, Aldridge S, Du Preez A, Egeland M, Zunszain PA, Pariante CM, Thuret S, Fernandes C. Repeated lipopolysaccharide exposure modifies immune and sickness behaviour response in an animal model of chronic inflammation. J Psychopharmacol 2018; 32:236-247. [PMID: 29338496 DOI: 10.1177/0269881117746902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Repeated lipopolysaccharide exposure is often used in longitudinal preclinical models of depression. However, the potential phenotypic differences from acute depression-mimicking effects are rarely described. This study compared chronic lipopolysaccharide administration of doses previously used in depression research to a new mode of escalating dose injections. Adult male BALB/c mice ( n=8/group) were injected intraperitoneally with either a single 0.83 mg/kg dose, a repeated 0.1 mg/kg lipopolysaccharide dose or a dose which escalated weekly from 0.33 to 0.83 mg/kg lipopolysaccharide for six weeks. The escalating lipopolysaccharide group demonstrated most features of sickness behaviour such as weight loss and reduction in food intake every week, whilst this effect was not sustained in other groups. Moreover, only in the escalating lipopolysaccharide group did most peripheral plasma cytokines levels, measured using Luminex multiplex technology, such as interleukin-6, tumour necrosis factor α and interleukin-2 remain over three-fold elevated on the sixth week. In addition, exposure to escalating doses led to a reduction of neuroblast maturation in the dentate gyrus relevant for depression neurobiology. Therefore, this mode of injections might be useful in the studies attempting to replicate neurobiological aspects of the chronic inflammatory state observed in mood disorders.
Collapse
Affiliation(s)
- Ksenia Musaelyan
- 1 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,3 MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven Aldridge
- 1 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrea Du Preez
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martin Egeland
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- 1 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- 3 MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
Kelly KA, Michalovicz LT, Miller JV, Castranova V, Miller DB, O’Callaghan JP. Prior exposure to corticosterone markedly enhances and prolongs the neuroinflammatory response to systemic challenge with LPS. PLoS One 2018; 13:e0190546. [PMID: 29304053 PMCID: PMC5755880 DOI: 10.1371/journal.pone.0190546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
Systemic exposure to the inflammagen and bacterial endotoxin lipopolysaccharide (LPS) has been widely used to evaluate inflammation and sickness behavior. While many inflammatory conditions occur in the periphery, it is well established that peripheral inflammation can affect the brain. Neuroinflammation, the elaboration of proinflammatory mediators in the CNS, commonly is associated with behavioral symptoms (e.g., lethargy, anhedonia, anorexia, depression, etc.) termed sickness behavior. Stressors have been shown to interact with and alter neuroinflammatory responses and associated behaviors. Here, we examined the effects of the stress hormone, corticosterone (CORT), as a stressor mimic, on neuroinflammation induced with a single injection (2mg/kg, s.c.) or inhalation exposure (7.5 μg/m3) of LPS or polyinosinic:polycytidylic acid (PIC; 12mg/kg, i.p.) in adult male C57BL/6J mice. CORT was given in the drinking water (200 mg/L) for 1 week or every other week for 90 days followed by LPS. Proinflammatory cytokine expression (TNFα, IL-6, CCL2, IL-1β, LIF, and OSM) was measured by qPCR. The activation of the neuroinflammation downstream signaling activator, STAT3, was assessed by immunoblot of pSTAT3Tyr705. The presence of astrogliosis was assessed by immunoassay of GFAP. Acute exposure to LPS caused brain-wide neuroinflammation without producing astrogliosis; exposure to CORT for 1 week caused marked exacerbation of the LPS-induced neuroinflammation. This neuroinflammatory "priming" by CORT was so pronounced that sub-neuroinflammatory exposures by inhalation instigated neuroinflammation when paired with prior CORT exposure. This effect also was extended to another common inflammagen, PIC (a viral mimic). Furthermore, a single week of CORT exposure maintained the potential for priming for 30 days, while intermittent exposure to CORT for up to 90 days synergistically primed the LPS-induced neuroinflammatory response. These findings highlight the possibility for an isolated inflammatory event to be exacerbated by a temporally distant stressful stimulus and demonstrates the potential for recurrent stress to greatly aggravate chronic inflammatory disorders.
Collapse
Affiliation(s)
- Kimberly A. Kelly
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Lindsay T. Michalovicz
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Julie V. Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Diane B. Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - James P. O’Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
15
|
Dostal CR, Carson Sulzer M, Kelley KW, Freund GG, M cCusker RH. Glial and tissue-specific regulation of Kynurenine Pathway dioxygenases by acute stress of mice. Neurobiol Stress 2017; 7:1-15. [PMID: 29520368 PMCID: PMC5840960 DOI: 10.1016/j.ynstr.2017.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
Stressors activate the hypothalamic-pituitary-adrenal (HPA) axis and immune system eliciting changes in cognitive function, mood and anxiety. An important link between stress and altered behavior is stimulation of the Kynurenine Pathway which generates neuroactive and immunomodulatory kynurenines. Tryptophan entry into this pathway is controlled by rate-limiting indoleamine/tryptophan 2,3-dioxygenases (DOs: Ido1, Ido2, Tdo2). Although implicated as mediating changes in behavior, detecting stress-induced DO expression has proven inconsistent. Thus, C57BL/6J mice were used to characterize DO expression in brain-regions, astrocytes and microglia to characterize restraint-stress-induced DO expression. Stress increased kynurenine in brain and plasma, demonstrating increased DO activity. Of three Ido1 transcripts, only Ido1-v1 expression was increased by stress and within astrocytes, not microglia, indicating transcript- and glial-specificity. Stress increased Ido1-v1 only in frontal cortex and hypothalamus, indicating brain-region specificity. Of eight Ido2 transcripts, Ido2-v3 expression was increased by stress, again only within astrocytes. Likewise, stress increased Tdo2-FL expression in astrocytes, not microglia. Interestingly, Ido2 and Tdo2 transcripts were not correspondingly induced in Ido1-knockout (Ido1KO) mice, suggesting that Ido1 is necessary for the central DO response to acute stress. Unlike acute inflammatory models resulting in DO induction within microglia, only astrocyte DO expression was increased by acute restraint-stress, defining their unique role during stress-dependent activation of the Kynurenine Pathway.
Collapse
Affiliation(s)
- Carlos R. Dostal
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Medical Scholars Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Megan Carson Sulzer
- School of Molecular and Cellular Biology, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Keith W. Kelley
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Gregory G. Freund
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Robert H. McCusker
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Zhou DX, Zhao Y, Baker JA, Gu Q, Hamre KM, Yue J, Jones BC, Cook MN, Lu L. The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network. PLoS One 2017; 12:e0178689. [PMID: 28575045 PMCID: PMC5456352 DOI: 10.1371/journal.pone.0178689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 12/13/2022] Open
Abstract
Alcohol consumption affects human health in part by compromising the immune system. In this study, we examined the expression of the Cd14 (cluster of differentiation 14) gene, which is involved in the immune system through a proinflammatory cascade. Expression was evaluated in BXD mice treated with saline or acute 1.8 g/kg i.p. ethanol (12.5% v/v). Hippocampal gene expression data were generated to examine differential expression and to perform systems genetics analyses. The Cd14 gene expression showed significant changes among the BXD strains after ethanol treatment, and eQTL mapping revealed that Cd14 is a cis-regulated gene. We also identified eighteen ethanol-related phenotypes correlated with Cd14 expression related to either ethanol responses or ethanol consumption. Pathway analysis was performed to identify possible biological pathways involved in the response to ethanol and Cd14. We also constructed a genetic network for Cd14 using the top 20 correlated genes and present several genes possibly involved in Cd14 and ethanol responses based on differential gene expression. In conclusion, we found Cd14, along with several other genes and pathways, to be involved in ethanol responses in the hippocampus, such as increased susceptibility to lipopolysaccharides and neuroinflammation.
Collapse
Affiliation(s)
- Diana X. Zhou
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Melloni N. Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Brooks AK, Janda TM, Lawson MA, Rytych JL, Smith RA, Ocampo-Solis C, McCusker RH. Desipramine decreases expression of human and murine indoleamine-2,3-dioxygenases. Brain Behav Immun 2017; 62:219-229. [PMID: 28212884 PMCID: PMC5382643 DOI: 10.1016/j.bbi.2017.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Abundant evidence connects depression symptomology with immune system activation, stress and subsequently elevated levels of kynurenine. Anti-depressants, such as the tricyclic norepinephrine/serotonin reuptake inhibitor desipramine (Desip), were developed under the premise that increasing extracellular neurotransmitter level was the sole mechanism by which they alleviate depressive symptomologies. However, evidence suggests that anti-depressants have additional actions that contribute to their therapeutic potential. The Kynurenine Pathway produces tryptophan metabolites that modulate neurotransmitter activity. This recognition identified another putative pathway for anti-depressant targeting. Considering a recognized role of the Kynurenine Pathway in depression, we investigated the potential for Desip to alter expression of rate-limiting enzymes of this pathway: indoleamine-2,3-dioxygenases (Ido1 and Ido2). Mice were administered lipopolysaccharide (LPS) or synthetic glucocorticoid dexamethasone (Dex) with Desip to determine if Desip alters indoleamine-dioxygenase (DO) expression in vivo following a modeled immune and stress response. This work was followed by treating murine and human peripheral blood mononuclear cells (PBMCs) with interferon-gamma (IFNγ) and Desip. In vivo: Desip blocked LPS-induced Ido1 expression in hippocampi, astrocytes, microglia and PBMCs and Ido2 expression by PBMCs. Ex vivo: Desip decreased IFNγ-induced Ido1 and Ido2 expression in murine PBMCs. This effect was directly translatable to the human system as Desip decreased IDO1 and IDO2 expression by human PBMCs. These data demonstrate for the first time that an anti-depressant alters expression of Ido1 and Ido2, identifying a possible new mechanism behind anti-depressant activity. Furthermore, we propose the assessment of PBMCs for anti-depressant responsiveness using IDO expression as a biomarker.
Collapse
Affiliation(s)
- Alexandra K Brooks
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Tiffany M Janda
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robin A Smith
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Cecilia Ocampo-Solis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robert H McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
18
|
Peppler WT, Anderson ZG, MacRae LM, MacPherson RE, Wright DC. Habitual physical activity protects against lipopolysaccharide-induced inflammation in mouse adipose tissue. Adipocyte 2017; 6:1-11. [PMID: 28452590 PMCID: PMC5358709 DOI: 10.1080/21623945.2016.1259778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a systemic inflammatory response to infection, with no preventative strategies. In this study, we identify a role for habitual physical activity in the prevention of adipose tissue inflammation induced by a model of sepsis, lipopolysaccharide (LPS). Male C57BL/6J mice (8 weeks old) were housed with access to voluntary wheel running (VWR) or sedentary (SED) for 10 weeks. Mice were then injected with LPS (2 mg/kg) or saline (SAL), and tissues were removed 6 hours post-injection. VWR attenuated body, epididymal adipose tissue (eWAT), and subcutaneous inguinal adipose tissue (iWAT) mass gain, improved glucose tolerance, increased markers of mitochondrial biogenesis in iWAT and eWAT, and increased UCP-1 protein content in iWAT. In iWAT, VWR attenuated the LPS induced increase in mRNA expression of TNF-α, MCP-1, and follistatin, along with phosphorylation of STAT3. In addition, VWR had a main effect for reducing iWAT mRNA expression of IL-1β, IL-6, and SOCS3. In eWAT, VWR had a main effect for reducing mRNA expression of IL-1β, MCP-1, IL-6, and follistatin. Further, VWR increased SOCS3 mRNA expression and phosphorylation of STAT3 in SAL mice, thus the relative change in response to LPS for these markers was attenuated. The protective effect of prior physical activity occurred in conjunction with increases in the protein content of a component of the LPS binding complex, MyD88. Overall, the results from this study demonstrate that habitual physical activity can attenuate the LPS induced inflammatory response in adipose tissue and this occurs to a greater extent in iWAT compare with eWAT.
Collapse
Affiliation(s)
- Willem T. Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Zachary G. Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Laura M. MacRae
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Brooks AK, Lawson MA, Rytych JL, Yu KC, Janda TM, Steelman AJ, McCusker RH. Immunomodulatory Factors Galectin-9 and Interferon-Gamma Synergize to Induce Expression of Rate-Limiting Enzymes of the Kynurenine Pathway in the Mouse Hippocampus. Front Immunol 2016; 7:422. [PMID: 27799931 PMCID: PMC5065983 DOI: 10.3389/fimmu.2016.00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Elevated levels of circulating pro-inflammatory cytokines are associated with symptomology of several psychiatric disorders, notably major depressive disorder. Symptomology has been linked to inflammation/cytokine-dependent induction of the Kynurenine Pathway. Galectins, like pro-inflammatory cytokines, play a role in neuroinflammation and the pathogenesis of several neurological disorders but without a clearly defined mechanism of action. Their involvement in the Kynurenine Pathway has not been investigated. Thus, we searched for a link between galectins and the Kynurenine Pathway using in vivo and ex vivo models. Mice were administered LPS and pI:C to determine if galectins (Gal's) were upregulated in the brain following in vivo inflammatory challenges. We then used organotypic hippocampal slice cultures (OHSCs) to determine if Gal's, alone or with inflammatory mediators [interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), interleukin-1beta (IL-1β), polyinosine-polycytidylic acid (pI:C), and dexamethasone (Dex; synthetic glucocorticoid)], would increase expression of indoleamine/tryptophan-2,3-dioxygenases (DO's: Ido1, Ido2, and Tdo2; Kynurenine Pathway rate-limiting enzymes). In vivo, hippocampal expression of cytokines (IL-1β, TNFα, and IFNγ), Gal-3, and Gal-9 along with Ido1 and Ido2 were increased by LPS and pI:C (bacterial and viral mimetics). Of the cytokines induced in vivo, only IFNγ increased expression of two Ido1 transcripts (Ido1-FL and Ido1-v1) by OHSCs. Although ineffective alone, Gal-9 accentuated IFNγ-induced expression of only Ido1-FL. Similarly, IFNγ induced expression of several Ido2 transcripts (Ido2-v1, Ido2-v3, Ido2-v4, Ido2-v5, and Ido2-v6). Gal-9 accentuated IFNγ-induced expression of only Ido2-v1. Surprisingly, Gal-9 alone, slightly but significantly, induced expression of Tdo2 (Tdo2-v1 and Tdo2-v2, but not Tdo2-FL). These effects were specific to Gal-9 as Gal-1 and Gal-3 did not alter DO expression. These results are the first to show that brain Gal-9 is increased during LPS- and pI:C-induced neuroinflammation. Increased expression of Gal-9 may be critical for neuroinflammation-dependent induction of DO expression, either acting alone (Tdo2-v1 and Tdo2-v2) or to enhance IFNγ activity (Ido1-FL and Ido2-v1). Although these novel actions of Gal-9 are described for hippocampus, they have the potential to operate as DO-dependent immunomodulatory processes outside the brain. With the expanding implications of Kynurenine Pathway activation across multiple immune and psychiatric disorders, this synergy provides a new target for therapeutic development.
Collapse
Affiliation(s)
- Alexandra K Brooks
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin C Yu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiffany M Janda
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert H McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
20
|
Becker KJ. Strain-Related Differences in the Immune Response: Relevance to Human Stroke. Transl Stroke Res 2016; 7:303-12. [PMID: 26860504 PMCID: PMC4929040 DOI: 10.1007/s12975-016-0455-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
There are significant differences in the immune response and in the susceptibility to autoimmune diseases among rodent strains. It would thus be expected that the contribution of the immune response to cerebral ischemic injury would also differ among rodent strains. More importantly, there are significant differences between the immune responses of rodents and humans. All of these factors are likely to impact the successful translation of immunomodulatory therapies from experimental rodent models to patients with stroke.
Collapse
Affiliation(s)
- Kyra J Becker
- Department of Neurology, University of Washington School of Medicine, Harborview Medical Center, 325 9th Ave, Box 359775, Seattle, WA, 98104-2499, USA.
| |
Collapse
|
21
|
Interactions between inflammatory mediators and corticosteroids regulate transcription of genes within the Kynurenine Pathway in the mouse hippocampus. J Neuroinflammation 2016; 13:98. [PMID: 27142940 PMCID: PMC4855471 DOI: 10.1186/s12974-016-0563-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022] Open
Abstract
Background Increased tryptophan metabolism towards the production of kynurenine via indoleamine/tryptophan-2,3-dioxygenases (DOs: Ido1, Ido2, and Tdo2) is strongly associated with the prevalence of major depressive disorder in patients and the induction of depression-like behaviors in animal models. Several studies have suggested that activation of the immune system or elevated corticosteroids drive DO expression; however, mechanisms linking cytokines, corticosteroids, and DOs to psychiatric diseases remain unclear. Various attempts have been made to correlate DO gene expression within the brain to behavior, but disparate results have been obtained. We believe that discrepancies arise as a result of the under-recognized existence of multiple mRNA transcripts for each DO. Unfortunately, there are no reports regarding how the multiple transcripts are distributed or regulated. Here, we used organotypic hippocampal slice cultures (OHSCs) to directly test the ability of inflammatory and stress mediators to differentially regulate DO transcripts. Methods OHSCs were treated with pro-inflammatory mediators (interferon-gamma (IFNγ), lipopolysaccharide (LPS), and polyinosine-polycytidylic acid (pI:C)) with or without corticosteroids (dexamethasone (Dex: glucocorticoid receptor (GR) agonist), aldosterone (Aldo: mineralocorticoid receptor (MR) agonist), or corticosterone (Cort: GR/MR agonist)). Results IFNγ induced Ido1-full length (FL) and Ido1-variant (v) expression, and surprisingly, Dex, Cort, and Aldo interacted with IFNγ to further elevate expression of Ido1, importantly, in a transcript dependent manner. IFNγ, LPS, and pI:C increased expression of Ido2-v1 and Ido2-v3 transcripts, whereas only IFNγ increased expression of Ido2-v2. Overall Ido2 transcripts were relatively unaffected by GR or MR activation. Naïve mouse brain expresses multiple Tdo2 transcripts. Dex and Cort induced expression of only one of the three Tdo2 transcripts (Tdo2-FL) in OHSCs. Conclusions These results establish that multiple transcripts for all three DOs are expressed within the mouse hippocampus, under the control of distinct regulatory pathways. These data identify a previously unrecognized interaction between corticosteroid receptor activation and inflammatory signals on DO gene expression, which suggest that corticosteroids act to differentially enhance gene expression of Ido1, Ido2, and Tdo2.
Collapse
|
22
|
Rocha-Ferreira E, Phillips E, Francesch-Domenech E, Thei L, Peebles DM, Raivich G, Hristova M. The role of different strain backgrounds in bacterial endotoxin-mediated sensitization to neonatal hypoxic-ischemic brain damage. Neuroscience 2015; 311:292-307. [PMID: 26515746 PMCID: PMC4675086 DOI: 10.1016/j.neuroscience.2015.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Strain background plays a role in the response to hypoxia–ischemia. LPS sensitizes the immature brain to hypoxia–ischemia across several mouse strains. Vehicle injection may induce immune response and sensitization to hypoxia–ischemia.
Genetic background is known to influence the outcome in mouse models of human disease, and previous experimental studies have shown strain variability in the neonatal mouse model of hypoxia–ischemia. To further map out this variability, we compared five commonly used mouse strains: C57BL/6, 129SVJ, BALB/c, CD1 and FVB in a pure hypoxic–ischemic setup and following pre-sensitization with lipopolysaccharide (LPS). Postnatal day 7 pups were subjected to unilateral carotid artery occlusion followed by continuous 30 min 8% oxygen exposure at 36 °C. Twelve hours prior, a third of the pups received a single intraperitoneal LPS (0.6 μg/g) or a saline (vehicle) administration, respectively; a further third underwent hypoxia–ischemia alone without preceding injection. Both C57BL/6 and 129SVJ strains showed minimal response to 30 min hypoxia–ischemia alone, BALB/c demonstrated a moderate response, and both CD1 and FVB revealed the highest brain damage. LPS pre-sensitization led to substantial increase in overall brain infarction, microglial and astrocyte response and cell death in four of the five strains, with exception of BALB/c that only showed a significant effect with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Saline administration prior to hypoxia–ischemia resulted in an increase in inflammatory-associated markers, particularly in the astroglial activation of C57BL/6 mice, and in combined microglial activation and neuronal cell loss in FVB mice. Finally, two of the four strongly affected strains – C57BL/6 and CD1 – revealed pronounced contralateral astrogliosis with a neuroanatomical localization similar to that observed on the occluded hemisphere. Overall, the current findings demonstrate strain differences in response to hypoxia–ischemia alone, to stress associated with vehicle injection, and to LPS-mediated pre-sensitization, which partially explains the high variability seen in the neonatal mouse models of hypoxia–ischemia. These results can be useful in future studies of fetal/neonatal response to inflammation and reduced oxygen–blood supply.
Collapse
Affiliation(s)
- E Rocha-Ferreira
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK.
| | - E Phillips
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - E Francesch-Domenech
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - L Thei
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - D M Peebles
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - G Raivich
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - M Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| |
Collapse
|
23
|
Réus GZ, Jansen K, Titus S, Carvalho AF, Gabbay V, Quevedo J. Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: Evidences from animal and human studies. J Psychiatr Res 2015; 68:316-28. [PMID: 26028548 PMCID: PMC4955923 DOI: 10.1016/j.jpsychires.2015.05.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022]
Abstract
Treatment-resistant depression affects up to 20% of individuals suffering from major depressive disorder (MDD). The medications currently available to treat depression, including serotonin re-uptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs) and tricyclic antidepressants (TCAs), fail to produce adequate remission of depressive symptoms for a large number of patients. The monoamine hypothesis upon which these medications are predicated should be expanded and revised as research elucidates alternative mechanisms of depression and effective methods to treat the underlying pathologic consequences. Research into the role of tryptophan degradation and the kynurenine pathway in the setting of inflammation has brought new insight into potential etiologies of MDD. Further investigation into the connection between inflammatory mediators, tryptophan degradation, and MDD can provide many targets for novel antidepressant therapies. Thus, this review will highlight the role of the kynurenine pathway in the pathophysiology of depression, as well as a novel therapeutic target to classic and new modulators to treat depression based on findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil,Corresponding author: Gislaine Z. Réus, PhD, Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, 1941 East Road, Houston, TX 77054, USA. , Phone: +1 (713) 486 2653, Fax: +1 (713) 486 2553
| | - Karen Jansen
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA,Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Stephanie Titus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - André F. Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vilma Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| |
Collapse
|
24
|
Browne CA, Hanke J, Rose C, Walsh I, Foley T, Clarke G, Schwegler H, Cryan JF, Yilmazer-Hanke D. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction. Stress 2014; 17:471-83. [PMID: 25117886 PMCID: PMC4527314 DOI: 10.3109/10253890.2014.954104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.
Collapse
Affiliation(s)
- Caroline A Browne
- Alimentary Pharmabiotic Centre, University College Cork , Cork , Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Inflammatory cytokine-associated depression. Brain Res 2014; 1617:113-25. [PMID: 25003554 DOI: 10.1016/j.brainres.2014.06.032] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Abstract
Inflammatory cytokines can sometimes trigger depression in humans, are often associated with depression, and can elicit some behaviors in animals that are homologous to major depression. Moreover, these cytokines can affect monoaminergic and glutamatergic systems, supporting an overlapping pathoetiology with major depression. This suggests that there could be a specific major depression subtype, inflammatory cytokine-associated depression (ICAD), which may require different therapeutic approaches. However, most people do not develop depression, even when exposed to sustained elevations in inflammatory cytokines. Thus several vulnerabilities and sources of resilience to inflammation-associated depression have been identified. These range from genetic differences in neurotrophic and serotonergic systems to sleep quality and omega-3 fatty acid levels. Replicating these sources of resilience as treatments could be one approach for preventing "ICAD". This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
|
26
|
O' Mahony SM, Clarke G, McKernan DP, Bravo JA, Dinan TG, Cryan JF. Differential visceral nociceptive, behavioural and neurochemical responses to an immune challenge in the stress-sensitive Wistar Kyoto rat strain. Behav Brain Res 2013; 253:310-7. [PMID: 23872358 DOI: 10.1016/j.bbr.2013.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 01/08/2023]
Abstract
A highly regulated crosstalk exists between the immune and neuroendocrine systems with the altered immune responses in stress-related disorders being a valid example of this interaction. The Wister Kyoto (WKY) rat is an animal model with a genetic predisposition towards an exaggerated stress response and is used to study disorders such as depression and irritable bowel syndrome (IBS), where stress plays a substantial role. The impact of a lipopolysaccride (LPS) immune challenge has not yet been investigated in this animal model to date. Hence our aim was to assess if the stress susceptible genetic background of the WKY rat was associated with a differential response to an acute immune challenge. Central and peripheral parameters previously shown to be altered by LPS administration were assessed. Under baseline conditions, WKY rats displayed visceral hypersensitivity compared to Sprague Dawley (SD) control rats. However, only SD rats showed an increase in visceral sensitivity following endotoxin administration. The peripheral immune response to the LPS was similar in both strains whilst the central neurochemistry was blunted in the WKY rats. Sickness behaviour was also abrogated in the WKY rats. Taken together, these data indicate that the genetic background of the WKY rat mitigates the response to infection centrally, but not peripherally. This implies that heightened stress-susceptibility in vulnerable populations may compromise the coordinated CNS response to peripheral immune activation.
Collapse
|
27
|
Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm 2013; 2013:271359. [PMID: 23935246 PMCID: PMC3723093 DOI: 10.1155/2013/271359] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/24/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS) is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.
Collapse
|
28
|
Chen GL, Miller GM. Tryptophan hydroxylase-2: an emerging therapeutic target for stress disorders. Biochem Pharmacol 2013; 85:1227-33. [PMID: 23435356 DOI: 10.1016/j.bcp.2013.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/18/2022]
Abstract
Serotonin (5-HT) has been long recognized to modulate the stress response, and dysfunction of 5-HT has been implicated in numerous stress disorders. Accordingly, the 5-HT system has been targeted for the treatment of stress disorders. Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT synthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. With a decade of extensive investigation, it is now recognized that: (1) TPH2 exhibits a highly flexible gene expression that is modulated by an increasing number of internal and external environmental factors including the biological clock, stressors, endogenous hormones, and antidepressant therapies; and (2) genetically determined TPH2 activity is linked to a growing body of stress-related neuronal correlates and behavioral traits. These findings reveal an active role of TPH2 in the stress response and provide new insights into the long recognized but not yet fully understood 5-HT-stress interaction. As a major modulator of 5-HT neurotransmission and the stress response, TPH2 is of both pathophysiological and pharmacological significance, and is emerging as a new therapeutic target for the treatment of stress disorders. Given that numerous antidepressant therapies influence TPH2 gene expression, TPH2 is already inadvertently targeted for the treatment of stress disorders. With increased understanding of the regulation of TPH2 activity we can now purposely utilize TPH2 as a target to develop new or optimize current therapies, which are expected to greatly improve the prevention and treatment of a wide variety of stress disorders.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, One Pine Hill Drive, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|