1
|
Bennekou SH, Allende A, Bearth A, Casacuberta J, Castle L, Coja T, Crépet A, Halldorsson T, Hoogenboom L(R, Knutsen H, Koutsoumanis K, Lambré C, Nielsen S, Turck D, Civera AV, Villa R, Zorn H, Bampidis V, Castenmiller J, Chagnon M, Cottrill B, Darney K, Gropp J, Puente SL, Rose M, Vinceti M, Bastaki M, Gergelová P, Greco L, Innocenti ML, Janossy J, Lanzoni A, Terron A, Benford D. Risks to human and animal health from the presence of bromide in food and feed. EFSA J 2025; 23:e9121. [PMID: 39877303 PMCID: PMC11773346 DOI: 10.2903/j.efsa.2025.9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The European Commission mandated EFSA to assess the toxicity of bromide, the existing maximum residue levels (MRLs), and possible transfer from feed into food of animal origin. The critical effects of bromide in experimental animals are on the thyroid and central nervous system. Changes in thyroid hormone homeostasis could result in neurodevelopmental toxicity, among other adverse effects. Changes in thyroid hormone concentrations and neurophysiological parameters have also been observed in experimental human studies, but the evidence was limited. Dose-response modelling of decreased blood thyroxine concentrations in rats resulted in a reference point of 40 mg/kg body weight (bw) per day. The Scientific Committee established a tolerable daily intake (TDI) of 0.4 mg/kg bw per day and an acute reference dose (ARfD) of 0.4 mg/kg bw per day to protect against adverse neurodevelopmental effects. The TDI value is supported by the results of experimental human studies with a NOAEL of 4 mg/kg bw per day and 10-fold interindividual variability. The TDI and ARfD are considered as conservative with 90% certainty. Insufficient evidence related to the toxicological effects of bromide was available for animals, with the exception of dogs. Therefore, the reference point of 40 mg/kg bw per day was extrapolated to maximum safe concentrations of bromide in complete feed for other animal species. Bromide can transfer from feed to food of animal origin, but, from the limited data, it was not possible to quantify the transfer rate. Monitoring data exceeded the current MRLs for some food commodities, generally with a low frequency. A conservative safety screening of the MRLs indicated that the TDI and ARfD are exceeded for some EU diets. Dietary exposure assessment for animals was not feasible due to insufficient data. The Scientific Committee recommends data be generated to allow robust dietary exposure assessments in the future, and data that support the risk assessment.
Collapse
|
2
|
Alšauskė SV, Liseckienė I, Verkauskienė R. The Association of Thyroid Disease with Risk of Dementia and Cognitive Impairment: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1917. [PMID: 39768799 PMCID: PMC11679856 DOI: 10.3390/medicina60121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Cognitive impairment is defined as a reduced ability to perform one or more cognitive functions, potentially leading to dementia if the condition worsens. With dementia being a rapidly growing public health issue affecting approximately 50 million people worldwide, understanding modifiable risk factors such as thyroid disease is crucial for prevention and early diagnosis. Thyroid hormones play a vital role in brain development and functioning, impacting processes such as neuron growth, myelination, and neurotransmitter synthesis. Recent decades have seen thyroid disorders emerging as potential independent risk factors for reversible cognitive impairment. Materials and Methods: The review adheres to PRISMA guidelines, utilizing a structured PICO question to explore whether individuals with thyroid diseases have a higher risk of developing dementia and cognitive impairments compared to those without. The literature search was conducted in PubMed, Cochrane, and ScienceDirect databases, including studies published from 1 January 2019 to 31 December 2023. The literature review discusses nine selected articles. Results: The findings highlight a complex association between thyroid dysfunction and cognitive decline, with some studies indicating significant links, particularly with hypothyroidism, and others suggesting the relationship may depend on the specific type of thyroid dysfunction or cognitive domain affected. Six out of nine articles found a link between thyroid disease and cognitive impairment, while three articles refuted this link. Conclusions: The review reveals a complex and ambiguous relationship between thyroid dysfunction and cognitive impairment. Further research is needed to elucidate the mechanisms underlying these associations and to determine whether thyroid dysfunction may be a modifiable risk factor for dementia.
Collapse
Affiliation(s)
| | - Ida Liseckienė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Verkauskienė
- Endocrinology Clinic, Lithuanian University of Health Sciences, 50140 Kaunas, Lithuania
| |
Collapse
|
3
|
Wang X, Wu Z, Liu Y, Wu C, Jiang J, Hashimoto K, Zhou X. The role of thyroid-stimulating hormone in regulating lipid metabolism: Implications for body-brain communication. Neurobiol Dis 2024; 201:106658. [PMID: 39236910 DOI: 10.1016/j.nbd.2024.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Thyroid-stimulating hormone (TSH) is a pituitary hormone that stimulates the thyroid gland to produce and release thyroid hormones, primarily thyroxine and triiodothyronine. These hormones are key players in body-brain communication, influencing various physiological processes, including the regulation of metabolism (both peripheral and central effects), feedback mechanisms, and lipid metabolism. Recently, the increasing incidence of abnormal lipid metabolism has highlighted the link between thyroid function and lipid metabolism. Evidence suggests that TSH can affect all bodily systems through body-brain communication, playing a crucial role in growth, development, and the regulation of various physiological systems. Lipids serve dual purposes: they are involved in energy storage and metabolism, and they act as vital signaling molecules in numerous cellular activities, maintaining overall human health or contributing to various diseases. This article reviews the role of TSH in regulating lipid metabolism via body-brain crosstalk, focusing on its implications for common lipid metabolism disorders such as obesity, atherosclerosis, nonalcoholic fatty liver disease, neuropsychiatric disorders (including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and depression), and cerebrovascular disorders such as stroke.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhen Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Liu
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
4
|
Badini F, Mirshekar MA, Shahraki S, Fanaei H, Bayrami A. Neuroprotective effects of levothyroxine on cognition deficits and memory in an experimental model of Huntington's disease in rats: An electrophysiological study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5939-5951. [PMID: 38372755 DOI: 10.1007/s00210-024-03006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by cognitive deficits and motor function. Levothyroxine (L-T4) is a synthetic form of Thyroxine (T4), which can improve cognitive ability. The aim of the present study was to determine the neuroprotective effect of L-T4 administration in rats with 3-nitropropionic acid (3-NP)-induced Huntington's disease. Forty-eight Wistar male rats were divided into six groups (n = 8): Group 1 control group that received physiological saline, Group 2 and 3: which received L-T4 (30 and 100 μg/kg), Group 4: HD group that received 3-NP and Groups 5 and 6: The treatment of the HD rats with L-T4 (30 and 100 μg/kg). Spatial memory, locomotor activity, and frequency of neuronal firing were assessed. After decapitation, the Brain-Derived Neurotrophic Factor (BDNF) and Total antioxidant capacity (TAC) levels in the striatum was measured. The results showed that the indices of spatial memory (mean path length and latency time) and motor dysfunction (immobility time) significantly increased, while time spent in the goal quadrant, swimming speed, spike rate, and striatum levels of BDNF significantly decreased in the HD group compared to the control group. L-T4 treatment significantly enhanced time spent in the goal quadrant, swimming speed, motor activity (number of line crossing and rearing), spike rate and striatal BDNF level. This research showed that L-T4 prevented the disruption of motor activity and cognitive deficiencies induced by 3-NP. The beneficial effects of L-T4 may be due to an increase in the concentration of BDNF and enhancement of the spike rate in the striatum.
Collapse
Affiliation(s)
- Fereshteh Badini
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
5
|
Alkadhi KA. Synaptic Plasticity and Cognitive Ability in Experimental Adult-Onset Hypothyroidism. J Pharmacol Exp Ther 2024; 389:150-162. [PMID: 38508752 DOI: 10.1124/jpet.123.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Adult-onset hypothyroidism impairs normal brain function. Research on animal models of hypothyroidism has revealed critical information on how deficiency of thyroid hormones impacts the electrophysiological and molecular functions of the brain, which leads to the well known cognitive impairment in untreated hypothyroid patients. Currently, such information can only be obtained from experiments on animal models of hypothyroidism. This review summarizes important research findings that pertain to understanding the clinical cognitive consequences of hypothyroidism, which will provide a better guiding path for therapy of hypothyroidism. SIGNIFICANCE STATEMENT: Cognitive impairment occurs during adult-onset hypothyroidism in both humans and animal models. Findings from animal studies validate clinical findings showing impaired long-term potentiation, decreased CaMKII, and increased calcineurin. Such findings can only be gleaned from animal experiments to show how hypothyroidism produces clinical symptoms.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
6
|
Valcárcel-Hernández V, Mayerl S, Guadaño-Ferraz A, Remaud S. Thyroid hormone action in adult neurogliogenic niches: the known and unknown. Front Endocrinol (Lausanne) 2024; 15:1347802. [PMID: 38516412 PMCID: PMC10954857 DOI: 10.3389/fendo.2024.1347802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.
Collapse
Affiliation(s)
- Victor Valcárcel-Hernández
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
7
|
Jordan-Ward R, von Hippel FA, Wilson CA, Rodriguez Maldonado Z, Dillon D, Contreras E, Gardell A, Minicozzi MR, Titus T, Ungwiluk B, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Differential gene expression and developmental pathologies associated with persistent organic pollutants in sentinel fish in Troutman Lake, Sivuqaq, Alaska. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122765. [PMID: 37913975 PMCID: PMC11793931 DOI: 10.1016/j.envpol.2023.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Catherine A Wilson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Zyled Rodriguez Maldonado
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Elise Contreras
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Alison Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, USA
| | - Michael R Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN, 56001, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Bobby Ungwiluk
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
8
|
Valcárcel-Hernández V, Guillén-Yunta M, Bueno-Arribas M, Montero-Pedrazuela A, Grijota-Martínez C, Markossian S, García-Aldea Á, Flamant F, Bárez-López S, Guadaño-Ferraz A. A CRISPR/Cas9-engineered avatar mouse model of monocarboxylate transporter 8 deficiency displays distinct neurological alterations. Neurobiol Dis 2022; 174:105896. [DOI: 10.1016/j.nbd.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
9
|
Hashimoto Encephalopathy—Still More Questions than Answers. Cells 2022; 11:cells11182873. [PMID: 36139446 PMCID: PMC9496753 DOI: 10.3390/cells11182873] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
The normal function of the nervous system is conditioned by the undisturbed function of the thyroid gland and its hormones. Comprehensive clinical manifestations, including neurological disorders in Hashimoto’s thyroiditis, have long been understood and, in recent years, attention has been paid to neurological symptoms in euthyroid patients. Hashimoto encephalopathy is a controversial and poorly understood disease entity and the pathogenesis of the condition remains unclear. We still derive our understanding of this condition from case reports, but on the basis of these, a clear clinical picture of this entity can be proposed. Based on a review of the recent literature, the authors present the current view on the subject, discuss controversies and questions that still remain unanswered, as well as ongoing research in this area and the results of our own work in patients with Hashimoto’s thyroiditis.
Collapse
|
10
|
Chandra R, Singh S, Ganguly C. β-Sitosterol & quercetin enhances brain development in iodine deficient rat models. Nutr Health 2022:2601060221122209. [PMID: 36017551 DOI: 10.1177/02601060221122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recently thyroid hormone studies on brain growth, development and activity are regaining popularity. Thyroid hormones have long been believed to play critical role in mammalian brain growth and maturation regulating facets of neuronal cell growth, proliferation and differentiation and further signaling and glial cell differentiation. Deficiency of these hormones in mother leads to mental retardation in the subsequent offspring's. METHODS In this presented study, brain development of iodine deficient rat models created through deficiency in feeding, mating and further selection. Young adult female wistar rats were induced with iodine deficiency and then mated with healthy male rats. These pregnant hypothyroid induced females were treated with β-sitosterol (150 mg/kg/day) and quercetin (150 mg/kg/day) alone and in combination for whole gestation period. Analysis were dealt with the genetic and histological studies of the pups brain. PCR based RNA analysis was also carried out. Histology was done using eosin and hematoxylin. RESULTS Positive impacts of the β-sitosterol and quercetin on the iodine deficient brain were observed upon histological and PCR analysis. Altogether, the analysis proves that combined doses of β-sitosterol and quercetin for normal brain development in iodine deficient infants hence can be potentially applied as therapeutics in iodine deficiency circumstances.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Biotechnology, 231528IMS Engineering College, Ghaziabad, UP, India
| | - Sushant Singh
- Amity Institute of Biotechnology, 557953Amity University Chhattisgarh, Raipur, India
| | - Chaiti Ganguly
- Department of Biotechnology, 582893IILM-CET, Greater Noida, UP, India
| |
Collapse
|
11
|
Kim HK, Song J. Hypothyroidism and Diabetes-Related Dementia: Focused on Neuronal Dysfunction, Insulin Resistance, and Dyslipidemia. Int J Mol Sci 2022; 23:ijms23062982. [PMID: 35328405 PMCID: PMC8952212 DOI: 10.3390/ijms23062982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
The incidence of dementia is steadily increasing worldwide. The risk factors for dementia are diverse, and include genetic background, environmental factors, sex differences, and vascular abnormalities. Among the subtypes of dementia, diabetes-related dementia is emerging as a complex type of dementia related to metabolic imbalance, due to the increase in the number of patients with metabolic syndrome and dementia worldwide. Thyroid hormones are considered metabolic regulatory hormones and affect various diseases, such as liver failure, obesity, and dementia. Thyroid dysregulation affects various cellular mechanisms and is linked to multiple disease pathologies. In particular, hypothyroidism is considered a critical cause for various neurological problems-such as metabolic disease, depressive symptoms, and dementia-in the central nervous system. Recent studies have demonstrated the relationship between hypothyroidism and brain insulin resistance and dyslipidemia, leading to diabetes-related dementia. Therefore, we reviewed the relationship between hypothyroidism and diabetes-related dementia, with a focus on major features of diabetes-related dementia such as insulin resistance, neuronal dysfunction, and dyslipidemia.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 264 Seoyangro, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
12
|
Czarzasta K, Bogacki-Rychlik W, Segiet-Swiecicka A, Kruszewska J, Malik J, Skital V, Kasarello K, Wrzesien R, Bialy M, Sajdel-Sulkowska EM. Gender differences in short- vs. long-term impact of maternal depression following pre-gestational chronic mild stress. Exp Neurol 2022; 353:114059. [DOI: 10.1016/j.expneurol.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
|
13
|
Khaleghzadeh-Ahangar H, Talebi A, Mohseni-Moghaddam P. Thyroid Disorders and Development of Cognitive Impairment: A Review Study. Neuroendocrinology 2022; 112:835-844. [PMID: 34963121 DOI: 10.1159/000521650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Dementia is a neurological disorder that is spreading with increasing human lifespan. In this neurological disorder, memory and cognition are declined and eventually impaired. Various factors can be considered as the background of this disorder, one of which is endocrine disorders. Thyroid hormones are involved in various physiological processes in the body; one of the most important of them is neuromodulation. Thyroid disorders, including hyperthyroidism or hypothyroidism, can affect the nervous system and play a role in the development of dementia. Despite decades of investigation, the nature of the association between thyroid disorders and cognition remains a mystery. Given the enhancing global burden of dementia, the principal purpose of this study was to elucidate the association between thyroid disturbances as a potentially modifiable risk factor of cognitive dysfunction. In this review study, we have tried to collect almost all of the reported mechanisms demonstrating the role of hypothyroidism and hyperthyroidism in the pathogenesis of dementia.
Collapse
Affiliation(s)
- Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anis Talebi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Zhang M, Wang C, Zhang X, Song H, Li Y. Association between exposure to air pollutants and attention-deficit hyperactivity disorder (ADHD) in children: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:207-219. [PMID: 32248699 DOI: 10.1080/09603123.2020.1745764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent studies have reached mixed conclusions regarding the association between exposure to air pollutants and attention-deficit hyperactivity disorder (ADHD). We performed systematic review and meta-analysis to determine whether air pollutants were risk factors for the development of ADHD in children. We systematically searched databases for all relevant studies up to 2 July 2019. Together, the studies indicated that exposure to PAHs (risk ratio (RR): 0.98, 95% confidence interval (CI): 0.82-1.17), NOx (RR: 1.04, 95% CI: 0.94-1.15), and PM (RR: 1.11, 95% CI: 0.93-1.33) did not have any material relationship with an increased risk of ADHD. Heterogeneity of study data was low (I2: 2.7%, P = 0.409) for studies examining PAHs, but was substantial for NOx and PM (I2: 68.4%, P = 0.007 and I2: 60.1%, P = 0.014, respectively). However, these results should be interpreted with caution since the number of epidemiological studies investigating this issue were limited.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinxin Zhang
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huiling Song
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Rashidy-Pour A, Derafshpour L, Vafaei AA, Bandegi AR, Kashefi A, Sameni HR, Jashire-Nezhad N, Saboory E, Panahi Y. Effects of treadmill exercise and sex hormones on learning, memory and hippocampal brain-derived neurotrophic factor levels in transient congenital hypothyroid rats. Behav Pharmacol 2021; 31:641-651. [PMID: 32826427 DOI: 10.1097/fbp.0000000000000572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient thyroid function abnormalities at birth exhibit intellectual developmental and cognitive disorders in adulthood. Given the well-known effects of physical activity and sex hormones on cognitive functions and brain-derived neurotrophic factor (BDNF), the present study examined the effects of treadmill exercise, sex hormones, and the combined treatment on learning and memory and hippocampal BDNF levels in transient congenital hypothyroid rats. To induce hypothyroidism, 6-propyl-2-thiouracil was added to the drinking water from the 6th day of gestation to the 21st postnatal day (PND). From PNDs 28 to 47, female and male pup rats received 17β-estradiol and testosterone, respectively, and about 30 min later, they were forced to run on the treadmill for 30 min once a day. On PNDs 48-55, spatial learning and memory of all rats tested in the water maze, which followed by measurement of BDNF in the hippocampus. Results showed that developmental hypothyroidism induced significant deficits in spatial learning and memory and hippocampal BDNF in both male and female rats. In both male and female hypothyroid rats, exercise and exercise plus sex hormones, but not sex hormones alone alleviated learning and memory deficits and all treatments (exercise, sex hormones, and the combined treatment) increased hippocampal BDNF. These disconnects in the effects of exercise, sex hormones and the combined treatment on behavioral and neurochemical outcomes suggest that a neurochemical mechanism other than hippocampal BDNF might contribute in the ameliorating effects of exercise on learning and memory deficits induced by developmental thyroid hormone insufficiency.
Collapse
Affiliation(s)
- Ali Rashidy-Pour
- Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan
| | - Leila Derafshpour
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia
| | - Abbas Ali Vafaei
- Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan
| | - Ahmad Reza Bandegi
- Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan.,Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences
| | - Adel Kashefi
- Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan
| | - Hamid Reza Sameni
- Research Center of Nervous System Stem Cell, Semnan University of Medical sciences, Semnan
| | - Nahid Jashire-Nezhad
- Research Center of Nervous System Stem Cell, Semnan University of Medical sciences, Semnan
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia
| | - Yosef Panahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
16
|
Yajima H, Amano I, Ishii S, Sadakata T, Miyazaki W, Takatsuru Y, Koibuchi N. Absence of Thyroid Hormone Induced Delayed Dendritic Arborization in Mouse Primary Hippocampal Neurons Through Insufficient Expression of Brain-Derived Neurotrophic Factor. Front Endocrinol (Lausanne) 2021; 12:629100. [PMID: 33708176 PMCID: PMC7940752 DOI: 10.3389/fendo.2021.629100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Thyroid hormone (TH) plays important roles in the developing brain. TH deficiency in early life leads to severe developmental impairment in the hippocampus. However, the mechanisms of TH action in the developing hippocampus are still largely unknown. In this study, we generated 3,5,3'-tri-iodo-l-thyronine (T3)-free neuronal supplement, based on the composition of neuronal supplement 21 (NS21), to examine the effect of TH in the developing hippocampus using primary cultured neurons. Effects of TH on neurons were compared between cultures in this T3-free culture medium (-T3 group) and a medium in which T3 was added (+T3 group). Morphometric analysis and RT-qPCR were performed on 7, 10, and 14 days in vitro (DIV). On 10 DIV, a decreased dendrite arborization in -T3 group was observed. Such difference was not observed on 7 and 14 DIV. Brain-derived neurotrophic factor (Bdnf) mRNA levels also decreased significantly in -T3 group on 10 DIV. We then confirmed protein levels of phosphorylated neurotrophic tyrosine kinase type 2 (NTRK2, TRKB), which is a receptor for BDNF, on 10 DIV by immunocytochemistry and Western blot analysis. Phosphorylated NTRK2 levels significantly decreased in -T3 group compared to +T3 group on 10 DIV. Considering the role of BDNF on neurodevelopment, we examined its involvement by adding BDNF on 8 and 9 DIV. Addition of 10 ng/ml BDNF recovered the suppressed dendrite arborization induced by T3 deficiency on 10 DIV. We show that the lack of TH induces a developmental delay in primary hippocampal neurons, likely caused through a decreased Bdnf expression. Thus, BDNF may play a role in TH-regulated dendritogenesis.
Collapse
Affiliation(s)
- Hiroyuki Yajima
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Wataru Miyazaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Medicine, Johmoh Hospital, Maebashi, Japan
- Department of Nutrition and Health Sciences, Toyo University, Itakura, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
17
|
O'Shaughnessy KL, Gilbert ME. Thyroid disrupting chemicals and developmental neurotoxicity - New tools and approaches to evaluate hormone action. Mol Cell Endocrinol 2020; 518:110663. [PMID: 31760043 PMCID: PMC8270644 DOI: 10.1016/j.mce.2019.110663] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
Abstract
It is well documented that thyroid hormone (TH) action is critical for normal brain development and is mediated by both nuclear and extranuclear pathways. Given this dependence, the impact of environmental endocrine disrupting chemicals that interfere with thyroid signaling is a major concern with direct implications for children's health. However, identifying thyroid disrupting chemicals in vivo is primarily reliant on serum thyroxine (T4) measurements within greater developmental and reproductive toxicity assessments. These studies do not examine known TH-dependent phenotypes in parallel, which complicates chemical evaluation. Additionally, there exist no recommendations regarding what degree of serum T4 dysfunction is adverse, and little consideration is given to quantifying TH action within the developing brain. This review summarizes current testing strategies in rodent models and discusses new approaches for evaluating the developmental neurotoxicity of thyroid disrupting chemicals. This includes assays to identify adverse cellular effects of the brain by both immunohistochemistry and gene expression, which would compliment serum T4 measures. While additional experiments are needed to test the full utility of these approaches, incorporation of these cellular and molecular assays could enhance chemical evaluation in the regulatory arena.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| | - Mary E Gilbert
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
18
|
Abstract
Based on the analysis of literature, the authors describe the neuropathophysiological mechanism of the formation of synapses, synaptic transmission and plasticity, which may underlie the pathogenesis of autism. The results of some studies confirm the involvement of aberrant expression of genes and proteins of synaptic contacts, cell adhesion molecules p120ctn, CNTN5, CNTN6, activation of NMDA glutamate, TrkB, p75 receptors, Ca2+-input, BDNF, serotonin and testosterone. This leads to an imbalance in the exciting, inhibitory synaptic transmission and forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD) at the level of individual neurons and their chains due to suppression of GABA synthesis, expression of its ionotropic and metabotropic receptors, G proteins, NGF, TrkA receptors, a reduction in the number of GABAergic neurons, their contacts and disruption of differentiation. The pathology of the nuclei of the thalamus, especially the reticular nucleus (RN), is associated with a disturbance of the expression of the subunits of metabotropic GABAβ receptors, Ca2+ channels, GABA excretion and the work of chlorine transmitters. These failures do not ensure the inhibitory effect of OC on the exciting associative and ventral nuclei of the thalamus, nor modify the incoming information to the cerebral cortex (CC) from these thalamus nuclei, the dentate gyrus of the hippocampus and the nuclei of the reticular formation. Information propagating into the somatosensory and associative regions of CC is not modified by mirror neurons (MN) when performing arbitrary actions, which prevents the formation of an adequate image in the neural networks of the associative cortex and promotes the development of hyperexcitability, irritability, increased visual and auditory sensitivity, anxiety, and the ability to form a holistic image based on the actions of other people.
Collapse
Affiliation(s)
- A N Chernov
- Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia
| |
Collapse
|
19
|
Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Alters the Development of the Corpus Callosum in Rats. An in vivo Magnetic Resonance Image and Electron Microscopy Study. Front Neuroanat 2020; 14:33. [PMID: 32676012 PMCID: PMC7333461 DOI: 10.3389/fnana.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, UMH – Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| |
Collapse
|
20
|
Viguié C, Chaillou E, Gayrard V, Picard-Hagen N, Fowler PA. Toward a better understanding of the effects of endocrine disrupting compounds on health: Human-relevant case studies from sheep models. Mol Cell Endocrinol 2020; 505:110711. [PMID: 31954824 DOI: 10.1016/j.mce.2020.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
There are many challenges to overcome in order to properly understand both the exposure to, and effects of, endocrine disruptors (EDs). This is particularly true with respect to fetal life where ED exposures are a major issue requiring toxicokinetic studies of materno-fetal exchange and identification of pathophysiological consequences. The sheep, a large, monotocous, species, is very suitable for in utero fetal catheterization allowing a modelling approach predictive of human fetal exposure. Predicting adverse effects of EDs on human health is frequently impeded by the wide interspecies differences in the regulation of endocrine functions and their effects on biological processes. Because of its similarity to humans as regards gestational and thyroid physiologies and brain ontogeny, the sheep constitutes a highly appropriate model to move one step further on thyroid disruptor hazard assessment. As a grazing animal, the sheep has also proven to be useful in the evaluation of the consequences of chronic environmental exposure to "real-life" complex mixtures at different stages of the reproductive life cycle.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| | - Elodie Chaillou
- PRC, INRAE Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Véronique Gayrard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
21
|
Ramhøj L, Hass U, Gilbert ME, Wood C, Svingen T, Usai D, Vinggaard AM, Mandrup K, Axelstad M. Evaluating thyroid hormone disruption: investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Sci Rep 2020; 10:2672. [PMID: 32060323 PMCID: PMC7021709 DOI: 10.1038/s41598-020-59354-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormones are critical for mammalian brain development. Thus, chemicals that can affect thyroid hormone signaling during pregnancy are of great concern. Perfluorohexane sulfonate (PFHxS) is a widespread environmental contaminant found in human serum, breastmilk, and other tissues, capable of lowering serum thyroxine (T4) in rats. Here, we investigated its effects on the thyroid system and neurodevelopment following maternal exposure from early gestation through lactation (0.05, 5 or 25 mg/kg/day PFHxS), alone or in combination with a mixture of 12 environmentally relevant endocrine disrupting compounds (EDmix). PFHxS lowered thyroid hormone levels in both dams and offspring in a dose-dependent manner, but did not change TSH levels, weight, histology, or expression of marker genes of the thyroid gland. No evidence of thyroid hormone-mediated neurobehavioral disruption in offspring was observed. Since human brain development appear very sensitive to low T4 levels, we maintain that PFHxS is of potential concern to human health. It is our view that current rodent models are not sufficiently sensitive to detect adverse neurodevelopmental effects of maternal and perinatal hypothyroxinemia and that we need to develop more sensitive brain-based markers or measurable metrics of thyroid hormone-dependent perturbations in brain development.
Collapse
Affiliation(s)
- Louise Ramhøj
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Mary E Gilbert
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carmen Wood
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Diana Usai
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Karen Mandrup
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark.
| |
Collapse
|
22
|
Batistuzzo A, Ribeiro MO. Clinical and subclinical maternal hypothyroidism and their effects on neurodevelopment, behavior and cognition. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:89-95. [PMID: 32187263 PMCID: PMC10522279 DOI: 10.20945/2359-3997000000201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022]
Abstract
Clinical and subclinical hypothyroidism are the most common hormonal dysfunctions during pregnancy. Insufficient maternal thyroid hormones (THs) in the early stages of pregnancy can lead to severe impairments in the development of the central nervous system because THs are critical to central nervous system development. In the fetus and after birth, THs participate in neurogenic processes, cell differentiation, neuronal activation, axonal growth, dendritic arborization, synaptogenesis and myelination. Although treatment is simple and effective, approximately 30% of pregnant women in Brazil with access to prenatal care have their first consultation after the first trimester of pregnancy, and any delay in diagnosis and resulting treatment delay may lead to cognitive impairment in children. This review summarizes the effects of clinical and subclinical hypothyroidism on fetal neurodevelopment, behavior and cognition in humans and rodents. Arch Endocrinol Metab. 2020;64(1):89-95.
Collapse
Affiliation(s)
- Alice Batistuzzo
- Departamento de Pós-Graduação em Distúrbios do DesenvolvimentoCentro de Ciências Biológicas e da SaúdeUniversidade Presbiteriana MackenzieSão PauloSPBrasilDepartamento de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Presbiteriana Mackenzie (UPM), São Paulo, SP, Brasil
| | - Miriam Oliveira Ribeiro
- Departamento de Pós-Graduação em Distúrbios do DesenvolvimentoCentro de Ciências Biológicas e da SaúdeUniversidade Presbiteriana MackenzieSão PauloSPBrasilDepartamento de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Presbiteriana Mackenzie (UPM), São Paulo, SP, Brasil
| |
Collapse
|
23
|
Li D, Li Y, Chen Y, Li H, She Y, Zhang X, Chen S, Chen W, Qiu G, Huang H, Zhang S. Neuroprotection of reduced thyroid hormone with increased estrogen and progestogen in postpartum depression. Biosci Rep 2019; 39:BSR20182382. [PMID: 31406011 PMCID: PMC6722490 DOI: 10.1042/bsr20182382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/07/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Postpartum depression (PPD) is a common serious mental health problem. Recent studies have demonstrated that hormone therapy serves as a promising therapeutic approach in managing PPD. The present study aims at exploring the role of thyroid hormone (TH), estrogen and progestogen in patients with PPD.Methods: Initially, PPD patients were enrolled and a PPD mouse model was established. The serum levels of estradiol (E2), progesterone (P), triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) were subsequently measured. Next, in order to identify the effects of TH, estrogen and progestogen on PPD progression, mice were administrated with E2, P, contraceptives (CA), Euthyrox and methimazole (MMI). Besides, the body weight, activities, basolateral amygdala (BLA) neuron cell structure and the related gene expression of mice were analyzed.Results: The PPD patients and the mice showed elevated serum levels of T3, T4, FT3 and FT4 along with diminished E2, P and TSH levels. In the mice administered with a combination of E2, P, and MMI, decreased TH and increased estrogen and progestogen were detected, which resulted in increased body weight, normal activities, and BLA neuron cell structure. Moreover, brain-derived neurotrophic factor (BDNF) and cAMP-responsive element-binding protein (CREB) were both up-regulated in PPD mice administrated with a combination of E2, P, and MMI, which was accompanied by decreased TH and elevated estrogen and progestogen.Conclusion: Taken together, reduced TH combined with enhanced estrogen and progestogen confers neuroprotection in PPD, highlighting a potential target in prevention and treatment of PPD.
Collapse
Affiliation(s)
- Dan Li
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Yangyao Li
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital Affiliated of Ji-Nan University Medical College, Guangzhou 510220, P.R. China
| | - Haiyan Li
- Department of Nursing, Guangzhou Red Cross Hospital Affiliated of Ji-Nan University Medical College, Guangzhou 510220, P.R. China
| | - Yuqi She
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Xialan Zhang
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Shuang Chen
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Wanying Chen
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Guodong Qiu
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Haiqing Huang
- Department of Ultrasound, Cancer Hospital of Shantou University Medical College, Shantou 515031, P.R. China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital Affiliated of Ji-Nan University Medical College, Guangzhou 510220, P.R. China
| |
Collapse
|
24
|
Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, Dargahi L. Thyroid hormone treatment alleviates the impairments of neurogenesis, mitochondrial biogenesis and memory performance induced by methamphetamine. Neurotoxicology 2019; 74:7-18. [PMID: 31075280 DOI: 10.1016/j.neuro.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
Chronic use of methamphetamine (MA), a neurotoxic psychostimulant, leads to long-lasting cognitive dysfunctions in humans and animal models. Thyroid hormones (THs) have several physiological actions and are crucial for normal behavioral, intellectual and neurological development. Considering the importance of THs in the cognitive processes, the present study was designed to evaluate the therapeutic effects of THs on cognitive and neurological impairments induced by MA. Escalating doses of MA (1-10 mg/kg, IP) were injected twice daily for 10 consecutive days in rats and cognitive functions were evaluated using behavioral tests. The expression of factors involved in neurogenesis (NES and DCX), mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM), neuroinflammation (GFAP, Iba-1, and COX-2) as well as Reelin and NT-3 (synaptic plasticity and neurotrophic factor, respectively) was measured in the hippocampus of MA-treated animals. The effects of three different doses of T4 (20, 40 or 80 μg/kg; intraperitoneally) or T3 (20, 40 or 80 μg/rat; 2.5 μl/nostril; intranasal) treatment, once a day for one week after MA cessation, were assessed in MA-treated rats. After the last behavioral test, serum T4 and T3 levels were measured using radioimmunoassay. The results revealed that repeated escalating regimen of MA impaired cognitive functions concomitant with neurogenesis and synaptic plasticity impairments, mitochondrial dysfunction, and neuroinflammation. T4 or T3 treatment partially decreased the alterations induced by MA. These findings suggest that THs can be considered as potential candidates for the reduction of MA abuse related neurocognitive disturbances.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Seyedhosseini Tamijani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elmira Beirami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Hypothyroidism during pregnancy and its association to perinatal and obstetric morbidity: a review. ACTA ACUST UNITED AC 2019; 65:107-113. [PMID: 29396214 DOI: 10.1016/j.endinu.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
There is currently no consensus among the different scientific societies on screening for thyroid dysfunction in the first trimester of pregnancy. Indeed, diagnosis and treatment of subclinical hypothyroidism during pregnancy are controversial, as no cut-off value for thyrotropin (TSH) is universally accepted. TSH measurement may be influenced by different factors throughout pregnancy, but especially during the first trimester. The association between overt hypothyroidism during pregnancy and obstetric and perinatal complications is well established. It is also accepted that thyroid hormones are important for neurodevelopment of the offspring. However, there is no scientific evidence available about the impact of subclinical hypothyroidism and its treatment during the first trimester of pregnancy on children's neurodevelopment. In recent years, studies conducted in the offspring of mothers with subclinical hypothyroidism have reported new biochemical parameters which may eventually serve as biomarkers of offspring neurodevelopment and which are more reproducible and are measured at an earlier time than the conventional clinical tests.
Collapse
|
26
|
Jin M, Sheng W, Han L, He Q, Ji X, Liu K. Activation of BDNF-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 83:26-36. [PMID: 30195910 DOI: 10.1016/j.fsi.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Seizures are sustained neuronal hyperexcitability in brain that result in loss of consciousness and injury. Understanding how the brain responds to seizures is critical to help developing new therapeutic strategies for epilepsy, a neurological disorder characterized by recurrent and unprovoked seizures. However, the mechanisms underlying seizure-dependent alterations of biological properties are poorly understood. In this study, we analyzed gene expression profiles of the zebrafish heads that were undergoing seizures and identified 1776 differentially expressed genes. Gene-regulatory network analysis revealed that BDNF-TrkB signaling pathway positively regulated brain inflammation in zebrafish during seizures. Using K252a, a TrkB inhibitor to block BDNF-TrkB signaling pathway, attenuated pentylenetetrazole (PTZ)-induced seizures, which also confirmed BDNF-TrkB mediated inflammatory responses including regulation of il1β and nfκb, and neutrophil and macrophage infiltration of brain. Our results have provided novel insights into seizure-induced brain inflammation in zebrafish and anti-inflammatory related therapy for epilepsy.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|
27
|
Oliveira KJ, Chiamolera MI, Giannocco G, Pazos-Moura CC, Ortiga-Carvalho TM. Thyroid Function Disruptors: from nature to chemicals. J Mol Endocrinol 2018; 62:JME-18-0081. [PMID: 30006341 DOI: 10.1530/jme-18-0081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
The modern concept of thyroid disruptors includes man-made chemicals and bioactive compounds from food that interfere with any aspect of the hypothalamus-pituitary-thyroid axis, thyroid hormone biosynthesis and secretion, blood and transmembrane transport, metabolism and local action of thyroid hormones. This review highlights relevant disruptors that effect populations through their diet: directly from food itself (fish oil and polyunsaturated fatty acids, pepper, coffee, cinnamon and resveratrol/grapes), through vegetable cultivation (pesticides) and from containers for food storage and cooking (bisphenol A, phthalates and polybrominated diphenyl ethers). Due to the vital role of thyroid hormones during every stage of life, we review effects from the gestational period through to adulthood, including evidence from in vitro studies, rodent models, human trials and epidemiological studies.
Collapse
Affiliation(s)
- Karen J Oliveira
- K Oliveira, Laboratório de Fisiologia Endócrina e Metabologia, Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | - Maria Izabel Chiamolera
- M Chiamolera, Endocrinology, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Gisele Giannocco
- G Giannocco, Laboratório de Endocrinologia Molecular e Translacional, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Carmen Cabanelas Pazos-Moura
- C Pazos-Moura, Laboratório de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- T Ortiga-Carvalho, Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Amano I, Takatsuru Y, Khairinisa MA, Kokubo M, Haijima A, Koibuchi N. Effects of Mild Perinatal Hypothyroidism on Cognitive Function of Adult Male Offspring. Endocrinology 2018. [PMID: 29522169 DOI: 10.1210/en.2017-03125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mild perinatal hypothyroidism may result from inadequate iodine intake, insufficient treatment of congenital hypothyroidism, or exposure to endocrine-disrupting chemicals. Because thyroid hormones are critical for brain development, severe hypothyroidism that is untreated in infancy causes irreversible cretinism. Milder hypothyroidism may also affect cognitive development; however, the effects of mild and/or moderate hypothyroidism on brain development are not fully understood. In this study, we examined the behavior of adult male mice rendered mildly hypothyroid during the perinatal period using low-dose propylthiouracil (PTU). PTU was administered through drinking water (5 or 50 ppm) from gestational day 14 to postnatal day 21. Cognitive performance, studied by an object in-location test (OLT), was impaired in PTU-treated mice at postnatal week 8. These results suggest that, although the hypothyroidism was mild, it partially impaired cognitive function. We next measured the concentration of neurotransmitters (glutamate, γ-aminobutyric acid, and glycine) in the hippocampus using in vivo microdialysis during OLT. The concentrations of neurotransmitters, particularly glutamate and glycine, decreased in PTU-treated mice. The expression levels of N-methyl-d-aspartate receptor subunits, which are profound regulators of glutamate neurotransmission and memory function, also were decreased in PTU-treated mice. These data indicate that mild perinatal hypothyroidism causes cognitive disorders in adult offspring. Such disorders may be partially induced secondary to decreased concentrations of neurotransmitters and receptor expression.
Collapse
Affiliation(s)
- Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Miski Aghnia Khairinisa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Michifumi Kokubo
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
29
|
Myhre O, Låg M, Villanger GD, Oftedal B, Øvrevik J, Holme JA, Aase H, Paulsen RE, Bal-Price A, Dirven H. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicol Appl Pharmacol 2018; 354:196-214. [PMID: 29550511 DOI: 10.1016/j.taap.2018.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM. Epidemiological studies suggest associations between pre- or postnatal exposure to air pollution components and ADHD symptoms. However, many studies are cross-sectional without possibility to reveal causality. Cohort studies are often small with poor exposure characterization, and confounded by traffic noise and socioeconomic factors, possibly overestimating the study associations. Furthermore, the mechanistic knowledge how exposure to PM during early brain development may contribute to increased risk of ADHD symptoms or cognitive deficits is limited. The closure of this knowledge gap requires the combined use of well-designed longitudinal cohort studies, supported by mechanistic in vitro studies. As ADHD has profound consequences for the children affected and their families, the identification of preventable risk factors such as air pollution exposure should be of high priority.
Collapse
Affiliation(s)
- Oddvar Myhre
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marit Låg
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Gro D Villanger
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Bente Oftedal
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy
| | - Hubert Dirven
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
30
|
Kawahori K, Hashimoto K, Yuan X, Tsujimoto K, Hanzawa N, Hamaguchi M, Kase S, Fujita K, Tagawa K, Okazawa H, Nakajima Y, Shibusawa N, Yamada M, Ogawa Y. Mild Maternal Hypothyroxinemia During Pregnancy Induces Persistent DNA Hypermethylation in the Hippocampal Brain-Derived Neurotrophic Factor Gene in Mouse Offspring. Thyroid 2018; 28:395-406. [PMID: 29415629 DOI: 10.1089/thy.2017.0331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Thyroid hormones are essential for normal development of the central nervous system (CNS). Experimental rodents have shown that even a subtle thyroid hormone insufficiency in circulating maternal thyroid hormones during pregnancy may adversely affect neurodevelopment in offspring, resulting in irreversible cognitive deficits. This may be due to the persistent reduced expression of the hippocampal brain-derived neurotrophic factor gene Bdnf, which plays a crucial role in CNS development. However, the underlying molecular mechanisms remain unclear. METHODS Thiamazole (MMI; 0.025% [w/v]) was administered to dams from two weeks prior to conception until delivery, which succeeded in inducing mild maternal hypothyroxinemia during pregnancy. Serum thyroid hormone and thyrotropin levels of the offspring derived from dams with mild maternal hypothyroxinemia (M offspring) and the control offspring (C offspring) were measured. At 70 days after birth, several behavior tests were performed on the offspring. Gene expression and DNA methylation status were also evaluated in the promoter region of Bdnf exon IV, which is largely responsible for neural activity-dependent Bdnf gene expression, in the hippocampus of the offspring at day 28 and day 70. RESULTS No significant differences in serum thyroid hormone or thyrotropin levels were found between M and C offspring at day 28 and day 70. M offspring showed an impaired learning capacity in the behavior tests. Hippocampal steady-state Bdnf exon IV expression was significantly weaker in M offspring than it was in C offspring at day 28. At day 70, hippocampal Bdnf exon IV expression at the basal level was comparable between M and C offspring. However, it was significantly weaker in M offspring than in C offspring after the behavior tests. Persistent DNA hypermethylation was also found in the promoter region of Bdnf exon IV in the hippocampus of M offspring compared to that of C offspring, which may cause the attenuation of Bdnf exon IV expression in M offspring. CONCLUSIONS Mild maternal hypothyroxinemia induces persistent DNA hypermethylation in Bdnf exon IV in offspring as epigenetic memory, which may result in long-term cognitive disorders.
Collapse
Affiliation(s)
- Kenichi Kawahori
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Koshi Hashimoto
- 2 Department of Preemptive Medicine and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Xunmei Yuan
- 3 Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kazutaka Tsujimoto
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Nozomi Hanzawa
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Miho Hamaguchi
- 3 Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Saori Kase
- 1 Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kyota Fujita
- 4 Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University , Tokyo, Japan
| | - Kazuhiko Tagawa
- 4 Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University , Tokyo, Japan
| | - Hitoshi Okazawa
- 4 Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University , Tokyo, Japan
| | - Yasuyo Nakajima
- 5 Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine , Gunma, Japan
| | - Nobuyuki Shibusawa
- 5 Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine , Gunma, Japan
| | - Masanobu Yamada
- 5 Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine , Gunma, Japan
| | - Yoshihiro Ogawa
- 3 Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
- 6 Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
- 7 Japan Agency for Medical Research and Development , CREST, Tokyo, Japan
| |
Collapse
|
31
|
Hypothyroidism during pregnancy and its association to perinatal and obstetric morbidity: a review. ENDOCRINOLOGÍA, DIABETES Y NUTRICIÓN (ENGLISH ED.) 2018. [DOI: 10.1016/j.endien.2017.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Barakat-Walter I, Kraftsik R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy. Neural Regen Res 2018; 13:599-608. [PMID: 29722302 PMCID: PMC5950660 DOI: 10.4103/1673-5374.230274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.
Collapse
Affiliation(s)
- I Barakat-Walter
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - R Kraftsik
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Prieto-Almeida F, Panveloski-Costa AC, Crunfli F, da Silva Teixeira S, Nunes MT, Torrão ADS. Thyroid hormone improves insulin signaling and reduces the activation of neurodegenerative pathway in the hippocampus of diabetic adult male rats. Life Sci 2018; 192:253-258. [DOI: 10.1016/j.lfs.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
|
34
|
Fetene DM, Betts KS, Alati R. MECHANISMS IN ENDOCRINOLOGY: Maternal thyroid dysfunction during pregnancy and behavioural and psychiatric disorders of children: a systematic review. Eur J Endocrinol 2017; 177:R261-R273. [PMID: 28982961 DOI: 10.1530/eje-16-0860] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/09/2017] [Accepted: 07/04/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Maternal thyroid dysfunction during pregnancy may lead to persistent neurodevelopmental disorders in the offspring appearing in later life. This study aimed to review the available evidence concerning the relationship between maternal thyroid status during pregnancy and offspring behavioural and psychiatric disorders. METHODS Systematic electronic database searches were conducted using PubMed, Embase, PsycNET, Scopus, Google Scholar and Cochrane library. Studies including gestational thyroid dysfunction as the exposure and offspring behavioural and psychiatric disorders as the outcome were included. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed and, after thorough screening by two independent reviewers, 13 articles remained eligible for inclusion in this study. RESULTS Indicators of maternal thyroid dysfunction, including low and high thyroid hormone level and autoimmune thyroiditis, during early pregnancy, were found to be associated with several offspring behavioural and psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), autism, pervasive developmental problems, externalising behaviour, in addition to epilepsy and seizure. The majority of associations were found with low maternal thyroid hormone level. CONCLUSION Maternal thyroid function during pregnancy, particularly hypothyroidism, is associated with behavioural and psychiatric disorders in children. Further studies are needed with a capacity to adjust for a fuller range of confounding factors.
Collapse
Affiliation(s)
- Dagnachew Muluye Fetene
- School of Public Health, University of Queensland, Brisbane, Australia
- College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Kim S Betts
- Institute for Social Science Research, University of Queensland, Brisbane, Australia
| | - Rosa Alati
- Institute for Social Science Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Raymaekers SR, Darras VM. Thyroid hormones and learning-associated neuroplasticity. Gen Comp Endocrinol 2017; 247:26-33. [PMID: 28390960 DOI: 10.1016/j.ygcen.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Thyroid hormones (THs) are crucial for brain development and maturation in all vertebrates. Especially during pre- and perinatal development, disruption of TH signaling leads to a multitude of neurological deficits. Many animal models provided insight in the role of THs in brain development, but specific data on how they affect the brain's ability to learn and adapt depending on environmental stimuli are rather limited. In this review, we focus on a number of learning processes like spatial learning, fear conditioning, vocal learning and imprinting behavior and on how abnormal TH signaling during development shapes subsequent performance. It is clear from multiple studies that TH deprivation leads to defects in learning on all fronts, and interestingly, changes in local expression of the TH activator deiodinase type 2 seem to have an important role. Taking into account that THs are regulated in a very space-specific manner, there is thus increasing pressure to investigate more local TH regulators as potential factors involved in neuroplasticity. As these learning processes are also important for proper adult human functioning, further elucidating the role of THs in developmental neuroplasticity in various animal models is an important field for advancing both fundamental and applied knowledge on human brain function.
Collapse
Affiliation(s)
- Sander R Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Strobl MTJ, Freeman D, Patel J, Poulsen R, Wendler CC, Rivkees SA, Coleman JE. Opposing Effects of Maternal Hypo- and Hyperthyroidism on the Stability of Thalamocortical Synapses in the Visual Cortex of Adult Offspring. Cereb Cortex 2017; 27:3015-3027. [PMID: 27235101 PMCID: PMC6059113 DOI: 10.1093/cercor/bhw096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing.
Collapse
Affiliation(s)
- Marie-Therese J. Strobl
- Department of Pediatrics, Child Health Research Institute,University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Nuclear Medicine, University Medical Center, University RWTH Aachen, 52074 Aachen, Germany
| | - Daniel Freeman
- Department of Pediatrics, Child Health Research Institute,University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jenica Patel
- Department of Pediatrics, Child Health Research Institute,University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ryan Poulsen
- Department of Pediatrics, Child Health Research Institute,University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christopher C. Wendler
- Department of Pediatrics, Child Health Research Institute,University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Scott A. Rivkees
- Department of Pediatrics, Child Health Research Institute,University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jason E. Coleman
- Department of Pediatrics, Child Health Research Institute,University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
Raymaekers SR, Verbeure W, Ter Haar SM, Cornil CA, Balthazart J, Darras VM. A dynamic, sex-specific expression pattern of genes regulating thyroid hormone action in the developing zebra finch song control system. Gen Comp Endocrinol 2017; 240:91-102. [PMID: 27693816 DOI: 10.1016/j.ygcen.2016.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 01/19/2023]
Abstract
The zebra finch (Taeniopygia guttata) song control system consists of several series of interconnected brain nuclei that undergo marked changes during ontogeny and sexual development, making it an excellent model to study developmental neuroplasticity. Despite the demonstrated influence of hormones such as sex steroids on this phenomenon, thyroid hormones (THs) - an important factor in neural development and maturation - have not been studied in this regard. We used in situ hybridization to compare the expression of TH transporters, deiodinases and receptors between both sexes during all phases of song development in male zebra finch. Comparisons were made in four song control nuclei: Area X, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), HVC (used as proper name) and the robust nucleus of the arcopallium (RA). Most genes regulating TH action are expressed in these four nuclei at early stages of development. However, while general expression levels decrease with age, the activating enzyme deiodinase type 2 remains highly expressed in Area X, HVC and RA in males, but not in females, until 90days post-hatch (dph), which marks the end of sensorimotor learning. Furthermore, the L-type amino acid transporter 1 and TH receptor beta show elevated expression in male HVC and RA respectively compared to surrounding tissue until adulthood. Differences compared to surrounding tissue and between sexes for the other TH regulators were minor. These developmental changes are accompanied by a strong local increase in vascularization in the male RA between 20 and 30dph but not in Area X or HVC. Our results suggest that local regulation of TH signaling is an important factor in the development of the song control nuclei during the song learning phase and that TH activation by DIO2 is a key player in this process.
Collapse
Affiliation(s)
- Sander R Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamestraat 61, 3000 Leuven, Belgium
| | - Wout Verbeure
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamestraat 61, 3000 Leuven, Belgium
| | - Sita M Ter Haar
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, ULg, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Charlotte A Cornil
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, ULg, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, ULg, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamestraat 61, 3000 Leuven, Belgium.
| |
Collapse
|
38
|
Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights. Gene 2016; 586:77-86. [PMID: 27050105 DOI: 10.1016/j.gene.2016.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023]
Abstract
Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen Brain Atlas mouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networks were learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations in mouse whole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, and Syn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.
Collapse
|
39
|
da Conceição RR, Laureano-Melo R, Oliveira KC, de Carvalho Melo MC, Kasamatsu TS, de Barros Maciel RM, de Souza JS, Giannocco G. Antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism. Physiol Behav 2016; 157:158-64. [PMID: 26861177 DOI: 10.1016/j.physbeh.2016.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
Thyroidectomy is a surgical procedure indicated in cases of several maligned or benign thyroid diseases, thus, the aim of our study was to verify how the hypothyroidism induced by thyroidectomy influences behavioral parameters and its relation to thyroid hormones metabolism and neurogenesis at hippocampus. For this purpose, Adult male Wistar rats underwent to thyroidectomy to induce hypothyroidism. Behavioral tests, the thyroid profile and hippocampal gene expression were evaluated in control and in thyroidectomized animals. It was observed that thyroidectomized group had a significant increasing in serum thyroid-stimulating hormone (TSH) and a decreasing in thyroxine (T4) levels as well as in triiodothyronine (T3) serum level. It was also observed reduction of the monocarboxylate transporter 8 (Mct8), thyroid hormone receptor alfa (Trα1), deiodinase type 2 (Dio2), ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2) and brain-derived neurotrophic factor (Bdnf) mRNA expression in hippocampus of thyroidectomized animals. In the forced swimming test, it was verified that thyroidectomy promotes a decrease in time of immobility and climbing when compared with the control group. In summary, we demonstrated that antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism. This effect could be associated to an impaired neuronal activity in acute stress response as it is observed in forced swimming paradigm.
Collapse
Affiliation(s)
- Rodrigo Rodrigues da Conceição
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roberto Laureano-Melo
- Departamento de Tecnologia de Alimentos, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Kelen Carneiro Oliveira
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Clara de Carvalho Melo
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Tereza Sayoko Kasamatsu
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rui Monteiro de Barros Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Janaina Sena de Souza
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gisele Giannocco
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
40
|
Gilbert ME, Sanchez-Huerta K, Wood C. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats. Endocrinology 2016; 157:774-87. [PMID: 26606422 DOI: 10.1210/en.2015-1643] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe thyroid hormone (TH) deficiency during critical phases of brain development results in irreversible neurological and cognitive impairments. The mechanisms accounting for this are likely multifactorial, and are not fully understood. Here we pursue the possibility that one important element is that TH affects basal and activity-dependent neurotrophin expression in brain regions important for neural processing. Graded exposure to propylthiouracil (PTU) during development produced dose-dependent reductions in mRNA expression of nerve growth factor (Ngf) in whole hippocampus of neonates. These changes in basal expression persisted to adulthood despite the return to euthyroid conditions in blood. In contrast to small PTU-induced reductions in basal expression of several genes, developmental PTU treatment dramatically reduced the activity-dependent expression of neurotrophins and related genes (Bdnft, Bdnfiv, Arc, and Klf9) in adulthood and was accompanied by deficits in hippocampal-based learning. These data demonstrate that mild TH insufficiency during development not only reduces expression of important neurotrophins that persists into adulthood but also severely restricts the activity-dependent induction of these genes. Considering the importance of these neurotrophins for sculpting the structural and functional synaptic architecture in the developing and the mature brain, it is likely that TH-mediated deficits in these plasticity mechanisms contribute to the cognitive deficiencies that accompany developmental TH compromise.
Collapse
Affiliation(s)
- M E Gilbert
- Toxicity Assessment Division (M.E.G., C.W.), National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709; Departamento de Fisiología "Mauricio Russek" (K.S.-H.), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico 07738
| | - K Sanchez-Huerta
- Toxicity Assessment Division (M.E.G., C.W.), National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709; Departamento de Fisiología "Mauricio Russek" (K.S.-H.), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico 07738
| | - C Wood
- Toxicity Assessment Division (M.E.G., C.W.), National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709; Departamento de Fisiología "Mauricio Russek" (K.S.-H.), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico 07738
| |
Collapse
|
41
|
Kersseboom S, Horn S, Visser WE, Chen J, Friesema ECH, Vaurs-Barrière C, Peeters RP, Heuer H, Visser TJ. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol 2015; 28:1961-70. [PMID: 25389909 DOI: 10.1210/me.2014-1135] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Monocarboxylate transporter 8 (MCT8) transports thyroid hormone (TH) across the plasma membrane. Mutations in MCT8 result in the Allan-Herndon-Dudley syndrome, comprising severe psychomotor retardation and elevated serum T3 levels. Because the neurological symptoms are most likely caused by a lack of TH transport into the central nervous system, the administration of a TH analog that does not require MCT8 for cellular uptake may represent a therapeutic strategy. Here, we investigated the therapeutic potential of the biologically active T3 metabolite Triac (TA3) by studying TA3 transport, metabolism, and action both in vitro and in vivo. Incubation of SH-SY5Y neuroblastoma cells and MO3.13 oligodendrocytes with labeled substrates showed a time-dependent uptake of T3 and TA3. In intact SH-SY5Y cells, both T3 and TA3 were degraded by endogenous type 3 deiodinase, and they influenced gene expression to a similar extent. Fibroblasts from MCT8 patients showed an impaired T3 uptake compared with controls, whereas TA3 uptake was similar in patient and control fibroblasts. In transfected cells, TA3 did not show significant transport by MCT8. Most importantly, treatment of athyroid Pax8-knockout mice and Mct8/Oatp1c1-double knockout mice between postnatal days 1 and 12 with TA3 restored T3-dependent neural differentiation in the cerebral and cerebellar cortex, indicating that TA3 can replace T3 in promoting brain development. In conclusion, we demonstrated uptake of TA3 in neuronal cells and in fibroblasts of MCT8 patients and similar gene responses to T3 and TA3. This indicates that TA3 bypasses MCT8 and may be used to improve the neural status of MCT8 patients.
Collapse
Affiliation(s)
- Simone Kersseboom
- Department of Internal Medicine (S.K., W.E.V., E.C.H.F., R.P.P., T.J.V.) and Rotterdam Thyroid Center (S.K., W.E.V., R.P.P., T.J.V.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Leibniz Institute for Age Research/Fritz Lipmann Institute (S.H., J.C., H.H.), Jena, Germany; Inserm (C.V.-B.), Unité Mixte de Recherche (UMR) 1103, and Centre National de la Recherche Scientifique (C.V.-B.), UMR6293, F-63001 Clermont-Ferrand, France; Clermont Université (C.V.-B.), Université d'Auvergne, Laboratoire GReD, BP 10448, F-63000 Clermont-Ferrand, France; and Leibniz Research Institute for Environmental Medicine (J.C., H.H.), Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tamijani SMS, Karimi B, Amini E, Golpich M, Dargahi L, Ali RA, Ibrahim NM, Mohamed Z, Ghasemi R, Ahmadiani A. Thyroid hormones: Possible roles in epilepsy pathology. Seizure 2015; 31:155-64. [PMID: 26362394 DOI: 10.1016/j.seizure.2015.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here.
Collapse
Affiliation(s)
| | - Benyamin Karimi
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raymond Azman Ali
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Saenen ND, Plusquin M, Bijnens E, Janssen BG, Gyselaers W, Cox B, Fierens F, Molenberghs G, Penders J, Vrijens K, De Boever P, Nawrot TS. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:834-40. [PMID: 25816123 PMCID: PMC4529006 DOI: 10.1289/ehp.1408549] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Developmental processes in the placenta and the fetal brain are shaped by the same biological signals. Recent evidence suggests that adaptive responses of the placenta to the maternal environment may influence central nervous system development. OBJECTIVES We studied the association between in utero exposure to fine particle air pollution with a diameter ≤ 2.5 μm (PM2.5) and placental expression of genes implicated in neural development. METHODS Expression of 10 target genes in the brain-derived neurotrophic factor (BDNF) signaling pathway were quantified in placental tissue of 90 mother-infant pairs from the ENVIRONAGE birth cohort using quantitative real-time polymerase chain reaction. Trimester-specific PM2.5 exposure levels were estimated for each mother's home address using a spatiotemporal model. Mixed-effects models were used to evaluate the association between the target genes and PM2.5 exposure measured in different time windows of pregnancy. RESULTS A 5-μg/m3 increase in residential PM2.5 exposure during the first trimester of pregnancy was associated with a 15.9% decrease [95% confidence interval (CI): -28.7, -3.2%, p = 0.015] in expression of placental BDNF at birth. The corresponding estimate for synapsin 1 (SYN1) was a 24.3% decrease (95% CI: -42.8, -5.8%, p = 0.011). CONCLUSIONS Placental expression of BDNF and SYN1, two genes implicated in normal neurodevelopmental trajectories, decreased with increasing in utero exposure to PM2.5. Future studies are needed to confirm our findings and evaluate the potential relevance of associations between PM2.5 and placental expression of BDNF and SYN1 on neurodevelopment. We provide the first molecular epidemiological evidence concerning associations between in utero fine particle air pollution exposure and the expression of genes that may influence neurodevelopmental processes.
Collapse
Affiliation(s)
- Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Limburg, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J, Berbel P. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 2015; 9:9. [PMID: 25741243 PMCID: PMC4330898 DOI: 10.3389/fnana.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.
Collapse
Affiliation(s)
- Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Mayvi Alvarado
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
- Instituto de Neuroetología, Universidad VeracruzanaXalapa, Veracruz, México
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Manuel Giner
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Maria Jesus Obregon
- Instituto de investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| |
Collapse
|
45
|
Baek JH, Kang ES, Fava M, Mischoulon D, Nierenberg AA, Lee D, Heo JY, Jeon HJ. Thyroid stimulating hormone and serum, plasma, and platelet brain-derived neurotrophic factor during a 3-month follow-up in patients with major depressive disorder. J Affect Disord 2014; 169:112-7. [PMID: 25189990 DOI: 10.1016/j.jad.2014.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/24/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. METHODS We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. RESULTS Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. LIMITATIONS TSH was only measured at baseline. CONCLUSIONS Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD.
Collapse
Affiliation(s)
- Ji Hyun Baek
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Bipolar Clinic and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Eun-Suk Kang
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Andrew A Nierenberg
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Bipolar Clinic and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Dongsoo Lee
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Yoon Heo
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, Republic of Korea; Bipolar Clinic and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
46
|
Berbel P, Navarro D, Román GC. An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism. Front Endocrinol (Lausanne) 2014; 5:146. [PMID: 25250016 PMCID: PMC4158880 DOI: 10.3389/fendo.2014.00146] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction.
Collapse
Affiliation(s)
- Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Gustavo C. Román
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Methodist Neurological Institute, Houston, TX, USA
| |
Collapse
|
47
|
Buxbaum JN, Roberts AJ, Adame A, Masliah E. Silencing of murine transthyretin and retinol binding protein genes has distinct and shared behavioral and neuropathologic effects. Neuroscience 2014; 275:352-64. [PMID: 24956283 DOI: 10.1016/j.neuroscience.2014.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/03/2023]
Abstract
The murine genes encoding transthyretin (TTR) and retinol binding protein (RBP) were independently silenced by targeted disruption more than 10 years ago. Studies of both strains showed surprisingly little impact on either thyroid function or retinoid metabolism. Silencing TTR led to a relatively mild behavioral phenotype. In order to gain insight into the behavioral effect and determine if it was related to TTR's function as the carrier of RBP we carried out simultaneous studies with homozygous Rbp4(-/-) and Ttr(-/-) animals 4-7 months of age. Both strains showed behavioral differences relative to Ttr and Rbp4 wild-type animals and each other. The patterns were discrete for each knockout although there was some overlap. Neuropathologic examination of the cortex and hippocampus revealed cortical and hippocampal (CA3) neuronal loss in both and some degree of gliosis, more pronounced in the Rbp4(-/-) mice. There also appeared to be a major reduction in proliferating neuroblasts in the subventricular zone in both strains, which was also more severe in the Rbp4(-/-) mice. This is the first description of behavioral abnormalities in Rbp4(-/-)mice. The data also indicate that it is unlikely that the behaviors seen in Ttr(-/-) mice are related to its function as an RBP carrier.
Collapse
Affiliation(s)
- J N Buxbaum
- The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 230, La Jolla, CA 92037, USA.
| | - A J Roberts
- The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 230, La Jolla, CA 92037, USA.
| | - A Adame
- University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - E Masliah
- University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Gilbert ME, Ramos RL, McCloskey DP, Goodman JH. Subcortical band heterotopia in rat offspring following maternal hypothyroxinaemia: structural and functional characteristics. J Neuroendocrinol 2014; 26:528-41. [PMID: 24889016 DOI: 10.1111/jne.12169] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 05/28/2014] [Indexed: 01/22/2023]
Abstract
Thyroid hormones (TH) play crucial roles in brain maturation and are important for neuronal migration and neocortical lamination. Subcortical band heterotopia (SBH) represent a class of neuronal migration errors in humans that are often associated with childhood epilepsy. We have previously reported the presence of SBH in a rodent model of low level hypothyroidism induced by maternal exposure to the goitrogen, propylthiouracil (PTU). In the present study, we report the dose-response characteristics of this developmental malformation and the connectivity of heterotopic neurones with other brain regions, as well as their functionality. Pregnant rats were exposed to varying concentrations of PTU through the drinking water (0-10 p.p.m.) beginning on gestational day 6 to produce graded levels of TH insufficiency. Dose-dependent increases in the volume of the SBH present in the corpus callosum were documented in the adult offspring, with a clear presence at concentrations of PTU that resulted in minor (< 15%) reductions in maternal serum thyroxine as measured when pups were weaned. SBH contain neurones, oligodendrocytes, astrocytes and microglia. Monoaminergic and cholinergic processes were prevalent and many of the axons were myelinated. Anatomical connectivity of SBH neurones to cortical neurones and the synaptic functionality of these anatomical connections was verified by ex vivo field potential recordings. SBH persisted in adult offspring despite a return to euthyroid status on termination of exposure and these offspring displayed an increased sensitivity to seizures. Features of this model are attractive with respect to the investigation of the molecular mechanisms of cortical development, the effectiveness of therapeutic intervention in hypothyroxinaemia during pregnancy and the impact of the very modest TH imbalance that accompanies exposure to environmental contaminants.
Collapse
Affiliation(s)
- M E Gilbert
- Toxicity Assessment Division, Neurotoxicology Branch, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
From R, Eilam R, Bar-Lev DD, Levin-Zaidman S, Tsoory M, LoPresti P, Sela M, Arnon R, Aharoni R. Oligodendrogenesis and myelinogenesis during postnatal development effect of glatiramer acetate. Glia 2014; 62:649-65. [PMID: 24481644 DOI: 10.1002/glia.22632] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/29/2013] [Accepted: 01/06/2014] [Indexed: 01/28/2023]
Abstract
Myelinogenesis in the mammal nervous system occurs predominantly postnatally. Glatiramer acetate (GA), a drug for the treatment for multiple sclerosis (MS), has been shown to induce immunomodulation and neuroprotection in the inflamed CNS in MS and in experimental autoimmune encephalomyelitis (EAE). Here we investigated whether GA can affect myelinogenesis and oligodendrogenesis in the developing nervous system under nonpathological conditions. Towards this end we studied myelination in mice injected daily by GA, at postnatal Days 7-21. Immunohistological and ultrastructural analyses revealed significant elevation in the number of myelinated axons as well as in the thickness of the myelin encircling them and their resulting g-ratios, in spinal cords of GA-injected mice compared with their PBS-injected littermates, at postnatal Day 14. Elevation in myelinated axons was detected also in the peripheral ventral roots of the motor nerves. GA induced also an increase in axonal diameter, implying an effect on the overall development of the nervous system. A prominent elevation in the amount of progenitor oligodendrocytes and their BrdU incorporation, as well as in mature oligodendrocytes indicated that the effect of GA is linked to increased proliferation and differentiation along the oligodendroglial maturation cascade. In addition, elevation in insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) was found in the white matter of the GA-injected mice. Furthermore, a functional advantage in rotating rod test was exhibited by GA-injected mice over their littermates at postnatal Day 21. These cumulative findings corroborate the beneficial effect of GA on oligodendrogenesis and myelination.
Collapse
Affiliation(s)
- Renana From
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel, 76100
| | | | | | | | | | | | | | | | | |
Collapse
|