1
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
2
|
Shao A, Owens DM. The immunoregulatory protein CD200 as a potentially lucrative yet elusive target for cancer therapy. Oncotarget 2023; 14:96-103. [PMID: 36738455 PMCID: PMC9899099 DOI: 10.18632/oncotarget.28354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD200 is an immunoregulatory cell surface ligand with proven pro-tumorigenic credentials via its ability to suppress CD200 receptor (CD200R)-expressing anti-tumor immune function. This definitive role for the CD200-CD200R axis in regulating an immunosuppressive tumor microenvironment has garnered increasing interest in CD200 as a candidate target for immune checkpoint inhibition therapy. However, while the CD200 blocking antibody samalizumab is still in the early stages of clinical testing, alternative mechanisms for the pro-tumorigenic role of CD200 have recently emerged that extend beyond direct suppression of anti-tumor T cell responses and, as such, may not be susceptible to CD200 antibody blockade. Herein, we will summarize the current understanding of CD200 expression and function in the tumor microenvironment as well as alternative strategies for potential neutralization of multiple CD200 mechanisms in human cancers.
Collapse
Affiliation(s)
- Anqi Shao
- 1Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - David M. Owens
- 1Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA,2Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA,Correspondence to:David M. Owens, email:
| |
Collapse
|
3
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Chamera K, Trojan E, Kotarska K, Szuster-Głuszczak M, Bryniarska N, Tylek K, Basta-Kaim A. Role of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation and Subsequent Immune Challenge in the Behaviour and Microglial Cell Trajectory in Adult Offspring: A Study of the Neurodevelopmental Model of Schizophrenia. Int J Mol Sci 2021; 22:ijms22041558. [PMID: 33557113 PMCID: PMC7913889 DOI: 10.3390/ijms22041558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Multiple lines of evidence support the pathogenic role of maternal immune activation (MIA) in the occurrence of the schizophrenia-like disturbances in offspring. While in the brain the homeostatic role of neuron-microglia protein systems is well documented, the participation of the CX3CL1-CX3CR1 and CD200-CD200R dyads in the adverse impact of MIA often goes under-recognized. Therefore, in the present study, we examined the effect of MIA induced by polyinosinic:polycytidylic acid (Poly I:C) on the CX3CL1-CX3CR1 and CD200-CD200R axes, microglial trajectory (MhcII, Cd40, iNos, Il-1β, Tnf-α, Il-6, Arg1, Igf-1, Tgf-β and Il-4), and schizophrenia-like behaviour in adult male offspring of Sprague-Dawley rats. Additionally, according to the “two-hit” hypothesis of schizophrenia, we evaluated the influence of acute challenge with Poly I:C in adult prenatally MIA-exposed animals on the above parameters. In the present study, MIA evoked by Poly I:C injection in the late period of gestation led to the appearance of schizophrenia-like disturbances in adult offspring. Our results revealed the deficits manifested as a diminished number of aggressive interactions, presence of depressive-like episodes, and increase of exploratory activity, as well as a dichotomy in the sensorimotor gating in the prepulse inhibition (PPI) test expressed as two behavioural phenotypes (MIAPPI-low and MIAPPI-high). Furthermore, in the offspring rats subjected to a prenatal challenge (i.e., MIA) we noticed the lack of modulation of behavioural changes after the additional acute immune stimulus (Poly I:C) in adulthood. The important finding reported in this article is that MIA affects the expression and levels of the neuron-microglia proteins in the frontal cortex and hippocampus of adult offspring. We found that the changes in the CX3CL1-CX3CR1 axis could affect microglial trajectory, including decreased hippocampal mRNA level of MhcII and elevated cortical expression of Igf-1 in the MIAPPI-high animals and/or could cause the up-regulation of an inflammatory response (Il-6, Tnf-α, iNos) after the “second hit” in both examined brain regions and, at least in part, might differentiate behavioural disturbances in adult offspring. Consequently, the future effort to identify the biological background of these interactions in the Poly I:C-induced MIA model in Sprague-Dawley rats is desirable to unequivocally clarify this issue.
Collapse
|
5
|
Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders. Curr Neuropharmacol 2020; 18:408-430. [PMID: 31729301 PMCID: PMC7457436 DOI: 10.2174/1570159x17666191113101629] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022] Open
Abstract
The bidirectional communication between neurons and microglia is fundamental for the proper functioning of the central nervous system (CNS). Chemokines and clusters of differentiation (CD) along with their receptors represent ligand-receptor signalling that is uniquely important for neuron - microglia communication. Among these molecules, CX3CL1 (fractalkine) and CD200 (OX-2 membrane glycoprotein) come to the fore because of their cell-type-specific localization. They are principally expressed by neurons when their receptors, CX3CR1 and CD200R, respectively, are predominantly present on the microglia, resulting in the specific axis which maintains the CNS homeostasis. Disruptions to this balance are suggested as contributors or even the basis for many neurological diseases. In this review, we discuss the roles of CX3CL1, CD200 and their receptors in both physiological and pathological processes within the CNS. We want to underline the critical involvement of these molecules in controlling neuron - microglia communication, noting that dysfunctions in their interactions constitute a key factor in severe neurological diseases, such as schizophrenia, depression and neurodegeneration-based conditions.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| |
Collapse
|
6
|
Cheng J, Chen M, Zhu JX, Li CF, Zhang QP, Geng D, Liu Q, Yi LT. FGF-2 signaling activation in the hippocampus contributes to the behavioral and cellular responses to puerarin. Biochem Pharmacol 2019; 168:91-99. [PMID: 31251937 DOI: 10.1016/j.bcp.2019.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Puerarin, a well-studied isoflavone isolated from Pueraria lobata, produces an antidepressant-like effect. Fibroblast growth factor-2 (FGF-2) is essentially required in the central nervous system as it acts as both a neurotrophic or anti-inflammatory regulator for the proliferation, differentiation and apoptosis of neurons. There is evidence that FGF-2 holds great promise for therapeutic intervention for depression. However, nothing was known about the involvement of FGF-2 in the antidepressant-like effect of puerarin. In the present study, the underlying mechanism of puerarin was evaluated in chronic stress induced depressive-like mice. The results indicated that puerarin treatment was effective to attenuate anhedonia and despair behaviors caused by chronic stress, as the sucrose preference and the immobility time were improved by puerarin. In addition, the results demonstrated that puerarin increased the expression of FGF-2 in the hippocampus. On the contrary, SU5402, an FGFR1 inhibitor, infusion into the brain could not only block the antidepressant-like effect of puerarin, but also abolish the effect of puerarin on hippocampal neurogenesis enhancement and neuroinflammation inhibition. Taken together, these findings provide new insights into the mechanism that the antidepressant-like actions of puerarin require FGF-2/FGFR signaling for the regulation of neurogenesis and neuroinflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Min Chen
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
7
|
Manich G, Recasens M, Valente T, Almolda B, González B, Castellano B. Role of the CD200-CD200R Axis During Homeostasis and Neuroinflammation. Neuroscience 2018; 405:118-136. [PMID: 30367946 DOI: 10.1016/j.neuroscience.2018.10.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Microglia are considered to be the resident macrophages of the CNS and main effector of immune brain function. Due to their essential role in the regulation of neuroinflammatory response, microglia constitute an important target for neurological diseases, such as multiple sclerosis, Alzheimer's or Parkinson's disease. The communication between neurons and microglia contributes to a proper maintenance of homeostasis in the CNS. Research developed in the last decade has demonstrated that this interaction is mediated by "Off-signals" - molecules exerting immune inhibition - and "On signals" - molecules triggering immune activation. Among "Off signals", molecular pair CD200 and its CD200R receptor, expressed mainly in the membrane of neurons and microglia, respectively, have centered our attention due to its unexplored and powerful immunoregulatory functions. In this review, we will offer an updated global view of the CD200-CD200R role in the microglia-neuron crosstalk during homeostasis and neuroinflammation. Specifically, the effects of CD200-CD200R in the inhibition of pro-inflammatory microglial activation will be explained, and their involvement in other functions such as homeostasis preservation, tissue repair, and brain aging, among others, will be pointed out. In addition, we will depict the effects of CD200-CD200R uncoupling in the etiopathogenesis of autoimmune and neurodegenerative diseases. Finally, we will explore how to translate the scientific evidence of CD200-CD200R interaction into possible clinical therapeutic strategies to tackle neuroinflammatory CNS diseases.
Collapse
Affiliation(s)
- Gemma Manich
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mireia Recasens
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Tony Valente
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Tang MM, Lin WJ, Pan YQ, Li YC. Fibroblast Growth Factor 2 Modulates Hippocampal Microglia Activation in a Neuroinflammation Induced Model of Depression. Front Cell Neurosci 2018; 12:255. [PMID: 30135647 PMCID: PMC6092504 DOI: 10.3389/fncel.2018.00255] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies indicate that disturbed structure and function of microglia can cause depression and associated neurogenesis impairments. Our previous work has demonstrated that exogenous fibroblast growth factor 2 (FGF2) reverses the depressive-like behaviors and the impaired hippocampal neurogenesis in a neuroinflammatory model of depression. However, whether and how the antidepressant effects of FGF2 involve the modulation of microglia activation has not been elucidated. In this study, to examine the effects of FGF2 on microglia activation, exogenous FGF2 was supplemented to the lateral ventricle of rats during the neuroinflammatory state induced by central lipopolysaccharides (LPS) administrations. It was found that FGF2 infusions reversed the LPS-induced depressive-like behaviors and inhibited the hippocampal microglia activation. In LPS-treated rats, FGF2 decreased the level of pro-inflammatory cytokines including interlukin-1β (IL-1β), IL-6 and tumor necrosis factor (TNF)-α, increased the level of IL-10, the anti-inflammatory cytokine and reversed the decreased expression of CX3CL1, a chemokine mainly expressed by neurons and keeping microglia in surveillance. Further, we examined the effects of inhibited FGF2 signaling by administration of SU5402, an FGFR inhibitor. It was found that SU5402 itself evoked depressive-like behaviors, induced microglia activation, increased production of pro-inflammatory cytokines including IL-1β, IL-6 and TNF-α, and decreased the expression of CX3CL1. Two lines of results that FGF2 signaling and FGFR inhibitor can effectively but oppositely modulate the regulation of microglia and the generation of depressive-like behavior, suggesting that microglia-regulated mechanisms may underlie the antidepressant role of FGF2. The present data provide novel insights into the understanding of mechanism of neuroinflammation-associated depression and may serve as a novel mechanism-based target for the treatment of inflammation-related depression.
Collapse
Affiliation(s)
- Ming-Ming Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Juan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Qin Pan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Cong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| |
Collapse
|
9
|
NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders. Neurochem Res 2018; 43:1714-1722. [DOI: 10.1007/s11064-018-2594-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
10
|
Tang MM, Lin WJ, Zhang JT, Zhao YW, Li YC. Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation. Brain Behav Immun 2017; 66:322-331. [PMID: 28529071 DOI: 10.1016/j.bbi.2017.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous work demonstrated that neuroinflammation evoked by triple repeated central LPS challenges inhibited adult hippocampal neurogenesis that were correlated with the depressive-like behavioral symptoms induced by neuroinflammation. These findings suggest that hippocampal neurogenesis might be one of biological mechanisms underlying depression induced by neuroinflammation and targeting neurogenesis might lead to new therapeutic strategies for the treatment of depression. In this study, we manipulated adult hippocampal neurogenesis using fibroblast growth factor 2 (FGF2), one crucial molecule modulating cell proliferation and survival in central nervous system, and investigate the involvement and the potential therapeutic effects of FGF2 on neuroinflammation-induced depression. Central lipopolysaccharides (LPS) challenges were used as previously to evoke the neuroinflammatory state in the brain of rat. Exogenous FGF2 was infused into lateral ventricle during the neuroinflammatory state. It was found that the protein expression of FGF2 in hippocampus was inhibited by neuroinflammation. The activation of extracellular signal-regulated kinase (ERK), the downstream molecule of FGF2, was also inhibited by neuroinflammation. Exogenous FGF2 infusions prevented the decrease in phosphorylation of ERK1/2 under neuroinflammation state. Exogenous FGF2 reversed depressive-like behaviors and the impaired hippocampal neurogenesis induced by neuroinflammation. These findings provide evidence that the FGF2-ERK1/2 pathway is involved in the pathophysiology of depressive-like behaviors, and manipulating the neurogenesis pathway is a viable therapeutic approach to inflammation-associated depression.
Collapse
Affiliation(s)
- Ming-Ming Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Juan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; Brain-Behavior Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun-Tao Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Wei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Cong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
| |
Collapse
|
11
|
Selection and Prioritization of Candidate Drug Targets for Amyotrophic Lateral Sclerosis Through a Meta-Analysis Approach. J Mol Neurosci 2017; 61:563-580. [PMID: 28236105 PMCID: PMC5359376 DOI: 10.1007/s12031-017-0898-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and incurable neurodegenerative disease. Although several compounds have shown promising results in preclinical studies, their translation into clinical trials has failed. This clinical failure is likely due to the inadequacy of the animal models that do not sufficiently reflect the human disease. Therefore, it is important to optimize drug target selection by identifying those that overlap in human and mouse pathology. We have recently characterized the transcriptional profiles of motor cortex samples from sporadic ALS (SALS) patients and differentiated these into two subgroups based on differentially expressed genes, which encode 70 potential therapeutic targets. To prioritize drug target selection, we investigated their degree of conservation in superoxide dismutase 1 (SOD1) G93A transgenic mice, the most widely used ALS animal model. Interspecies comparison of our human expression data with those of eight different SOD1G93A datasets present in public repositories revealed the presence of commonly deregulated targets and related biological processes. Moreover, deregulated expression of the majority of our candidate targets occurred at the onset of the disease, offering the possibility to use them for an early and more effective diagnosis and therapy. In addition to highlighting the existence of common key drivers in human and mouse pathology, our study represents the basis for a rational preclinical drug development.
Collapse
|
12
|
McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, Reilly M, Lynch MA. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer's disease. Brain Behav Immun 2016; 58:191-200. [PMID: 27422717 DOI: 10.1016/j.bbi.2016.07.143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
The effects of Toll-like receptor (TLR) activation in peripheral cells are well characterized but, although several TLRs are expressed on cells of the brain, the consequences of their activation on neuronal function remain to be fully investigated, particularly in the context of assessing their potential as therapeutic targets in neurodegenerative diseases. Several endogenous TLR ligands have been identified, many of which are soluble factors released from cells exposed to stressors. In addition, amyloid-β (Aβ) the main constituent of the amyloid plaques in Alzheimer's disease (AD), activates TLR2, although it has also been shown to bind to several other receptors. The objective of this study was to determine whether activation of TLR2 played a role in the developing inflammatory changes and Aβ accumulation in a mouse model of AD. Wild type and transgenic mice that overexpress amyloid precursor protein and presenilin 1 (APP/PS1 mice) were treated with anti-TLR2 antibody for 7months from the age of 7-14months. We demonstrate that microglial and astroglial activation, as assessed by MHCII, CD68 and GFAP immunoreactivity was decreased in anti-TLR2 antibody-treated compared with control (IgG)-treated mice. This was associated with reduced Aβ plaque burden and improved performance in spatial learning. The data suggest that continued TLR2 activation contributes to the developing neuroinflammation and pathology and may be provide a strategy for limiting the progression of AD.
Collapse
Affiliation(s)
- Claire L McDonald
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Edel Hennessy
- Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California San Francisco, San Francisco General Hospital, 1001 Potrero av, Bld#1, Room#101, 94110 San Francisco, CA, United States
| | - Ana Rubio-Araiz
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Brian Keogh
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - William McCormack
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Peter McGuirk
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - Mary Reilly
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
13
|
Saini V, Loers G, Kaur G, Schachner M, Jakovcevski I. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury. Eur J Neurosci 2016; 44:1734-46. [PMID: 27178448 DOI: 10.1111/ejn.13271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023]
Abstract
The neural cell adhesion molecule (NCAM) plays important functional roles in development of the nervous system. We investigated the influence of a constitutive ablation of NCAM on the outcome of spinal cord injury. Transgenic mice lacking NCAM (NCAM-/-) were subjected to severe compression injury of the lower thoracic spinal cord using wild-type (NCAM+/+) littermates as controls. According to the single-frame motion analysis, the NCAM-/- mice showed reduced locomotor recovery in comparison to control mice at 3 and 6 weeks after injury, indicating an overall positive impact of NCAM on recovery after injury. Also the Basso Mouse Scale score was lower in NCAM-/- mice at 3 weeks after injury, whereas at 6 weeks after injury the difference between genotypes was not statistically significant. Worse locomotor function was associated with decreased monoaminergic and cholinergic innervation of the spinal cord caudal to the injury site and decreased axonal regrowth/sprouting at the site of injury. Astrocytic scar formation at the injury site, as assessed by immunohistology for glial fibrillary acidic protein at and around the lesion site was increased in NCAM-/- compared with NCAM+/+ mice. Migration of cultured monolayer astrocytes from NCAM-/- mice was reduced as assayed by scratch wounding. Numbers of Iba-1 immunopositive microglia were not different between genotypes. We conclude that constitutive NCAM deletion in young adult mice reduces recovery after spinal cord injury, validating the hypothesized beneficial role of this molecule in recovery after injury.
Collapse
Affiliation(s)
- Vedangana Saini
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Department of Biotechnology, Guru Nanak Dev University, Punjab, India
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Punjab, India
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Igor Jakovcevski
- Institute for Molecular and Behavioral Neuroscience, University Hospital Cologne, Köln, Germany
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| |
Collapse
|
14
|
Klein R, Mahlberg N, Ohren M, Ladwig A, Neumaier B, Graf R, Hoehn M, Albrechtsen M, Rees S, Fink GR, Rueger MA, Schroeter M. The Neural Cell Adhesion Molecule-Derived (NCAM)-Peptide FG Loop (FGL) Mobilizes Endogenous Neural Stem Cells and Promotes Endogenous Regenerative Capacity after Stroke. J Neuroimmune Pharmacol 2016; 11:708-720. [DOI: 10.1007/s11481-016-9694-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
|
15
|
Hernangómez M, Klusáková I, Joukal M, Hradilová-Svíženská I, Guaza C, Dubový P. CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. J Neuroinflammation 2016; 13:43. [PMID: 26891688 PMCID: PMC4759712 DOI: 10.1186/s12974-016-0508-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Background Interaction of CD200 with its receptor CD200R has an immunoregulatory role and attenuates various types of neuroinflammatory diseases. Methods Immunofluorescence staining, western blot analysis, and RT-PCR were used to investigate the modulatory effects of CD200 fusion protein (CD200Fc) on activation of microglia and astrocytes as well as synthesis of pro- (TNF, IL-1β, IL-6) and anti-inflammatory (IL-4, IL-10) cytokines in the L4–L5 spinal cord segments in relation to behavioral signs of neuropathic pain after unilateral sterile chronic constriction injury (sCCI) of the sciatic nerve. Withdrawal thresholds for mechanical hypersensitivity and latencies for thermal hypersensitivity were measured in hind paws 1 day before operation; 1, 3, and 7 days after sCCI operation; and then 5 and 24 h after intrathecal application of artificial cerebrospinal fluid or CD200Fc. Results Seven days from sCCI operation and 5 h from intrathecal application, CD200Fc reduced mechanical and thermal hypersensitivity when compared with control animals. Simultaneously, CD200Fc attenuated activation of glial cells and decreased proinflammatory and increased anti-inflammatory cytokine messenger RNA (mRNA) levels. Administration of CD200Fc also diminished elevation of CD200 and CD200R proteins as a concomitant reaction of the modulatory system to increased neuroinflammatory reactions after nerve injury. The anti-inflammatory effect of CD200Fc dropped at 24 h after intrathecal application. Conclusions Intrathecal administration of the CD200R1 agonist CD200Fc induces very rapid suppression of neuroinflammatory reactions associated with glial activation and neuropathic pain development. This may constitute a promising and novel therapeutic approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Hernangómez
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Ilona Klusáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Ivana Hradilová-Svíženská
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Carmen Guaza
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Petr Dubový
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| |
Collapse
|
16
|
Zhang J, Yang B, Sun H, Zhou Y, Liu M, Ding J, Fang F, Fan Y, Hu G. Aquaporin-4 deficiency diminishes the differential degeneration of midbrain dopaminergic neurons in experimental Parkinson's disease. Neurosci Lett 2015; 614:7-15. [PMID: 26748031 DOI: 10.1016/j.neulet.2015.12.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is primarily due to the progressive, selective and irreversible loss of dopaminergic (DA) neurons in the substantia nigra (SN). Interestingly, DA neurons in the ventral and lateral SN are much more susceptible than adjacent dopamine neurons in the ventral tegmental area (VTA) not only in human PD but in many PD model systems. However, the molecular causes of regional vulnerability in PD remain unknown. In our previous studies, we established acute PD animal models by administration of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine), and found that AQP4 knockout mice were significantly more prone to MPTP-induced neurotoxicity. Here, we further observe that AQP4 deficiency resulted in the same susceptible to MPTP between SN DA neuron and VTA neurons both in acute and chronic PD model. Moreover, we show that AQP4 deficiency increased the numbers of reactive astrocytes and microglias not only in the SN and but also in the VTA under basal and MPTP-induced situations. Meanwhile, AQP4 deficiency disrupted the balance of the pro-inflammatory cytokine/neurotrophin in midbrain. Taken together, these results demonstrate that glial AQP4 is involved in the susceptibility differences of DA neurons between SN and VTA, although the precise mechanism of AQP4 remains to be explored. Moreover, these findings also suggest that these susceptibility differences are not only due to intrinsic neuronal factors, but also attribute to differences in astrocytes of these regions.
Collapse
Affiliation(s)
- Ji Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Division of Clinical Pharmacy, Department of Pharmacy, the First AffiliaMACted Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Beibei Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mengdi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Feng Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
17
|
Jones RS, Lynch MA. How dependent is synaptic plasticity on microglial phenotype? Neuropharmacology 2014; 96:3-10. [PMID: 25168262 DOI: 10.1016/j.neuropharm.2014.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/27/2022]
Abstract
Microglia are particularly plastic cells which can be shifted from their resting state by numerous factors and adopt distinct phenotypes. The cells are multifunctional, though their main role is probably maintenance of homoeostasis. Resting cells are responsible for surveillance, whereas activation induces the cells to adopt neuroprotective or neurodetrimental roles, which are anti-inflammatory or pro-inflammatory respectively. The evidence indicates that activated cells with a pro-inflammatory phenotype predominate in neurodegenerative diseases and models of neurodegeneration and that this may significantly contribute to the deteriorating neuronal function. This question is considered in this review, in particular in the context of animal models of Alzheimer's disease (AD). This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Raasay S Jones
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin 2, Ireland.
| | - Marina A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
18
|
Lynch MA. The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer's disease. Immunology 2014; 141:292-301. [PMID: 23876085 DOI: 10.1111/imm.12156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammatory changes are a characteristic of several, if not all, neurodegenerative diseases including Alzheimer's disease and are typified by increased microglial activation. Microglia express several receptors making them highly reactive and plastic cells, and, at least in vitro, they adopt different phenotypes in a manner analogous to their peripheral counterparts, macrophages. Microglia also express numerous cell surface proteins enabling them to interact with cells and the evidence indicates that maintenance of microglia in a quiescent state relies, at least to some extent, on an interaction with neurons by means of specific ligand-receptor pairs, for example CD200-CD200R. It is clear that microglia also interact with T cells and recent evidence indicates that co-incubation of microglia with T helper type 1 cells markedly increases their activation. Under normal conditions, small numbers of activated T cells gain entry to the brain and are involved in immune surveillance but infiltration of significant numbers of T cells occurs in disease and following injury. The consequences of T cell infiltration appear to depend on the conditions, with descriptions of both neurodestructive and neuroprotective effects in animal models of different diseases. This review will discuss the modulatory effect of T cells on microglia and the impact of infiltration of T cells into the brain with a focus on Alzheimer's disease, and will propose that infiltration of interferon-γ-producing cells may be an important factor in triggering inflammation that is pathogenic and destructive.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
19
|
Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav Immun 2013; 34:86-97. [PMID: 23916893 DOI: 10.1016/j.bbi.2013.07.174] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
The interaction between CD200, expressed on several cell types, and its receptor CD200R, expressed on cells of the myeloid lineage, has been shown to be an important factor in modulating inflammation in macrophage function in several conditions including colitis and arthritis. More recently its modulatory effect on microglial activation has been identified and CD200-deficiency has been associated with increased microglial activation accompanied by increased production of inflammatory cytokines. The response of glia prepared from CD200-deficient mice to stimuli like lipopolysaccharide (LPS) is markedly greater than the response of cells prepared from wildtype mice and, consistent with this, is the recent observation that expression of Toll-like receptor (TLR)4 and signalling through NFκB are increased in microglia prepared from CD200-deficient mice. Here we show that glia from CD200-deficient mice are also more responsive to interferon-γ (IFNγ) which triggers classical activation of microglia. We investigated the effects of CD200-deficiency in vivo and report that there is an increase in expression of several markers of microglial activation including tumor necrosis factor (TNF)-α, which is a hallmark of classically-activated microglia. These changes are accompanied by increased IFNγ, and the evidence suggests that this is produced by infiltrating cells including T cells and macrophages. We propose that these cells enter the brain as a consequence of increased blood brain barrier (BBB) permeability in CD200-deficient mice and that infiltration is assisted by increased expression of the chemokines, monocyte chemotactic protein-1 (MCP-1), IFNγ-induced protein-10 (IP-10) and RANTES. This may have implications in neurodegenerative diseases where BBB permeability is compromised.
Collapse
|
20
|
Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol 2013; 9:92-101. [PMID: 24057103 DOI: 10.1007/s11481-013-9501-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022]
Abstract
Fibroblast growth factor-2 (FGF2), also known as basic FGF, is a multi-functional growth factor. One of the 22-member FGF family, it signals through receptor tyrosine kinases encoding FGFR1-4. FGF2 activates FGFRs in cooperation with heparin or heparin sulfate proteoglycan to induce its pleiotropic effects in different tissues and organs, which include potent angiogenic effects and important roles in the differentiation and function of the central nervous system (CNS). FGF2 is crucial to development of the CNS, which explains its importance in adult neurogenesis. During development, high levels of FGF2 are detected from neurulation onwards. Moreover, developmental expression of FGF2 and its receptors is temporally and spatially regulated, concurring with development of specific brain regions including the hippocampus and substantia nigra pars compacta. In adult neurogenesis, FGF2 has been implicated based on its expression and regulation of neural stem and progenitor cells in the neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. FGFR1 signaling also modulates inflammatory signaling through the surface glycoprotein CD200, which regulates microglial activation. Because of its importance in adult neurogenesis and neuroinflammation, manipulation of FGF2/FGFR1 signaling has been a focus of therapeutic development for neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and traumatic brain injury. Novel strategies include intranasal administration of FGF2, administration of an NCAM-derived FGFR1 agonist, and chitosan-based nanoparticles for the delivery of FGF2 in pre-clinical animal models. In this review, we highlight current research towards therapeutic interventions targeting FGF2/FGFR1 in neurodegenerative disorders.
Collapse
Affiliation(s)
- Maya E Woodbury
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, 02118, USA
| | | |
Collapse
|