1
|
Ruiz-Sobremazas D, Abreu AC, Prados-Pardo Á, Martín-González E, Tristán AI, Fernández I, Moreno M, Mora S. From Nutritional Patterns to Behavior: High-Fat Diet Influences on Inhibitory Control, Brain Gene Expression, and Metabolomics in Rats. ACS Chem Neurosci 2024; 15:4369-4382. [PMID: 39607956 PMCID: PMC11660154 DOI: 10.1021/acschemneuro.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Impulsive and compulsive behaviors are associated with inhibitory control deficits. Diet plays a pivotal role in normal development, impacting both physiology and behavior. However, the specific effects of a high-fat diet (HFD) on inhibitory control have not received adequate attention. This study aimed to explore how exposure to a HFD from postnatal day (PND) 33 to PND77 affects impulsive and compulsive behaviors. The experiment involved 40 Wistar rats subjected to HFD or chow diets. Several tasks were employed to assess behavior, including variable delay to signal (VDS), five choice serial reaction time task (5-CSRTT), delay discounting task (DDT), and rodent gambling task (rGT). Genetic analyses were performed on the frontal cortex, and metabolomics and fatty acid profiles were examined by using stool samples collected on PND298. Our results showed that the HFD group exhibited increased motor impulsive behaviors while not affecting cognitive impulsivity. Surprisingly, reduced impulsive decision-making was shown in the HFD group. Furthermore, abnormal brain plasticity and dopamine gene regulation were shown in the frontal cortex, while metabolomics revealed abnormal fatty acid levels.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
- Department
of Psychology and Sociology, University
of Zaragoza, Crta. Atarazana
4, Teruel 44003, Spain
| | - Ana Cristina Abreu
- Department
of Chemistry and Physics, Research Center CIAIMBITAL, University of Almería, Crta. Sacramento s/n, La Cañada de
San Urbano 04120, Spain
| | - Ángeles Prados-Pardo
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
| | - Elena Martín-González
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
| | - Ana Isabel Tristán
- Department
of Chemistry and Physics, Research Center CIAIMBITAL, University of Almería, Crta. Sacramento s/n, La Cañada de
San Urbano 04120, Spain
| | - Ignacio Fernández
- Department
of Chemistry and Physics, Research Center CIAIMBITAL, University of Almería, Crta. Sacramento s/n, La Cañada de
San Urbano 04120, Spain
| | - Margarita Moreno
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
| | - Santiago Mora
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
- Current:
School of Psychology and Neuroscience, University
of St. Andrews, St Mary’s
Quad, South St., St Andrews KY16 9JP, United Kingdom
| |
Collapse
|
2
|
Bayoglu M, Ozturk Bintepe M, Kanit L, Balkan B, Gozen O, Koylu EO, Keser A. Decreased anxiety-like behavior in a selectively bred high nicotine-preferring rat line. Int J Neurosci 2024; 134:1403-1413. [PMID: 37929683 DOI: 10.1080/00207454.2023.2279505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Genetic vulnerability contributes significantly to the individual variability observed in nicotine dependence. Selective breeding for sensitivity to a particular effect of abused drugs has produced rodent lines useful for studying genetic vulnerability to drug addiction. Previous research showed that anxiety-related personality traits are associated with nicotine dependence. Therefore, we examined the differences in anxiety-like behavior between a high nicotine-preferring rat line and their controls. At the beginning of the study, all rats, naïve to any drug, were exposed sequentially to open field arena, marble-burying and elevated plus-maze paradigms. In the second step, all rats received nicotine in drinking water for 7 weeks. Behavioral tests were rerun on the final 2 weeks of chronic nicotine treatment. Elevated plus-maze testings under basal condition and during chronic nicotine treatment showed that the time spent on the open arms, preference for being in the open arms, and the latency to enter the closed arms were higher, whereas open arm avoidance index was lower in nicotine-preferring rats compared to the controls. In the open field test, nicotine-preferring rats spent longer time in the central zone and excreted less fecal pellets; they buried less marbles in the marble-burying test. These findings indicate a lower level of anxiety-like behavior in nicotine-preferring rat line under basal conditions and during chronic nicotine treatment. We conclude that lower anxiety level in nicotine-preferring rat line is consistent with novelty-seeking personality type and may increase vulnerability to nicotine dependence in this rat line.
Collapse
Affiliation(s)
- Merve Bayoglu
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
| | | | - Lutfiye Kanit
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Burcu Balkan
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Oguz Gozen
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Ersin O Koylu
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Aysegul Keser
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Wang Y, Piao Y, Chen N, Zhang Y, Zhang X, Wang C, Zhao C, Yu M, Zhang T. Xanthophyllomyces dendrorhous Is a Safe Dietary Supplement with Potent Antioxidant Defense Enhancing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19167-19176. [PMID: 39150542 DOI: 10.1021/acs.jafc.4c04062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Xanthophyllomyces dendrorhous (X. dendrorhous), previously known as Phaffia rhodozyma, is a red yeast that is widely recognized as a rich source of carotenoids, particularly astaxanthin, which exhibits potent antioxidant activity and other health-promoting functions. However, there is currently a lack of research on the safety of consuming X. dendrorhous. To address this, we conducted an acute toxicity study followed by a 90-day subchronic toxicity trial to evaluate the safety of X. dendrorhous and investigate its in vivo antioxidant activity. In the acute toxicity study, Sprague-Dawley rats were administered a maximum of 12 g/kg body weight of X. dendrorhous powder by gavage and survived without any adverse effects for 14 days. In the subsequent subchronic toxicity test, the rats were randomly divided into five groups, each with free access to their diet adulterated with 0% (control), 2.5% (low), 5% (middle), 10% (high), and 20% (extreme high) X. dendrorhous powder. The rats' behavior, body weight, and food intake were monitored during the 90-day experiment. At the end of the experiment, urine, blood, and organs were collected from the rats for biochemical testing. Additionally, the antioxidant activity in rat sera was evaluated. The results of the acute toxicity test demonstrated that the LD50 of X. dendrorhous was greater than 12 g/kg body weight, indicating that the substance was not toxic. Throughout the 90-day period of subchronic toxicity, the triglyceride levels of male rats fed with 10 and 20% X. dendrorhous increased to 1.54 ± 0.17 and 1.55 ± 0.25 mmol/L (P < 0.05), respectively. This may be attributed to the elevated fat content of the diet in the high-dose and extreme high-dose groups, which was 5.5 and 2.5% higher than that in the control, respectively. Additionally, the white pulp in the spleen exhibited an increase, and the number of white blood cells in the extreme high-dose group increased by 2.41 × 109/L (P < 0.05), which may contribute to enhanced immunity. Finally, the body weight, food intake, blood and urine indexes, and histopathological examination results of the organs of the rats did not demonstrate any regular toxic effects. With the adulteration of X. dendrorhous, the activity of GSH-Px in male rats increased by 16-36.32%. The activity of GSH-Px in female rats of the extreme high-dose group increased by 14.70% (P < 0.05). The free radical scavenging ability of ABTS in male rats in the two high-dose groups exhibited an increase of 6.5 and 11.41% (P < 0.05). In contrast, the MDA content of male rats in the extreme high-dose group demonstrated a reduction of 2.73 nmol/mL (P < 0.05). These findings indicate that X. dendrorhous has no toxic effects, can be taken in high doses, and has a beneficial antioxidant effect that may enhance the body's immunity.
Collapse
Affiliation(s)
- Yanli Wang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yan Piao
- Jilin Heart Hospital, 5558 Jingyue Street, Changchun 130117, China
| | - Nan Chen
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yutong Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinyue Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Cuina Wang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Miao Yu
- Incubation Base of Changbai Mountain Characteristic Food and Drug Technology Industrial Park, Jilin Wanfang Dongxun Axiaxanthin Industry and Technology Development Co., Ltd, Baishan 134799, China
- Jilin Wanfang Baiao Biological Technology Co., Ltd. 888 Dujuan Road, Changchun 130119, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| |
Collapse
|
4
|
Witek K, Wydra K, Filip M. A High-Sugar Diet Consumption, Metabolism and Health Impacts with a Focus on the Development of Substance Use Disorder: A Narrative Review. Nutrients 2022; 14:2940. [PMID: 35889898 PMCID: PMC9323357 DOI: 10.3390/nu14142940] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrates are important macronutrients in human and rodent diet patterns that play a key role in crucial metabolic pathways and provide the necessary energy for proper body functioning. Sugar homeostasis and intake require complex hormonal and nervous control to proper body energy balance. Added sugar in processed food results in metabolic, cardiovascular, and nervous disorders. Epidemiological reports have shown enhanced consumption of sweet products in children and adults, especially in reproductive age and in pregnant women, which can lead to the susceptibility of offspring's health to diseases in early life or in adulthood and proneness to mental disorders. In this review, we discuss the impacts of high-sugar diet (HSD) or sugar intake during the perinatal and/or postnatal periods on neural and behavioural disturbances as well as on the development of substance use disorder (SUD). Since several emotional behavioural disturbances are recognized as predictors of SUD, we also present how HSD enhances impulsive behaviour, stress, anxiety and depression. Apart from the influence of HSD on these mood disturbances, added sugar can render food addiction. Both food and addictive substances change the sensitivity of the brain rewarding neurotransmission signalling. The results of the collected studies could be important in assessing sugar intake, especially via maternal dietary patterns, from the clinical perspective of SUD prevention or pre-existing emotional disorders. Methodology: This narrative review focuses on the roles of a high-sugar diet (HSD) and added sugar in foods and on the impacts of glucose and fructose on the development of substance use disorder (SUD) and on the behavioural predictors of drugs abuse. The literature was reviewed by two authors independently according to the topic of the review. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open access scientific journals using the following keyword search strategy depending on the theme of the chapter: "high-sugar diet" OR "high-carbohydrate diet" OR "sugar" OR "glucose" OR "fructose" OR "added sugar" AND keywords. We excluded inaccessible or pay-walled articles, abstracts, conference papers, editorials, letters, commentary, and short notes. Reviews, experimental studies, and epidemiological data, published since 1990s, were searched and collected depending on the chapter structure. After the search, all duplicates are thrown out and full texts were read, and findings were rescreened. After the selection process, appropriate papers were included to present in this review.
Collapse
Affiliation(s)
| | | | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (K.W.); (K.W.)
| |
Collapse
|
5
|
Espitia-Bautista E, Escobar C. Fat rather than sugar diet leads to binge-type eating, anticipation, effort behavior and activation of the corticolimbic system. Nutr Neurosci 2021; 24:508-519. [PMID: 31419190 DOI: 10.1080/1028415x.2019.1651104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives: One factor contributing to the development of obesity is overeating palatable food. The palatability of food is driven by specific energy yielding combinations and flavor profiles that may contribute to its overconsumption. In rodents, restricted access to palatable food (PF) is a strong stimulus to trigger binge-type eating behavior (BTE), food anticipatory activity (FAA), effort behaviors and withdrawal symptoms. This is accompanied by plastic changes in corticolimbic areas associated with motivation and reward responses. Palatable food contains mainly a mixture of fat and sugar, thus, the contribution of each macronutrient for the behavioral and neuronal changes is unclear.Methods: In this study, Wistar rats were exposed to restricted access to 50% fat rich diet (FRD) or 50% sugar rich diet (SRD) in order to compare the intensity of BTE, FAA, effort behaviors and withdrawal responses.Results: In corticolimbic areas, c-Fos activation and ΔFosB accumulation were evaluated. After an acute exposition, rats ate more SRD than FRD, but FDR stimulated higher c-Fos. After chronic administration, the FDR group exhibited higher levels of BTE and FAA; this was associated with higher c-Fos and accumulation of ΔFosB in the corticolimbic system. Similar effects in the FRD group were observed after one week of withdrawal.Discussion: Present data indicate that the fat rich diet is a stronger stimulus than the sugar rich diet for the development of wanting behavior for reward and the underlying plastic changes in the corticolimbic system. The differential effects may be due to the differing caloric density of the diets.
Collapse
Affiliation(s)
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, UNAM, Ciudad de México, México
| |
Collapse
|
6
|
Espitia-Bautista E, Escobar C. Addiction-like response in brain and behavior in a rat experimental model of night-eating syndrome. Appetite 2021; 161:105112. [PMID: 33453338 DOI: 10.1016/j.appet.2021.105112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
STUDY OBJECTIVES Individuals ailing from night eating syndrome (NES) consume more than 25% of their daily food intake during the normal sleep time, delaying their sleep or waking up in the middle of the night to eat. This study explored two experimental conditions resembling NES in Wistar rats by offering palatable food during the sleep phase, alone or combined with sleep delay. Also we explored their impact on addiction-like changes in the brain and behavior. METHODS Experiment 1 explored the brain response after a first NES-like event; experiment 2 and 3 explored addiction-like behaviors c-Fos and FosB/ΔFosB in corticolimbic regions after 4 weeks exposition to NES-like conditions and after one week of withdrawal, respectively. For all 3 experiments 6 experimental groups were used: 1. Control; 2. Restricted access (1 h) to high-sugar diet (HSD) or to 3. high-fat diet (HFD); 4., Sleep delay for 4 h (SD) (from ZT0-ZT4, rats using slow rotating wheels); 5. SD + HSD; 6. SD + HFD. RESULTS A first event of eating a palatable diet with or without SD was sufficient to stimulate c-Fos and ΔFosB. Along 4 weeks of exposure to the palatable diets rats exhibited escalation and binge eating, which was highest for the HFD. At this stage, SD did not influence behavioral changes nor the neuronal response. After one-week in withdrawal, rats exhibited craving and effort to obtain their palatable diet. The brains of rats previously exposed to sleep delay maintained high levels of FosB/ΔFosB in the accumbens shell and high c-Fos activation in the insular cortex. CONCLUSIONS In our experimental models of NES-like a HFD in the sleep phase and SD are risk factors to develop binge eating and addiction-like behaviors.
Collapse
Affiliation(s)
- Estefania Espitia-Bautista
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Carolina Escobar
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico.
| |
Collapse
|
7
|
Projections from the nucleus accumbens shell to the ventral pallidum are involved in the control of sucrose intake in adult female rats. Brain Struct Funct 2020; 225:2815-2839. [PMID: 33124673 DOI: 10.1007/s00429-020-02161-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
In rodents, stimulation of the nucleus accumbens shell (AcbSh) directly or via its projection to the lateral hypothalamus (LH) attenuates food intake. The ventral pallidum (VP) receives dense projections from the AcbSh and is sensitive to the hedonic aspect of food and motivation for reward. However, the role of accumbal projections to the VP in the regulation of food intake was not well investigated. In the present study conducted on female rats, we examined the effects of stimulation of the AcbSh using optogenetics, or pharmacological inhibition of the rostral VP, or stimulation of projections from the AcbSh to the rostral VP using optogenetics on the consumption of 10% sucrose, lick microstructure and the expression of c-fos mRNA. Stimulation of the AcbSh, inhibition of the rostral VP with muscimol, or stimulation of axonal terminals from the AcbSh to the rostral VP resulted in a decrease in sucrose intake, meal duration, and total number of licks. The licking microstructure analysis showed that optogenetic stimulation of AcbSh or axonal terminals from the AcbSh to the rostral VP decreased the hedonic value of the sucrose. However, inhibition of the rostral VP decreased the motivation, whereas stimulation of the accumbal projections in the rostral VP increased the motivation to drink. This difference could be due to differential involvement of GABAergic and glutamatergic VP neurons. Stimulation of the AcbSh resulted in a decrease of c-fos mRNA expression in the LH and rostral VP, and stimulation of axonal terminals from the AcbSh to the rostral VP decreased c-fos mRNA expression only in the rostral VP. This study demonstrates that in adult female rats, in addition to the already known role of the AcbSh projections to the LH, AcbSh projections to the VP play a major role in the regulation of sucrose intake.
Collapse
|
8
|
Scheggi S, Braccagni G, De Montis MG, Gambarana C. Heightened reward response is associated with HCN2 overexpression in the ventral tegmental area in morphine-sensitized rats. Behav Pharmacol 2020; 31:283-292. [DOI: 10.1097/fbp.0000000000000545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Influence of the fat/carbohydrate component of snack food on energy intake pattern and reinforcing properties in rodents. Behav Brain Res 2019; 364:328-333. [PMID: 30807810 DOI: 10.1016/j.bbr.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
Abstract
Hedonic intake of strongly rewarding foods is independent from biological needs and, thus, a common cause of obesity. The effect of potato chips on energy intake in a snacking model could be explained by their fat/carbohydrate content (FCHc). The present study investigated if the FCHc shapes energy intake patterns and reward processing of satiated rodents. Modulation of energy intake patterns was studied in an established snacking model offering FCHc rich food for 3 × 10 min/day to satiated rats. Reward processing was analyzed by a previously established conditioned place preference tests in satiated mice. The limited access to FCHc rich food led to higher daily energy intake compared to days without access (110 ± 10 vs. 96 ± 5 kcal/day) indicating that fat/carbohydrate intake was not fully compensated by reducing standard chow intake during the rest of the day. Furthermore, fat/carbohydrate snacking led to binge eating episodes with up to 55% of the daily energy intake consumed during limited access. Forced withdrawal from fat/carbohydrate snacking opportunities for six weeks increased the total daily energy intake and the relative amount of energy consumed by FCHc after reintroducing fat/carbohydrate snacking. Snack food and fat/carbohydrate food were powerful food reinforcers in satiated mice in contrast to standard chow. Altogether, these data suggest that the FCHc of snack food has strong reinforcing properties, which are probably responsible for the significant modulation of the amount and pattern of food intake in ad libitum fed animals.
Collapse
|
10
|
Bassareo V, Gambarana C. Editorial: Food and Its Effect on the Brain: From Physiological to Compulsive Consumption. Front Psychiatry 2019; 10:209. [PMID: 31019474 PMCID: PMC6459024 DOI: 10.3389/fpsyt.2019.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Department of Biomedical Sciences, National Institute of Neuroscience, Cagliari section, Cagliari, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
11
|
Scheggi S, De Montis MG, Gambarana C. DARPP-32 in the orchestration of responses to positive natural stimuli. J Neurochem 2018; 147:439-453. [PMID: 30043390 DOI: 10.1111/jnc.14558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023]
Abstract
Dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa, DARPP-32) is an integrator of multiple neuronal signals and plays a crucial role particularly in mediating the dopaminergic component of the systems involved in the evaluation of stimuli and the ensuing elaboration of complex behavioral responses (e.g., responses to reinforcers and stressors). Dopamine neurons can fire tonically or phasically in distinct timescales and in specific brain regions to code different behaviorally relevant information. Dopamine signaling is mediated mainly through the regulation of adenylyl cyclase activity, stimulated by D1-like or inhibited by D2-like receptors, respectively, that modulates cAMP-dependent protein kinase (PKA) function. The activity of DARPP-32 is finely regulated by its phosphorylation at multiple sites. Phosphorylation at the threonine (Thr) 34 residue by PKA converts DARPP-32 into an inhibitor of protein phosphatase 1, while the phosphorylation at the Thr75 residue turns it into an inhibitor of PKA. Thus, DARPP-32 is critically implicated in regulating striatal output in response to the convergent pathways that influence signaling of the cAMP/PKA pathway. This review summarizes some of the landmark and recent studies of DARPP-32-mediated signaling in the attempt to clarify the role played by DARPP-32 in the response to rewarding natural stimuli. Particularly, the review deals with data derived from rodents studies and discusses the involvement of the cAMP/PKA/DARPP-32 pathway in: 1) appetitive food-sustained motivated behaviors, 2) motivated behaviors sustained by social reward, 3) sexual behavior, and 4) responses to environmental enrichment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
12
|
Scheggi S, Pelliccia T, Cuomo A, De Montis MG, Gambarana C. Antidepressant and pro-motivational effects of repeated lamotrigine treatment in a rat model of depressive symptoms. Heliyon 2018; 4:e00849. [PMID: 30338306 PMCID: PMC6190531 DOI: 10.1016/j.heliyon.2018.e00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 10/08/2018] [Indexed: 11/01/2022] Open
Abstract
Background Methods Results Limitations Conclusions
Collapse
|
13
|
Scheggi S, De Montis MG, Gambarana C. Making Sense of Rodent Models of Anhedonia. Int J Neuropsychopharmacol 2018; 21:1049-1065. [PMID: 30239762 PMCID: PMC6209858 DOI: 10.1093/ijnp/pyy083] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
A markedly reduced interest or pleasure in activities previously considered pleasurable is a main symptom in mood disorder and psychosis and is often present in other psychiatric disorders and neurodegenerative diseases. This condition can be labeled as "anhedonia," although in its most rigorous connotation the term refers to the lost capacity to feel pleasure that is one aspect of the complex phenomenon of processing and responding to reward. The responses to rewarding stimuli are relatively easy to study in rodents, and the experimental conditions that consistently and persistently impair these responses are used to model anhedonia. To this end, long-term exposure to environmental aversive conditions is primarily used, and the resulting deficits in reward responses are often accompanied by other deficits that are mainly reminiscent of clinical depressive symptoms. The different components of impaired reward responses induced by environmental aversive events can be assessed by different tests or protocols that require different degrees of time allocation, technical resources, and equipment. Rodent models of anhedonia are valuable tools in the study of the neurobiological mechanisms underpinning impaired behavioral responses and in the screening and characterization of drugs that may reverse these behavioral deficits. In particular, the antianhedonic or promotivational effects are relevant features in the spectrum of activities of drugs used in mood disorders or psychosis. Thus, more than the model, it is the choice of tests that is crucial since it influences which facets of anhedonia will be detected and should be tuned to the purpose of the study.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena,Correspondence: Carla Gambarana, Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2 – 53100 Siena, Italy ()
| |
Collapse
|
14
|
Woodworth HL, Batchelor HM, Beekly BG, Bugescu R, Brown JA, Kurt G, Fuller PM, Leinninger GM. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons that Coordinates Energy Balance. Cell Rep 2018; 20:1881-1892. [PMID: 28834751 DOI: 10.1016/j.celrep.2017.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/19/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) are heterogeneous and differentially regulate ingestive and locomotor behaviors that affect energy balance. Identification of which VTA DA neurons mediate behaviors that limit weight gain has been hindered, however, by the lack of molecular markers to distinguish VTA DA populations. Here, we identified a specific subset of VTA DA neurons that express neurotensin receptor-1 (NtsR1) and preferentially comprise mesolimbic, but not mesocortical, DA neurons. Genetically targeted ablation of VTA NtsR1 neurons uncouples motivated feeding and physical activity, biasing behavior toward energy expenditure and protecting mice from age-related and diet-induced weight gain. VTA NtsR1 neurons thus represent a molecularly defined subset of DA neurons that are essential for the coordination of energy balance. Modulation of VTA NtsR1 neurons may therefore be useful to promote behaviors that prevent the development of obesity.
Collapse
Affiliation(s)
- Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Bethany G Beekly
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
15
|
Aripiprazole relieves motivational anhedonia in rats. J Affect Disord 2018; 227:192-197. [PMID: 29100151 DOI: 10.1016/j.jad.2017.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/06/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Anhedonia is considered a relevant feature in depression and psychosis, characterized by poor treatment outcome, and associated with deficits in mesolimbic dopaminergic responsiveness. Clinical studies suggest the potential utility of aripiprazole as adjunctive therapy for resistant depression. Since aripiprazole can stabilize the dopaminergic system, in search of tailored therapeutic strategies for reward dysfunctions, we investigated whether the drug restored motivation toward positive stimuli in a rat model. METHODS Anhedonia is modeled in non food-deprived 9-week old male Sprague-Dawley rats by exposing them to a chronic unavoidable stress protocol, consisting in repeated exposure to tail-shock or restrain, which disrupts the motivation to acquire a reward-directed behavior and the competence to escape aversive stimuli. We evaluated whether long-term aripiprazole administration (1mg/kg/day, i.p.) restored in chronically stressed rats, a) the disrupted dopaminergic response to sucrose consumption measuring DARPP-32 phosphorylation levels in the nucleus accumbens shell by immunoblotting; b) the motivation to operate in a sucrose self-administration protocol. RESULTS Long-term aripiprazole administration restored DARPP-32 phosphorylation changes in response to sucrose and reinstated the motivational drive to acquire the reward in the progressive ratio task. However, it did not restore reactivity to aversive stimuli. LIMITATIONS The results obtained in our model may not fully translate to the clinic, as anhedonia is a complex construct in patients, where motivational aspects represent a central but not unique feature. CONCLUSIONS This study demonstrates that aripiprazole relieved motivational anhedonia in a stress-induced model and warrants further studies to ascertain whether this activity is clinically relevant for antipsychotic or adjunctive antidepressant treatments.
Collapse
|
16
|
Dopamine D2 Receptor Signaling in the Nucleus Accumbens Comprises a Metabolic-Cognitive Brain Interface Regulating Metabolic Components of Glucose Reinforcement. Neuropsychopharmacology 2017; 42:2365-2376. [PMID: 28580946 PMCID: PMC5645735 DOI: 10.1038/npp.2017.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Abstract
Appetitive drive is influenced by coordinated interactions between brain circuits that regulate reinforcement and homeostatic signals that control metabolism. Glucose modulates striatal dopamine (DA) and regulates appetitive drive and reinforcement learning. Striatal DA D2 receptors (D2Rs) also regulate reinforcement learning and are implicated in glucose-related metabolic disorders. Nevertheless, interactions between striatal D2R and peripheral glucose have not been previously described. Here we show that manipulations involving striatal D2R signaling coincide with perseverative and impulsive-like responding for sucrose, a disaccharide consisting of fructose and glucose. Fructose conveys orosensory (ie, taste) reinforcement but does not convey metabolic (ie, nutrient-derived) reinforcement. Glucose however conveys orosensory reinforcement but unlike fructose, it is a major metabolic energy source, underlies sustained reinforcement, and activates striatal circuitry. We found that mice with deletion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) exclusively in D2R-expressing cells exhibited preferential D2R changes in the nucleus accumbens (NAc), a striatal region that critically regulates sucrose reinforcement. These changes coincided with perseverative and impulsive-like responding for sucrose pellets and sustained reinforcement learning of glucose-paired flavors. These mice were also characterized by significant glucose intolerance (ie, impaired glucose utilization). Systemic glucose administration significantly attenuated sucrose operant responding and D2R activation or blockade in the NAc bidirectionally modulated blood glucose levels and glucose tolerance. Collectively, these results implicate NAc D2R in regulating both peripheral glucose levels and glucose-dependent reinforcement learning behaviors and highlight the notion that glucose metabolic impairments arising from disrupted NAc D2R signaling are involved in compulsive and perseverative feeding behaviors.
Collapse
|
17
|
Scheggi S, Ferrari A, Pelliccia T, Devoto P, De Montis MG, Gambarana C. Fasting biases μ-opioid receptors toward β-arrestin2-dependent signaling in the accumbens shell. Neuroscience 2017; 352:19-29. [PMID: 28391016 DOI: 10.1016/j.neuroscience.2017.03.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
The μ-opioid receptor (MOR) and dopamine D1 receptor are co-expressed in the medium spiny neurons of striatal areas and the signaling pathways activated by these two receptors are in functional competition. However, in certain conditions an integrated response mediated by the dopamine D1 receptor transduction system is observed. In mice, morphine administration induces hypermotility and this response has been described in terms of a β-arrestin2-dependent mechanism that favors prevalent dopamine D1 receptor activation. In rats, acute morphine administration induces hypermotility only when the animals are food-deprived (FD). We aimed to further investigate the functional interaction between the MOR and dopamine D1 receptors in striatal areas and we studied the effects of acute pharmacological MOR stimulation on motility and nucleus accumbens shell (NAcS) dopamine D1 receptor signaling in control rats and rats with reduced β-arrestin2 expression in the NAcS, either non food-deprived (NFD) or FD. Motility and dopamine D1 receptor signaling increased only in FD rats in a β-arrestin2-dependent way. Moreover, FD rats showed a β-arrestin2-dependent increase in the levels of MOR-dopamine D1 receptor heteromeric complexes in the NAcS. Sucrose consumption is accompanied by release of endogenous opioids and dopamine in the NAcS. We then examined MOR-dopamine D1 receptor interactions after sucrose consumption. Sucrose increased NAcS dopamine D1 receptor signaling in NFD and FD rats, and a reduction in β-arrestin2 expression prevented this effect selectively in FD rats. These results show the β-arrestin2-dependent prevalence of dopamine D1 receptor signaling in response to acute morphine or sucrose consumption elicited by food deprivation in rats.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alberto Ferrari
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Teresa Pelliccia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Italy
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
18
|
Flavor preferences conditioned by nutritive and non-nutritive sweeteners in mice. Physiol Behav 2017; 173:188-199. [PMID: 28192132 DOI: 10.1016/j.physbeh.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/18/2017] [Indexed: 01/08/2023]
Abstract
Recent studies suggest that preferences are conditioned by nutritive (sucrose) but not by non-nutritive (sucralose) sweeteners in mice. Here we compared the effectiveness of nutritive and non-nutritive sweeteners to condition flavor preferences in three mouse strains. Isopreferred sucrose and sucralose solutions both conditioned flavor preferences in C57BL/6J (B6) mice but sucrose was more effective, consistent with its post-oral appetition action. Subsequent experiments compared flavor conditioning by fructose, which has no post-oral appetition effect in B6 mice, and a sucralose+saccharin mixture (SS) which is highly preferred to fructose in 24-h choice tests. Both sweeteners conditioned flavor preferences but fructose induced stronger preferences than SS. Training B6 mice to drink a flavored SS solution paired with intragastric fructose infusions did not enhance the SS-conditioned preference. Thus, the post-oral nutritive actions of fructose do not explain the sugar's stronger preference conditioning effect. Training B6 mice to drink a flavored fructose solution containing SS did not reduce the sugar-conditioned preference, indicating that SS does not have an off-taste that attenuates conditioning. Although B6 mice strongly preferred flavored SS to flavored fructose in a direct choice test, they preferred the fructose-paired flavor to the SS-paired flavor when these were presented in water. Fructose conditioned a stronger flavor preference than an isopreferred saccharin solution, indicating that sucralose is not responsible for the limited SS conditioning actions. SS is highly preferred by FVB/NJ and CAST/EiJ inbred mice, yet conditioned only weak flavor preferences. It is unclear why highly or equally preferred non-nutritive sweeteners condition weaker preferences than fructose, when all stimulate the same T1r2/T1r3 sweet receptor. Recent findings support the existence of non-T1r2/T1r3 glucose taste sensors; however, there is no evidence for receptors that respond to fructose but not to non-nutritive sweeteners.
Collapse
|
19
|
Murray S, Tulloch A, Criscitelli K, Avena NM. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: Relevance to low calorie sweeteners. Physiol Behav 2016; 164:504-508. [PMID: 27068180 PMCID: PMC5003688 DOI: 10.1016/j.physbeh.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
The alarmingly high rates of overweight and obesity pose a serious global health threat. Numerous factors can result in weight gain, one of which is excess consumption of caloric sweeteners. In an effort to aid weight loss efforts, many people have switched from caloric sweeteners to low calorie sweeteners, which provide sweet taste without the accompanying calories. In this review, we present an overview of the animal literature produced in the last 5years highlighting the effects of sugar consumption on neural pathways involved in energy balance regulation and reward processing. We also examine the latest evidence that is beginning to elucidate the effects of low calorie sweeteners on these neural pathways, as well as how homeostatic and hedonic systems interact in response to, or to influence, sugar consumption.
Collapse
Affiliation(s)
- Susan Murray
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| | - Alastair Tulloch
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| | - Kristen Criscitelli
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| |
Collapse
|
20
|
Scheggi S, Melis M, De Felice M, Aroni S, Muntoni AL, Pelliccia T, Gambarana C, De Montis MG, Pistis M. PPARα modulation of mesolimbic dopamine transmission rescues depression-related behaviors. Neuropharmacology 2016; 110:251-259. [PMID: 27457507 DOI: 10.1016/j.neuropharm.2016.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/19/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023]
Abstract
Depressive disorders cause a substantial burden for the individual and the society. Key depressive symptoms can be modeled in animals and enable the development of novel therapeutic interventions. Chronic unavoidable stress disrupts rats' competence to escape noxious stimuli and self-administer sucrose, configuring a depression model characterized by escape deficit and motivational anhedonia associated to impaired dopaminergic responses to sucrose in the nucleus accumbens shell (NAcS). Repeated treatments that restore these responses also relieve behavioral symptoms. Ventral tegmental area (VTA) dopamine neurons encode reward and motivation and are implicated in the neuropathology of depressive-like behaviors. Peroxisome proliferator-activated receptors type-α (PPARα) acutely regulate VTA dopamine neuron firing via β2 subunit-containing nicotinic acetylcholine receptors (β2*nAChRs) through phosphorylation and this effect is predictive of antidepressant-like effects. Here, by combining behavioral, electrophysiological and biochemical techniques, we studied the effects of repeated PPARα stimulation by fenofibrate on mesolimbic dopamine system. We found decreased β2*nAChRs phosphorylation levels and a switch from tonic to phasic activity of dopamine cells in the VTA, and increased phosphorylation of dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS. We then investigated whether long-term fenofibrate administration to stressed rats reinstated the decreased DARPP-32 response to sucrose and whether this effect translated into antidepressant-like properties. Fenofibrate restored dopaminergic responses to appetitive stimuli, reactivity to aversive stimuli and motivation to self-administer sucrose. Overall, this study suggests PPARα as new targets for antidepressant therapies endowed with motivational anti-anhedonic properties, further supporting the role of an unbalanced mesolimbic dopamine system in pathophysiology of depressive disorders.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Miriam Melis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Marta De Felice
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Sonia Aroni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Italy
| | - Teresa Pelliccia
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Italy.
| |
Collapse
|
21
|
Cigarroa I, Lalanza JF, Caimari A, del Bas JM, Capdevila L, Arola L, Escorihuela RM. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats. PLoS One 2016; 11:e0153687. [PMID: 27099927 PMCID: PMC4839746 DOI: 10.1371/journal.pone.0153687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/03/2016] [Indexed: 12/12/2022] Open
Abstract
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.
Collapse
Affiliation(s)
- Igor Cigarroa
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- Carrera de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, región del Bio-Bio, Chile
| | - Jaume F. Lalanza
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Caimari
- Grup de Recerca en Nutrició i Salut (GRNS). Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Josep M. del Bas
- Grup de Recerca en Nutrició i Salut (GRNS). Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Lluís Capdevila
- Laboratori de Psicologia de l’Esport, Departament de Psicologia Bàsica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Arola
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Rosa M. Escorihuela
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Klenowski PM, Shariff MR, Belmer A, Fogarty MJ, Mu EWH, Bellingham MC, Bartlett SE. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell. Front Behav Neurosci 2016; 10:54. [PMID: 27047355 PMCID: PMC4803740 DOI: 10.3389/fnbeh.2016.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 12/24/2022] Open
Abstract
The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.
Collapse
Affiliation(s)
- Paul M Klenowski
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Masroor R Shariff
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Arnauld Belmer
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Erica W H Mu
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Selena E Bartlett
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| |
Collapse
|
23
|
de Melo Martimiano PH, da Silva GR, Coimbra VFDSA, Matos RJB, de Souza BFP, da Silva AAM, de Melo DDCB, de Souza SL, de Freitas MFL. Perinatal malnutrition stimulates motivation through reward and enhances drd(1a) receptor expression in the ventral striatum of adult mice. Pharmacol Biochem Behav 2015; 134:106-14. [PMID: 25933794 DOI: 10.1016/j.pbb.2015.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 01/06/2023]
Abstract
AIM The aim of this study was to analyze the effects of protein perinatal malnutrition on the function of dopamine DRD1 and DRD2 receptors in regards to motivation and food consumption in adult mice. The study also analyzed the effect of protein perinatal malnutrition on the gene expression of these receptors in the ventral striatum. METHODS Wistar lineage mice were divided into two groups according to maternal diet: control (17% casein), n=30 and low protein (8% casein), n=30. Between 30 and 120days of life, the following factors were measured: body weight; the effect of dopamine D1 and D2 agonists on the ingestion of palatable food; the motivational aspect under the action of the D1 (SKF 38393) and D2 Quinpirole dopaminergic agonists; and the gene expression of DRD1 and DRD2 receptors in the ventral striatum. RESULTS The body weights of the malnourished animals remained significantly lower than those of the control group from 30 to 120days of life. Malnourished animals ingested a greater quantity of palatable food. There was a decrease in palatable diet consumption in both the control and malnourished groups after the application of D1 and D2 agonists; however, the anorexic effect of the D1 agonist was understated in malnourished animals. Perinatal malnutrition increases the motivational behavior of the animal when food reward is used. There was an increase in gene expression of the DRD1a receptor in the ventral striatum of malnourished animals, and there were no significant changes concerning the DRD2 receptor. CONCLUSIONS Perinatal protein malnutrition stimulates hedonic control of eating behavior by promoting increased intake of palatable foods, possibly due to increased expression of dopamine receptor DRD1a in the ventral striatum.
Collapse
Affiliation(s)
| | | | | | - Rhowena Jane Barbosa Matos
- Center for Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antao, PE, Brazil
| | - Bruno Fernando Pereira de Souza
- Anatomy Department, Biological Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil
| | - Amanda Alves Marcelino da Silva
- PPG - Neuropsychiatry and Behaviour Sciences, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil
| | | | - Sandra Lopes de Souza
- PPG - Neuropsychiatry and Behaviour Sciences, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil; PPG - Nutrition, Health Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil; Anatomy Department, Biological Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil
| | - Manuela Figueiroa Lyra de Freitas
- PPG - Pathology, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil; Anatomy Department, Biological Sciences Centre, Federal University of Pernambuco, Prof° Moraes Rego Avenue, Recife, PE, Brazil.
| |
Collapse
|
24
|
Scheggi S, Pelliccia T, Ferrari A, De Montis M, Gambarana C. Impramine, fluoxetine and clozapine differently affected reactivity to positive and negative stimuli in a model of motivational anhedonia in rats. Neuroscience 2015; 291:189-202. [DOI: 10.1016/j.neuroscience.2015.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/11/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
|
25
|
Sclafani A, Zukerman S, Ackroff K. Postoral glucose sensing, not caloric content, determines sugar reward in C57BL/6J mice. Chem Senses 2015; 40:245-58. [PMID: 25715333 DOI: 10.1093/chemse/bjv002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent studies suggest that because of their energy value, sugars are more rewarding than non-caloric sweeteners. However, intragastric infusion data indicate that sugars differ in their postoral appetite-stimulating effects. We therefore compared the preference for isocaloric 8% sucrose, glucose, and fructose solutions with that of a non-caloric sweetener solution (0.8% sucralose) in C57BL/6J mice. Brief 2-bottle tests indicated that sucralose was isopreferred to sucrose but more preferred than glucose or fructose. Yet, in long-term tests, the mice preferred sucrose and glucose, but not fructose to sucralose. Additional experiments were conducted with a non-caloric 0.1% sucralose + 0.1% saccharin mixture (S + S), which does not have the postoral inhibitory effects of 0.8% sucralose. The S + S was preferred to fructose in brief and long-term choice tests. S + S was also preferred to glucose and sucrose in brief tests, but the sugars were preferred in long-term tests. In progressive ratio tests, non-deprived and food-deprived mice licked more for glucose but not fructose than for S + S. These findings demonstrate that the nutrient-specific postoral actions, not calories per se, determine the avidity for sugar versus non-caloric sweeteners. Furthermore, sweet taste intensity and potential postoral inhibitory actions must be considered in comparing non-caloric and caloric sweeteners.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Steven Zukerman
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
26
|
Holmberg E, Johansson M, Bäckström T, Haage D. Allopregnanolone preferentially induces energy-rich food intake in male Wistar rats. Physiol Rep 2014; 2:e12190. [PMID: 25501437 PMCID: PMC4332196 DOI: 10.14814/phy2.12190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022] Open
Abstract
Obesity is an increasing problem and identification of the driving forces for overeating of energy-rich food is important. Previous studies show that the stress and sex steroid allopregnanolone has a hyperphagic effect on both bland food and palatable food. If allopregnanolone induces a preference for more palatable or for more energy-rich food is not known. The aim of this study was to elucidate the influence of allopregnanolone on food preference. Male Wistar rats were subjected to two different food preference tests: a choice between standard chow and cookies (which have a higher energy content and also are more palatable than chow), and a choice between a low caloric sucrose solution and standard chow (which has a higher energy content and is less palatable than sucrose). Food intake was measured for 1 h after acute subcutaneous injections of allopregnanolone. In the choice between cookies and chow allopregnanolone significantly increased only the intake of cookies. When the standard chow was the item present with the highest caloric load, the chow intake was increased and allopregnanolone had no effect on intake of the 10% sucrose solution. The increased energy intakes induced by the high allopregnanolone dose compared to vehicle were very similar in the two tests, 120% increase for cookies and 150% increase for chow. It appears that in allopregnanolone-induced hyperphagia, rats choose the food with the highest energy content regardless of its palatability.
Collapse
Affiliation(s)
- Ellinor Holmberg
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå Neurosteroid Research Center, Umeå University, Umeå, Sweden
| | - Maja Johansson
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå Neurosteroid Research Center, Umeå University, Umeå, Sweden
| | - Torbjörn Bäckström
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå Neurosteroid Research Center, Umeå University, Umeå, Sweden
| | - David Haage
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå Neurosteroid Research Center, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Enhanced consumption of salient solutions following pedunculopontine tegmental lesions. Neuroscience 2014; 284:381-399. [PMID: 25305665 DOI: 10.1016/j.neuroscience.2014.09.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022]
Abstract
Rats with lesions of the pedunculopontine tegmental nucleus (PPTg) reliably overconsume high concentration sucrose solution. This effect is thought to be indicative of response-perseveration or loss of behavioral control in conditions of high excitement. While these theories have anatomical and behavioral support, they have never been explicitly tested. Here, we used a contact lickometer to examine the microstructure of drinking behavior to gain insight into the behavioral changes during overconsumption. Rats received either excitotoxic (ibotenic acid) damage to all PPTg neuronal subpopulations or selective depletion of the cholinergic neuronal sub-population (diphtheria toxin-urotensin II (Dtx-UII) lesions). We offered rats a variety of pleasant, neutral and aversive tastants to assess the generalizability and specificity of the overconsumption effect. Ibotenic-lesioned rats consumed significantly more 20% sucrose than sham controls, and did so through licking significantly more times. However, the behavioral microstructure during overconsumption was unaffected by the lesion and showed no indications of response-perseveration. Furthermore, the overconsumption effect did not generalize to highly consumed saccharin. In contrast, while only consuming small amounts of quinine solution, ibotenic-lesioned rats had significantly more licks and bursts for this tastant. Selective depletion of cholinergic PPTg neurons had no effect on consumption of any tastant. We then assessed whether it is the salience of the solution which determines overconsumption by ibotenic-lesioned rats. While maintained on free-food, ibotenic-lesioned rats had normal consumption of sucrose and hypertonic saline. After mild food deprivation ibotenic PPTg-lesioned rats overconsumed 20% sucrose. Subsequently, after dietary-induced sodium deficiency, lesioned rats consumed significantly more saline than controls. These results establish that it is the salience of the solution which is the determining factor leading to overconsumption following excitotoxic PPTg lesion. They also find no support for response-perseveration contributing to this effect. Results are discussed in terms of altered dopamine (DA) and salience signaling.
Collapse
|
28
|
Concurrent pharmacological modification of cannabinoid-1 and glucagon-like peptide-1 receptor activity affects feeding behavior and body weight in rats fed a free-choice, high-carbohydrate diet. Behav Pharmacol 2014; 25:53-60. [PMID: 24370558 DOI: 10.1097/fbp.0000000000000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To extend preliminary studies on the effects on food intake of the combined use of cannabinoid (CB) 1 and glucagon-like peptide-1 (GLP-1) receptor agonists and antagonists, the effect of these drugs on the feeding behavior in rats maintained on a free-choice, high-carbohydrate diet was investigated over a longer period of time. Rats were fed a standard diet for 3 days and then fed with both the standard and the high-sucrose chow. After 4 days of the high-calorie diet, the following combination treatments were administered daily by an intraperitoneal injection for the next 3 days: 1 mg/kg AM 251 (a CB1 receptor antagonist) or 1 mg/kg WIN 55,212-2 (a CB1 receptor agonist) together with 3 µg/kg exendin-4 (Ex-4, a GLP-1 receptor agonist) or 160 µg/kg exendin (9-39) [Ex (9-39), a GLP-1 receptor antagonist]. The total daily caloric intake and body weight were significantly reduced in rats treated with Ex-4 and AM 251 or WIN 55,212-2 compared with either of the drugs injected alone and the saline-injected controls. Both drug combinations selectively inhibited ingestion of the high-sucrose chow. Although Ex (9-39) administration did not significantly affect food consumption, it resulted in a marked body weight gain, indicating that the GLP-1 receptor antagonist caused a positive energy balance. It is concluded that AM 251 or WIN 55,212-2 and Ex-4, injected together, exert additive, inhibitory effects on the consumption of high-sugar food.
Collapse
|
29
|
Rorabaugh JM, Stratford JM, Zahniser NR. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior. PLoS One 2014; 9:e95019. [PMID: 24736531 PMCID: PMC3988143 DOI: 10.1371/journal.pone.0095019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/21/2014] [Indexed: 02/06/2023] Open
Abstract
Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior. Specifically, long-term fructose bingeing activates a hyperphagic circuit composed in part of NAc shell and LH/PeF Orx neurons.
Collapse
Affiliation(s)
- Jacki M. Rorabaugh
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| | - Jennifer M. Stratford
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nancy R. Zahniser
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
30
|
Hoch T, Pischetsrieder M, Hess A. Snack food intake in ad libitum fed rats is triggered by the combination of fat and carbohydrates. Front Psychol 2014; 5:250. [PMID: 24744741 PMCID: PMC3978285 DOI: 10.3389/fpsyg.2014.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
Snack food like potato chips substantially contributes to energy intake in humans. In contrast to basic food, snacks are consumed additionally to other meals and may thereby lead to non-homeostatic energy intake. Snack food is also frequently associated with hedonic hyperphagia, a food intake independent from hunger. Analysis of brain activity patterns by manganese-enhanced MRI has previously revealed that the intake of potato chips in ad libitum fed rats strongly activates the reward system of the rat brain, which may lead to hedonic hyperphagia. The purpose of the present study was to develop a two-choice preference test to identify molecular determinants of snack food triggering extra food intake in ad libitum fed rats. Different kinds of test food were presented three times a day for 10 min each time. To minimize the influence of organoleptic properties, each test food was applied in a homogenous mixture with standard chow. Food intake as well as food intake-related locomotor activity were analyzed to evaluate the effects induced by the test foods in the two-choice preference test. In summary, fat (F), carbohydrates (CH), and a mixture of fat and carbohydrates (FCH) led to a higher food intake compared to standard chow. Notably, potato chip test food (PC) was highly significantly preferred over standard chow (STD) and also over their single main macronutrients F and CH. Only FCH induced an intake comparable to PC. Despite its low energy density, fat-free potato chip test food (ffPC) was also significantly preferred over STD and CH, but not over F, FCH, and PC. Thus, it can be concluded that the combination of fat and carbohydrates is a major molecular determinant of potato chips triggering hedonic hyperphagia. The applied two-choice preference test will facilitate future studies on stimulating and suppressive effects of other food components on non-homeostatic food intake.
Collapse
Affiliation(s)
- Tobias Hoch
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
31
|
Levy A, Limebeer CL, Ferdinand J, Shillingford U, Parker LA, Leri F. A novel procedure for evaluating the reinforcing properties of tastants in laboratory rats: operant intraoral self-administration. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2014. [PMID: 24561923 DOI: 10.3791/50956.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/26/2022]
Abstract
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Collapse
|
32
|
Levy A, Limebeer CL, Ferdinand J, Shillingford U, Parker LA, Leri F. A novel procedure for evaluating the reinforcing properties of tastants in laboratory rats: operant intraoral self-administration. J Vis Exp 2014:e50956. [PMID: 24561923 DOI: 10.3791/50956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Collapse
|