1
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. Pain 2025; 166:614-630. [PMID: 39928726 PMCID: PMC11819886 DOI: 10.1097/j.pain.0000000000003508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 02/12/2025]
Abstract
ABSTRACT Cell states are influenced by the regulation of gene expression orchestrated by transcription factors capable of binding to accessible DNA regions. To uncover if sex differences exist in chromatin accessibility in the human dorsal root ganglion (hDRG), where nociceptive neurons innervating the body are found, we performed bulk and spatial assays for transposase-accessible chromatin technology followed by sequencing (ATAC-seq) from organ donors without a history of chronic pain. Using bulk ATAC-seq, we detected abundant sex differences in the hDRG. In women, differentially accessible regions (DARs) mapped mostly to the X chromosome, whereas in men, they mapped to autosomal genes. Hormone-responsive transcription factor binding motifs such as EGR1/3 were abundant within DARs in women, while JUN, FOS, and other activating protein 1 factor motifs were enriched in men, suggesting a higher activation state of cells compared with women. These observations were consistent with spatial ATAC-seq data. Furthermore, we validated that EGR1 expression is biased to female hDRG using RNAscope. In neurons, spatial ATAC-seq revealed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in women and in Ca2+-signaling-related genes in men. Strikingly, XIST, responsible for inactivating 1 X chromosome by compacting it and maintaining at the periphery of the nucleus, was found to be highly dispersed in female neuronal nuclei. This is likely related to the higher chromatin accessibility in X in female hDRG neurons observed using both ATAC-seq approaches. We have documented baseline epigenomic sex differences in the hDRG which provide important descriptive information to test future hypotheses.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadijah Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
2
|
Dyson A, Gajjar G, Hoffman KC, Lewis D, Palega S, Rangel Silva E, Auwn J, Bellemer A. A nociceptor-specific RNAi screen in Drosophila larvae identifies RNA-binding proteins that regulate thermal nociception. PeerJ 2025; 13:e18857. [PMID: 39866556 PMCID: PMC11759608 DOI: 10.7717/peerj.18857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity. The larvae of Drosophila melanogaster have been developed as a powerful model for studying mechanisms of nociception, nociceptor plasticity, and nociceptor development. Diverse RNA-binding proteins regulate the development and morphology of larval nociceptors, implying important roles for post-transcriptional regulation of gene expression in these neurons, but the importance of these mechanisms for nociceptive behavior has not been investigated systematically. In this study, we conducted a nociceptor-specific RNAi screen of 112 candidate RNA-binding protein genes to identify those that are required for normal sensitivity to noxious thermal stimuli. The screen and subsequent validation experiments identified nine candidate genes (eIF2α, eIF4A, eIF4AIII, eIF4G2, mbl, SC35, snf, Larp4B and CG10445) that produce defects in nociceptive response latency when knocked down in larval nociceptors. Some of the genes identified have well-understood roles in the regulation of translation initiation and regulation of nociceptor sensitization in vertebrate and invertebrate animal models, suggesting an evolutionarily conserved role for these mechanisms in regulating nociceptor sensitivity. Other screen isolates have previously described roles in regulating nociceptor morphology and mRNA processing, but less clear roles in regulating nociceptor function. Further studies will be necessary to identify the mechanisms by which the identified RNA-binding proteins regulate sensory neuron function and the identities of the mRNAs that they target.
Collapse
Affiliation(s)
- Amber Dyson
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Gita Gajjar
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, North Carolina, United States
| | - Katherine C. Hoffman
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Dakota Lewis
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Sara Palega
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Erik Rangel Silva
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - James Auwn
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Andrew Bellemer
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| |
Collapse
|
3
|
Ding X, Wang G, Lin Y, Hu W, Chen C, Gao J, Wu Y, Zhou C. A novel SIRT1 activator attenuates neuropathic pain by inhibiting spinal neuronal activation via the SIRT1-mGluR1/5 pathway. Cell Biol Toxicol 2025; 41:24. [PMID: 39779529 PMCID: PMC11711878 DOI: 10.1007/s10565-024-09970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Neuropathic pain is a type of pain caused by an injury or disease of the somatosensory nervous system. Currently, there is still absence of effective therapeutic drugs for neuropathic pain, so developing new therapeutic drugs is urgently needed. In the present study, we observed the effect of Comp 6d, a novel silent information regulator 1 (SIRT1) activator synthesized in our laboratory, on neuropathic pain and investigated the mechanisms involved. We found that both intrathecal and intraperitoneal injections of Comp 6d effectively alleviated neuropathic pain induced by chronic constriction injury (CCI) or spared nerve injury (SNI). However, the effect of Comp 6d on neuropathic pain was abolished in SIRT1 knockout mice. These results demonstrated that Comp 6d alleviated neuropathic pain by specifically activating SIRT1 in the spinal cord. Moreover, long-term intraperitoneal injection of Comp 6d had no significant side effects on heart, liver and kidney in SNI mice. Further study showed that the improvement of neuropathic pain by Comp 6d was mediated by the downregulation of mGluR1/5 levels and the subsequent inhibition of spinal neuronal activation. Taken together, the present findings suggest that the novel SIRT1 activator Comp 6d inhibits the activation of spinal cord neurons via the SIRT1-mGluR1/5 pathway, thereby attenuating neuropathic pain. Comp 6d is expected to be an effective therapeutic agent for neuropathic pain.
Collapse
Affiliation(s)
- Xiaobao Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Guizhi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuwen Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenli Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, China.
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
4
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
5
|
Pethő G, Kántás B, Horváth Á, Pintér E. The Epigenetics of Neuropathic Pain: A Systematic Update. Int J Mol Sci 2023; 24:17143. [PMID: 38138971 PMCID: PMC10743356 DOI: 10.3390/ijms242417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetics deals with alterations to the gene expression that occur without change in the nucleotide sequence in the DNA. Various covalent modifications of the DNA and/or the surrounding histone proteins have been revealed, including DNA methylation, histone acetylation, and methylation, which can either stimulate or inhibit protein expression at the transcriptional level. In the past decade, an exponentially increasing amount of data has been published on the association between epigenetic changes and the pathomechanism of pain, including its most challenging form, neuropathic pain. Epigenetic regulation of the chromatin by writer, reader, and eraser proteins has been revealed for diverse protein targets involved in the pathomechanism of neuropathic pain. They include receptors, ion channels, transporters, enzymes, cytokines, chemokines, growth factors, inflammasome proteins, etc. Most work has been invested in clarifying the epigenetic downregulation of mu opioid receptors and various K+ channels, two types of structures mediating neuronal inhibition. Conversely, epigenetic upregulation has been revealed for glutamate receptors, growth factors, and lymphokines involved in neuronal excitation. All these data cannot only help better understand the development of neuropathic pain but outline epigenetic writers, readers, and erasers whose pharmacological inhibition may represent a novel option in the treatment of pain.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Obstetrics and Gynecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
| |
Collapse
|
6
|
Rivi V, Rigillo G, Toscano Y, Benatti C, Blom JMC. Narrative Review of the Complex Interaction between Pain and Trauma in Children: A Focus on Biological Memory, Preclinical Data, and Epigenetic Processes. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1217. [PMID: 37508714 PMCID: PMC10378710 DOI: 10.3390/children10071217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The incidence and collective impact of early adverse experiences, trauma, and pain continue to increase. This underscores the urgent need for translational efforts between clinical and preclinical research to better understand the underlying mechanisms and develop effective therapeutic approaches. As our understanding of these issues improves from studies in children and adolescents, we can create more precise preclinical models and ultimately translate our findings back to clinical practice. A multidisciplinary approach is essential for addressing the complex and wide-ranging effects of these experiences on individuals and society. This narrative review aims to (1) define pain and trauma experiences in childhood and adolescents, (2) discuss the relationship between pain and trauma, (3) consider the role of biological memory, (4) decipher the relationship between pain and trauma using preclinical data, and (5) examine the role of the environment by introducing the importance of epigenetic processes. The ultimate scope is to better understand the wide-ranging effects of trauma, abuse, and chronic pain on children and adolescents, how they occur, and how to prevent or mitigate their effects and develop effective treatment strategies that address both the underlying causes and the associated physiological and psychological effects.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ylenia Toscano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna Maria Catharina Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
7
|
Lee J, Thomas Broome S, Jansen MI, Mandwie M, Logan GJ, Marzagalli R, Musumeci G, Castorina A. Altered Hippocampal and Striatal Expression of Endothelial Markers and VIP/PACAP Neuropeptides in a Mouse Model of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:11118. [PMID: 37446298 DOI: 10.3390/ijms241311118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.
Collapse
Affiliation(s)
- Jayden Lee
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
8
|
Song F, Liu D, Zhou Y, Mei W. SIRT1: A promising therapeutic target for chronic pain. CNS Neurosci Ther 2022; 28:818-828. [PMID: 35396903 PMCID: PMC9062570 DOI: 10.1111/cns.13838] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic pain remains an unresolved problem. Current treatments have limited efficacy. Thus, novel therapeutic targets are urgently required for the development of more effective analgesics. An increasing number of studies have proved that sirtuin 1 (SIRT1) agonists can relieve chronic pain. In this review, we summarize recent progress in understanding the roles and mechanisms of SIRT1 in mediating chronic pain associated with peripheral nerve injury, chemotherapy-induced peripheral neuropathy, spinal cord injury, bone cancer, and complete Freund's adjuvant injection. Emerging studies have indicated that SIRT1 activation may exert positive effects on chronic pain relief by regulating inflammation, oxidative stress, and mitochondrial dysfunction. Therefore, SIRT1 agonists may serve as potential therapeutic drugs for chronic pain.
Collapse
Affiliation(s)
- Fan‐He Song
- Anesthesiology InstituteTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Anesthesiology and Pain MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dai‐Qiang Liu
- Anesthesiology InstituteTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Anesthesiology and Pain MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ya‐Qun Zhou
- Anesthesiology InstituteTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Anesthesiology and Pain MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Mei
- Anesthesiology InstituteTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Anesthesiology and Pain MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Abstract
Neuropathic pain (NP) is a common symptom in many diseases of the somatosensory
nervous system, which severely affects the patient’s quality of life.
Epigenetics are heritable alterations in gene expression that do not cause
permanent changes in the DNA sequence. Epigenetic modifications can affect gene
expression and function and can also mediate crosstalk between genes and the
environment. Increasing evidence shows that epigenetic modifications, including
DNA methylation, histone modification, non-coding RNA, and RNA modification, are
involved in the development and maintenance of NP. In this review, we focus on
the current knowledge of epigenetic modifications in the development and
maintenance of NP. Then, we illustrate different facets of epigenetic
modifications that regulate gene expression and their crosstalk. Finally, we
discuss the burgeoning evidence supporting the potential of emerging epigenetic
therapies, which has been valuable in understanding mechanisms and offers novel
and potent targets for NP therapy.
Collapse
Affiliation(s)
- Danzhi Luo
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
- Sun Yet-Sen Memorial Hospital of Sun
Yet-Sen University, Guangzhou, China
| | - Xiaohong Li
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jinshu Liang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
- Jun Zhou, Department of Anesthesiology, The
Third Affiliated Hospital of Southern Medical University, Guangzhou 510630,
China.
| |
Collapse
|
10
|
Torres-Perez JV, Irfan J, Febrianto MR, Di Giovanni S, Nagy I. Histone post-translational modifications as potential therapeutic targets for pain management. Trends Pharmacol Sci 2021; 42:897-911. [PMID: 34565578 DOI: 10.1016/j.tips.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Effective pharmacological management of pain associated with tissue pathology is an unmet medical need. Transcriptional modifications in nociceptive pathways are pivotal for the development and the maintenance of pain associated with tissue damage. Accumulating evidence has shown the importance of the epigenetic control of transcription in nociceptive pathways via histone post-translational modifications (PTMs). Hence, histone PTMs could be targets for novel effective analgesics. Here, we discuss the current understanding of histone PTMs in the modulation of gene expression affecting nociception and pain phenotypes following tissue injury. We also provide a critical view of the translational implications of preclinical models and discuss opportunities and challenges of targeting histone PTMs to relieve pain in clinically relevant tissue injuries.
Collapse
Affiliation(s)
- Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK.
| | - Jahanzaib Irfan
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Muhammad Rizki Febrianto
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK.
| | - Istvan Nagy
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
11
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Rapid elevation of brain-derived neurotrophic factor production in the bilateral trigeminal ganglia by unilateral transection of the mental nerve in mice. Neuroreport 2021; 32:659-665. [PMID: 33814543 DOI: 10.1097/wnr.0000000000001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Previous spinal nerve injury studies have reported brain-derived neurotrophic factor (BDNF) mRNA upregulation in either the ipsilateral dorsal root ganglion (DRG) neurons or both the contralateral and ipsilateral DRG neurons from early period after peripheral nerve injury. This BDNF elevation induces hyperalgesia in the injured and/or uninjured sites, but this detailed mechanism remains unknown. This study aimed to investigate the BDNF mRNA expression in bilateral DRG neurons caused by unilateral nerve injury and to explore the possible mechanisms by which nitric oxide (NO) mediates BDNF production in the DRG, resulting in contralateral hyperalgesia. METHODS Early changes in BDNF mRNA expression in the bilateral trigeminal ganglia, within 1 day after mental nerve transection, were examined. Additionally, the effects on BDNF production of the NO synthase inhibitor N(ω)-nitro-l-arginine methyl ester (L-NAME) were investigated in the bilateral trigeminal ganglia. The relationship between injured neurons and BDNF production in the trigeminal ganglia was then assessed using immunohistochemical and retrograde tracing methods. RESULTS Reverse transcription-PCR analysis demonstrated that unilateral transection of the mental nerve induced a rapid elevation of BDNF mRNA expression, which was inhibited by the intracerebroventricular administration of L-NAME prior to nerve transection. This effect was observed in both the ipsilateral and contralateral sides to the nerve transection. BDNF immunostaining combined with FluoroGold retrograde tracing revealed two types of BDNF-reactive neurons, FluoroGold-labelled and non-FluoroGold-labelled neurons, in the ipsilateral and contralateral sides of the trigeminal ganglia. BDNF-positive cells were also observed in the trigeminal ganglia of other trigeminal nerve branches. CONCLUSIONS Unilateral nerve injury upregulates BDNF production in the bilateral trigeminal ganglia by NO-mediated and/or indirect activation of afferent neurons, resulting in contralateral hyperalgesia.
Collapse
|
13
|
Zhang Z, Zheng B, Du S, Han G, Zhao H, Wu S, Jia S, Bachmann T, Bekker A, Tao YX. Eukaryotic initiation factor 4 gamma 2 contributes to neuropathic pain through down-regulation of Kv1.2 and the mu opioid receptor in mouse primary sensory neurones. Br J Anaesth 2021; 126:706-719. [PMID: 33303185 PMCID: PMC8014947 DOI: 10.1016/j.bja.2020.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nerve injury-induced changes in gene expression in the dorsal root ganglion (DRG) contribute to neuropathic pain genesis. Eukaryotic initiation factor 4 gamma 2 (eIF4G2) is a general repressor of cap-dependent mRNA translation. Whether DRG eIF4G2 participates in nerve injury-induced alternations in gene expression and nociceptive hypersensitivity is unknown. METHODS The expression and distribution of eIF4G2 mRNA and protein in mouse DRG after spinal nerve ligation (SNL) were assessed. Effects of eIF4G2 siRNA microinjected through a glass micropipette into the injured DRG on the SNL-induced DRG mu opioid receptor (MOR) and Kv1.2 downregulation and nociceptive hypersensitivity were examined. In addition, effects of DRG microinjection of adeno-associated virus 5-expressing eIF4G2 (AAV5-eIF4G2) on basal DRG MOR and Kv1.2 expression and nociceptive thresholds were analysed. RESULTS eIF4G2 protein co-expressed with Kv1.2 and MOR in DRG neurones. Levels of eIF4G2 mRNA (1.7 [0.24] to 2.3 [0.14]-fold of sham, P<0.01) and protein (1.6 [0.14] to 2.5 [0.22]-fold of sham, P<0.01) in injured DRG were time-dependently increased on days 3-14 after SNL. Blocking increased eIF4G2 through microinjection of eIF4G2 siRNA into the injured DRG attenuated SNL-induced downregulation of DRG MOR and Kv1.2 and development and maintenance of nociceptive hypersensitivities. DRG microinjection of AAV5-eIF4G2 reduced DRG MOR and Kv1.2 expression and elicited hypersensitivities to mechanical, heat and cold stimuli in naïve mice. CONCLUSIONS eIF4G2 contributes to neuropathic pain through participation in downregulation of Kv1.2 and MOR in injured DRG and is a potential target for treatment of this disorder.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Bixin Zheng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Guang Han
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Hui Zhao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shushan Jia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Thomas Bachmann
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
14
|
Carcolé M, Kummer S, Gonçalves L, Zamanillo D, Merlos M, Dickenson AH, Fernández‐Pastor B, Cabañero D, Maldonado R. Sigma-1 receptor modulates neuroinflammation associated with mechanical hypersensitivity and opioid tolerance in a mouse model of osteoarthritis pain. Br J Pharmacol 2019; 176:3939-3955. [PMID: 31332781 PMCID: PMC6811737 DOI: 10.1111/bph.14794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritic pain is a chronic disabling condition lacking effective treatment. Continuous use of opioid drugs during osteoarthritic pain induces tolerance and may result in dose escalation and abuse. Sigma-1 (σ1) receptors, a chaperone expressed in key areas for pain control, modulates μ-opioid receptor activity and represents a promising target to tackle these problems. The present study investigates the efficacy of the σ1 receptor antagonist E-52862 to inhibit pain sensitization, morphine tolerance, and associated electrophysiological and molecular changes in a murine model of osteoarthritic pain. EXPERIMENTAL APPROACH Mice received an intra-knee injection of monoiodoacetate followed by 14-day treatment with E-52862, morphine, or vehicle, and mechanical sensitivity was assessed before and after the daily doses. KEY RESULTS Monoiodoacetate-injected mice developed persistent mechanical hypersensitivity, which was dose-dependently inhibited by E-52862. Mechanical thresholds assessed before the daily E-52862 dose showed gradual recovery, reaching complete restoration by the end of the treatment. When repeated treatment started 15 days after knee injury, E-52862 produced enhanced short-term analgesia, but recovery to baseline threshold was slower. Both a σ1 receptor agonist and a μ receptor antagonist blocked the analgesic effects of E-52862. An acute, sub-effective dose of E-52862 restored morphine analgesia in opioid-tolerant mice. Moreover, E-52862 abolished spinal sensitization in osteoarthritic mice and inhibited pain-related molecular changes. CONCLUSION AND IMPLICATIONS These findings show dual effects of σ1 receptor antagonism alleviating both short- and long-lasting antinociception during chronic osteoarthritis pain. They identify E-52862 as a promising pharmacological agent to treat chronic pain and avoid opioid tolerance.
Collapse
Affiliation(s)
- Mireia Carcolé
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Sami Kummer
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Leonor Gonçalves
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, Laboratories EsteveBarcelona Science ParkBarcelonaSpain
| | - Manuel Merlos
- Drug Discovery and Preclinical Development, Laboratories EsteveBarcelona Science ParkBarcelonaSpain
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Begoña Fernández‐Pastor
- Drug Discovery and Preclinical Development, Laboratories EsteveBarcelona Science ParkBarcelonaSpain
| | - David Cabañero
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Rafael Maldonado
- Neuropharmacology Lab, Department of Experimental and Health SciencesUniversity Pompeu FabraBarcelonaSpain
| |
Collapse
|
15
|
Martin SL, Reid AJ, Verkhratsky A, Magnaghi V, Faroni A. Gene expression changes in dorsal root ganglia following peripheral nerve injury: roles in inflammation, cell death and nociception. Neural Regen Res 2019; 14:939-947. [PMID: 30761997 PMCID: PMC6404509 DOI: 10.4103/1673-5374.250566] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Subsequent to a peripheral nerve injury, there are changes in gene expression within the dorsal root ganglia in response to the damage. This review selects factors which are well-known to be vital for inflammation, cell death and nociception, and highlights how alterations in their gene expression within the dorsal root ganglia can affect functional recovery. The majority of studies used polymerase chain reaction within animal models to analyse the dynamic changes following peripheral nerve injuries. This review aims to highlight the factors at the gene expression level that impede functional recovery and are hence are potential targets for therapeutic approaches. Where possible the experimental model, specific time-points and cellular location of expression levels are reported.
Collapse
Affiliation(s)
- Sarah L Martin
- Blond McIndoe Laboratories, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, School of Biological Sciences, University of Manchester; University Hospital of South Manchester, Department of Plastic and Burns, Manchester, Manchester, UK
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Faroni
- Blond McIndoe Laboratories, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Yildiran H, Macit MS, Özata Uyar G. New approach to peripheral nerve injury: nutritional therapy. Nutr Neurosci 2018; 23:744-755. [PMID: 30526417 DOI: 10.1080/1028415x.2018.1554322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose of review: There is no review in the literature on the effect of nutrition-related factors on peripheral nerve injuries. Therefore, it is aimed to evaluate the effect of nutritional factors on nerve injuries in this compilation. Recent findings: Although there are several fundamental mechanisms by which nutrients and nutritional factors influence individuals, their exact impacts on neurogenesis have not been clearly identified. Recently, some studies showed that some nutrients have an important role in nerve injuries due to their neuroprotective properties. In addition to surgical treatment, in peripheral nerve injuries, these nutrients also may play a role in preserving nerve function and health, as well as in the recovery of an injured nerve tissue. Omega 3 and omega 6 fatty acids, group B vitamins, antioxidants, several minerals, phenolic compounds, and alpha lipoic acid are thought to have impacts on the nervous system. In addition to all of these, gut microbiota has effects on the nervous system, and some nutrient-related factors can also affect neurogenesis via gut microbiota. Summary: Peripheral nerve injury is a condition in which the nerves in the peripheral nervous system become damaged. After the trauma, the peripheral nerve is hardly repaired due to the following reasons; the disability of the regeneration of motor neurons, the lack of a survival environment for Schwann cells, and the poor ability of the nerves to regenerate. Nutrition-related factors, the effects of which were described in recent years, should be more taken into account more.
Collapse
Affiliation(s)
- Hilal Yildiran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Melahat Sedanur Macit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Gizem Özata Uyar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
A new hypothesis for the pathophysiology of complex regional pain syndrome. Med Hypotheses 2018; 119:41-53. [DOI: 10.1016/j.mehy.2018.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022]
|
18
|
Liang L, Tao YX. Expression of acetyl-histone H3 and acetyl-histone H4 in dorsal root ganglion and spinal dorsal horn in rat chronic pain models. Life Sci 2018; 211:182-188. [PMID: 30236868 DOI: 10.1016/j.lfs.2018.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
AIMS Histone acetylation and deacetylation are two histone posttranslational modifications that are usually controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HATs or HDACs Inhibitors could relieve pain hypersensitivities in chronic pain animal models, it is not clear on the expression of global histone acetylation in the dorsal root ganglion (DRG) or spinal dorsal horn in chronic pain conditions. MAIN METHODS A spinal nerve ligation (SNL)-induced neuropathic pain model and a complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats were used to examine the expression of total acetyl-histone H3 (AcH3) and total acetyl-histone H4 (AcH4) by immunofluorescence or western blot. KEY FINDINGS AcH3 and AcH4 not only localized in neuronal nuclei, but also in nuclei of glial cells in the DRG. Unilateral SNL induced the increase of AcH3 and AcH4 expression in the injured lumbar 5 (L5) DRG, but not in the uninjured L5 DRG or the spinal dorsal horn, while unilateral intraplantar injection of CFA increased AcH3 and AcH4 expression in the ipsilateral L4/5 spinal dorsal horn, but not in the L4/5 DRG. SIGNIFICANCE These results provide morphological evidence for global histone acetylation expression in the DRG and spinal cord and indicate the differential expression in the DRG and spinal dorsal horn in different chronic pain models. More precise epigenetic mechanisms of histone acetylation on the target genes need to be revealed.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China.
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
19
|
Wang X, Shen X, Xu Y, Xu S, Xia F, Zhu B, Liu Y, Wang W, Wu H, Wang F. The etiological changes of acetylation in peripheral nerve injury-induced neuropathic hypersensitivity. Mol Pain 2018; 14:1744806918798408. [PMID: 30105933 PMCID: PMC6144590 DOI: 10.1177/1744806918798408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a common chronic pain condition with mechanisms far clearly
been elucidated. Mounting preclinical and clinical studies have shown
neuropathic pain is highly associated with histone acetylation modification,
which follows expression regulation of various pain-related molecules such as
mGluR1/5, glutamate aspartate transporter, glutamate transporter-1, GAD65,
Nav1.8, Kv4.3, μ-opioid receptor, brain-derived neurotrophic
factor, and certain chemokines. As two types of pivotal enzymes involved in
histone acetylation, histone deacetylases induce histone deacetylation to
silence gene expression; in contrast, histone acetyl transferases facilitate
histone acetylation to potentiate gene transcription. Accordingly, upregulation
or blockade of acetylation may be a promising intervention direction for
neuropathic pain treatment. In fact, numerous animal studies have suggested
various histone deacetylase inhibitors, Sirt (class III histone deacetylases)
activators, and histone acetyl transferases inhibitors are effective in
neuropathic pain treatment via targeting specific epigenetic sites. In this
review, we summarize the characteristics of the molecules and mechanisms of
neuropathy-related acetylation, as well as the acetylation upregulation and
blockade for neuropathic pain therapy. Finally, we will discuss the current drug
advances focusing on neuropathy-related acetylation along with the underlying
treatment mechanisms.
Collapse
Affiliation(s)
- Xian Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yingli Xu
- 2 Nursing Center, Operating Room, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Fan Xia
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Bei Zhu
- 3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yusheng Liu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
21
|
Moy JK, Khoutorsky A, Asiedu MN, Dussor G, Price TJ. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons. Front Cell Neurosci 2018; 12:29. [PMID: 29467623 PMCID: PMC5808250 DOI: 10.3389/fncel.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/23/2018] [Indexed: 01/19/2023] Open
Abstract
Plasticity in dorsal root ganglion (DRG) neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF) signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A) and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.
Collapse
Affiliation(s)
- Jamie K Moy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montréal, QC, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Marina N Asiedu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
22
|
Ma B, Liu X, Huang X, Ji Y, Jin T, Ma K. Translocator protein agonist Ro5-4864 alleviates neuropathic pain and promotes remyelination in the sciatic nerve. Mol Pain 2017; 14:1744806917748019. [PMID: 29212402 PMCID: PMC5805004 DOI: 10.1177/1744806917748019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our previous study reported the translocator protein to play a critical role in neuropathic pain and the possible mechanisms in the spinal cord. However, its mechanism in the peripheral nervous system is poorly understood. This study was undertaken to explore the distribution of translocator protein in the dorsal root ganglion and the possible mechanisms in peripheral nervous system in a rat model of spared nerve injury. Our results showed that translocator protein was activated in dorsal root ganglion after spared nerve injury. The translocator protein signals were primarily colocalized with neurons in dorsal root ganglion. A single intrathecal (i.t.) injection of translocator protein agonist (7-chloro-5-4-chlorophenyl)-1,3-dihydro-1-methyl-2-H-1,4-benzodiaze-pine-2) (Ro5-4864) exerted remarkable analgesic effect compared with the spared nerve injury group ( P < 0.01). After i.t. administration of 2 µg Ro5-4864 on day 3, the expression of translocator protein in ipsilateral dorsal root ganglion was significantly increased on day 7( P < 0.01) but decreased on day 14 ( P < 0.05) compared with the same point in time in the control group. The duration of translocator protein activation in dorsal root ganglion was remarkably shortened. Ro5-4864 also inhibited the activation of phospho-extracellular signal-regulated kinase 1(p-ERK1) ( P < 0.01), p-ERK2 (D7: P < 0.01, D14: P < 0.05), and brain-derived neurotrophic factor ( P < 0.05) in dorsal root ganglion. Meanwhile, i.t. administration of 2 µg Ro5-4864 on day 3 further accelerated the expression of myelin protein zero(P0) and peripheral myelin protein 22 (PMP22). Our results suggested Ro5-4864 could alleviate neuropathic pain and attenuate p-ERK and brain-derived neurotrophic factor activation in dorsal root ganglion. Furthermore, Ro5-4864 stimulated the expression of myelin regeneration proteins which may also be an important factor against neuropathic pain development. Translocator protein may present a novel target for the treatment of neuropathic pain both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xiaoming Liu
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xuehua Huang
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yun Ji
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Tian Jin
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Ke Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
23
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
24
|
da Silveira FP, Basso C, Raupp W, Dalpiaz M, Bertoldi K, Siqueira IR, Lago PD, de Souza MP, Elsner VR. BDNF levels are increased in peripheral blood of middle-aged amateur runners with no changes on histone H4 acetylation levels. J Physiol Sci 2017; 67:681-687. [PMID: 27743179 PMCID: PMC10717784 DOI: 10.1007/s12576-016-0496-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Our aim was to compare the basal levels of plasma brain-derived neurotrophic factor (BDNF) and global histone H4 acetylation in peripheral blood mononuclear cells (PBMCs) of healthy amateur runners (EXE group) with sedentary individuals (SED group) as well as to investigate the acute effect of a running race on these markers in the EXE group. Five days before the race, all participants were submitted to a basal blood collection. On the race day, two blood samples were collected in the EXE group before the running started and immediately at the end. In the basal period, a significant increase of plasma BDNF levels in the EXE individuals when compared to the SED group (p = 0.036) was demonstrated, while no difference in global histone H4 acetylation levels was observed. These parameters were unaltered in the EXE group after the race. The increased levels of BDNF might be linked to healthy middle-aged runners' phenotype.
Collapse
Affiliation(s)
- Fernanda Peres da Silveira
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil
| | - Carla Basso
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Wagner Raupp
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Morgana Dalpiaz
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil
| | - Karine Bertoldi
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ionara Rodrigues Siqueira
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Dal Lago
- Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maristela Padilha de Souza
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil.
| |
Collapse
|
25
|
Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats. Anesthesiology 2017; 127:862-877. [DOI: 10.1097/aln.0000000000001809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Background
Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear.
Methods
Male Sprague–Dawley rats received hind paw injections of complete Freund’s adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel.
Results
The intraplantar complete Freund’s adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4–expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund’s adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7–mediated currents were enhanced in neurons of the complete Freund’s adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4–targeted antisense small interfering RNA to the complete Freund’s adjuvant–treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons).
Conclusions
Complete Freund’s adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is likely mediated by the enhanced expression of voltage-gated sodium channel 1.7.
Collapse
|
26
|
Notartomaso S, Mascio G, Bernabucci M, Zappulla C, Scarselli P, Cannella M, Imbriglio T, Gradini R, Battaglia G, Bruno V, Nicoletti F. Analgesia induced by the epigenetic drug, L-acetylcarnitine, outlasts the end of treatment in mouse models of chronic inflammatory and neuropathic pain. Mol Pain 2017; 13:1744806917697009. [PMID: 28326943 PMCID: PMC5407675 DOI: 10.1177/1744806917697009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background L-acetylcarnitine, a drug marketed for the treatment of chronic pain, causes analgesia by epigenetically up-regulating type-2 metabotropic glutamate (mGlu2) receptors in the spinal cord. Because the epigenetic mechanisms are typically long-lasting, we hypothesized that analgesia could outlast the duration of L-acetylcarnitine treatment in models of inflammatory and neuropathic pain. Results A seven-day treatment with L-acetylcarnitine (100 mg/kg, once a day, i.p.) produced an antiallodynic effect in the complete Freund adjuvant mouse model of chronic inflammatory pain. L-Acetylcarnitine-induced analgesia persisted for at least 14 days after drug withdrawal. In contrast, the analgesic effect of pregabalin, amitryptiline, ceftriaxone, and N-acetylcysteine disappeared seven days after drug withdrawal. L-acetylcarnitine treatment enhanced mGlu2/3 receptor protein levels in the dorsal region of the spinal cord. This effect also persisted for two weeks after drug withdrawal and was associated with increased levels of acetylated histone H3 bound to the Grm2 gene promoter in the dorsal root ganglia. A long-lasting analgesic effect of L-acetylcarnitine was also observed in mice subjected to chronic constriction injury of the sciatic nerve. In these animals, a 14-day treatment with pregabalin, amitryptiline, tramadol, or L-acetylcarnitine produced a significant antiallodynic effect, with pregabalin displaying the greatest efficacy. In mice treated with pregabalin, tramadol or L-acetylcarnitine the analgesic effect was still visible 15 days after the end of drug treatment. However, only in mice treated with L-acetylcarnitine analgesia persisted 37 days after drug withdrawal. This effect was associated with an increase in mGlu2/3 receptor protein levels in the dorsal horns of the spinal cord. Conclusions Our findings suggest that L-acetylcarnitine has the unique property to cause a long-lasting analgesic effect that might reduce relapses in patients suffering from chronic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Gradini
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,2 Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Valeria Bruno
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,3 Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,3 Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
27
|
DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons. Nat Commun 2017; 8:14712. [PMID: 28270689 PMCID: PMC5344974 DOI: 10.1038/ncomms14712] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022] Open
Abstract
Nerve injury induces changes in gene transcription in dorsal root ganglion (DRG) neurons, which may contribute to nerve injury-induced neuropathic pain. DNA methylation represses gene expression. Here, we report that peripheral nerve injury increases expression of the DNA methyltransferase DNMT3a in the injured DRG neurons via the activation of the transcription factor octamer transcription factor 1. Blocking this increase prevents nerve injury-induced methylation of the voltage-dependent potassium (Kv) channel subunit Kcna2 promoter region and rescues Kcna2 expression in the injured DRG and attenuates neuropathic pain. Conversely, in the absence of nerve injury, mimicking this increase reduces the Kcna2 promoter activity, diminishes Kcna2 expression, decreases Kv current, increases excitability in DRG neurons and leads to spinal cord central sensitization and neuropathic pain symptoms. These findings suggest that DNMT3a may contribute to neuropathic pain by repressing Kcna2 expression in the DRG.
Collapse
|
28
|
Yadav R, Weng HR. EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 2017; 349:106-117. [PMID: 28257897 DOI: 10.1016/j.neuroscience.2017.02.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 01/10/2023]
Abstract
Alteration in gene expression along the pain signaling pathway is a key mechanism contributing to the genesis of neuropathic pain. Accumulating studies have shown that epigenetic regulation plays a crucial role in nociceptive process in the spinal dorsal horn. In this present study, we investigated the role of enhancer of zeste homolog-2 (EZH2), a subunit of the polycomb repressive complex 2, in the spinal dorsal horn in the genesis of neuropathic pain in rats induced by partial sciatic nerve ligation. EZH2 is a histone methyltransferase, which catalyzes the methylation of histone H3 on K27 (H3K27), resulting in gene silencing. We found that levels of EZH2 and tri-methylated H3K27 (H3K27TM) in the spinal dorsal horn were increased in rats with neuropathic pain on day 3 and day 10 post nerve injuries. EZH2 was predominantly expressed in neurons in the spinal dorsal horn under normal conditions. The number of neurons with EZH2 expression was increased after nerve injury. More strikingly, nerve injury drastically increased the number of microglia with EZH2 expression by more than sevenfold. Intrathecal injection of the EZH2 inhibitor attenuated the development and maintenance of mechanical and thermal hyperalgesia in rats with nerve injury. Such analgesic effects were concurrently associated with the reduced levels of EZH2, H3K27TM, Iba1, GFAP, TNF-α, IL-1β, and MCP-1 in the spinal dorsal horn in rats with nerve injury. Our results highly suggest that targeting the EZH2 signaling pathway could be an effective approach for the management of neuropathic pain.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical and Biomedical Sciences, the University of Georgia, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, the University of Georgia, USA.
| |
Collapse
|
29
|
SIRT1 attenuates neuropathic pain by epigenetic regulation of mGluR1/5 expressions in type 2 diabetic rats. Pain 2016; 158:130-139. [DOI: 10.1097/j.pain.0000000000000739] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Tosolini AP, Morris R. Viral-mediated gene therapy for spinal cord injury (SCI) from a translational neuroanatomical perspective. Neural Regen Res 2016; 11:743-4. [PMID: 27335556 PMCID: PMC4904463 DOI: 10.4103/1673-5374.182698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew P Tosolini
- Translational Neuroscience Facility, School of Medical Sciences, the University of New South Wales (UNSW Australia), Sydney, Australia; Current address for Tosolini AP: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Renée Morris
- Translational Neuroscience Facility, School of Medical Sciences, the University of New South Wales (UNSW Australia), Sydney, Australia
| |
Collapse
|
31
|
Deng P, Anderson JD, Yu AS, Annett G, Fink KD, Nolta JA. Engineered BDNF producing cells as a potential treatment for neurologic disease. Expert Opin Biol Ther 2016; 16:1025-33. [PMID: 27159050 DOI: 10.1080/14712598.2016.1183641] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) has been implicated in wide range of neurological diseases and injury. This neurotrophic factor is vital for neuronal health, survival, and synaptic connectivity. Many therapies focus on the restoration or enhancement of BDNF following injury or disease progression. AREAS COVERED The present review will focus on the mechanisms in which BDNF exerts its beneficial functioning, current BDNF therapies, issues and potential solutions for delivery of neurotrophic factors to the central nervous system, and other disease indications that may benefit from overexpression or restoration of BDNF. EXPERT OPINION Due to the role of BDNF in neuronal development, maturation, and health, BDNF is implicated in numerous neurological diseases making it a prime therapeutic agent. Numerous studies have shown the therapeutic potential of BDNF in a number of neurodegenerative disease models and in acute CNS injury, however clinical translation has fallen short due to issues in delivering this molecule. The use of MSC as a delivery platform for BDNF holds great promise for clinical advancement of neurotrophic factor restoration. The ease with which MSC can be engineered opens the door to the possibility of using this cell-based delivery system to advance a BDNF therapy to the clinic.
Collapse
Affiliation(s)
- Peter Deng
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA.,b Genome Center, MIND Institute, and Biochemistry and Molecular Medicine , University of California , Davis , CA , USA
| | - Johnathon D Anderson
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| | - Abigail S Yu
- b Genome Center, MIND Institute, and Biochemistry and Molecular Medicine , University of California , Davis , CA , USA
| | - Geralyn Annett
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| | - Kyle D Fink
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| | - Jan A Nolta
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| |
Collapse
|
32
|
Cheng W, Wang JF, Yang CX, Wu L, Yin Q, Liu H, Fu ZJ. Intrathecal Injection of Resveratrol Attenuates Burn Injury Pain by Activating Spinal Sirtuin 1. Pharmacogn Mag 2016; 12:S201-5. [PMID: 27279707 PMCID: PMC4883079 DOI: 10.4103/0973-1296.182167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
Objective: The present study sought to detect spinal sirtuin 1 (SIRT1) and acetylation of histone H3 (Ac-H3) expression in rats with burn injury pain (BIP model). Procedures and Results: A BIP model was first established. BIP rats showed lower paw withdrawal threshold (PWT) from day 1, which persisted for 21 days following the burn injury. Spinal SIRT1/Ac-H3 expression increased following burn injury. The intrathecal use of resveratrol increased PWT and SIRT1 expression but induced down-regulation of Ac-H3 expression. We first demonstrated that the inhibition of SIRT1 significantly induced mechanical allodynia in naïve rats. The preinjection of SIRT1 inhibitor partly antagonized the analgesic effects of resveratrol in BIP rats. Conclusion: Inhibition of SIRT1 produces pain facilitation in the naïve rats. The expression of spinal SIRT1 increased after burn injury in the BIP model. The activation of spinal SIRT1 might mediate the resveratrol-induced analgesic effects. SUMMARY Burn injury resulted in pain facilitation Resveratrol attenuates pain facilitation induced by burn injury Intrathecal injection of resveratrol attenuates burn injury pain by increasing spinal sirtuin 1 (SIRT1) expression Inhibition of SIRT1 by selisistat, an SIRT1 inhibitor attenuated analgesic effects of resveratrol
Abbreviations used: SIRT1: Sirtuin 1, Ac-H3: Acetylation of histone H3, SD: Sprague-Dawley, EX527: Selisistat, an SIRT1 inhibitor, BIP: Burn injury pain, DMSO: Dimethyl sulfoxide, PWTs: Paw withdrawal thresholds
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250000, PR China; Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Jiangsu 221002, PR China
| | - Jin-Feng Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Jiangsu 221002, PR China; Department of Anesthesiology, Xuzhou Central Hospital, Jiangsu 221002, PR China
| | - Cong-Xian Yang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250000, PR China
| | - Liang Wu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Jiangsu 221002, PR China
| | - Qin Yin
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Jiangsu 221002, PR China
| | - He Liu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250000, PR China
| | - Zhi-Jian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250000, PR China
| |
Collapse
|
33
|
Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats. Neurochem Int 2016; 97:91-8. [PMID: 26970395 DOI: 10.1016/j.neuint.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons.
Collapse
|
34
|
Carnosic acid attenuates neuropathic pain in rat through the activation of spinal sirtuin1 and down-regulation of p66shc expression. Neurochem Int 2016; 93:95-102. [DOI: 10.1016/j.neuint.2016.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022]
|
35
|
Abstract
PURPOSE OF REVIEW Aberrations in the epigenetic landscape have previously been associated with human diseases such as cancer and schizophrenia, and drugs that target epigenetic processes are currently used as therapeutic agents. This article will review the evidence obtained from animal studies indicating that epigenetic processes might regulate long-term pain states and then discuss the possibility that targeting epigenetic mechanisms might be useful for the management of chronic pain. RECENT FINDINGS Recent animal studies have reported injury-induced changes in epigenetic processes in the central nervous system. The picture that has emerged is that of very complex epigenetic programs that depend on the injury. However, some studies have reported the successful use of nonspecific epigenetic tools to improve the hypersensitivity that develops in animal models of long-term pain states. SUMMARY The field of epigenetics and pain is rapidly emerging but further investigation is needed to fully comprehend the contribution of epigenetic processes to chronic pain states. Although therapeutic approaches targeting these mechanisms might seem worthwhile, we cannot assert that currently available global tools such as histone deacetylase inhibitors can be used successfully for the long-term treatment of chronic pain states.
Collapse
|
36
|
Moloney RD, Stilling RM, Dinan TG, Cryan JF. Early-life stress-induced visceral hypersensitivity and anxiety behavior is reversed by histone deacetylase inhibition. Neurogastroenterol Motil 2015; 27:1831-6. [PMID: 26403543 DOI: 10.1111/nmo.12675] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Stressful life events, especially in childhood, can have detrimental effects on health and are associated with a host of psychiatric and gastrointestinal disorders including irritable bowel syndrome (IBS). Early-life stress can be recapitulated in animals using the maternal separation (MS) model, exhibiting many key phenotypic outcomes including visceral hypersensitivity and anxiety-like behaviors. The molecular mechanisms of MS are unclear, but recent studies point to a role for epigenetics. Histone acetylation is a key epigenetic mark that is altered in numerous stress-related disease states. Here, we investigated the role of histone acetylation in early-life stress-induced visceral hypersensitivity. Interestingly, increased number of pain behaviors and reduced threshold of visceral sensation were associated with alterations in histone acetylation in the lumbosacral spinal cord, a key region in visceral pain processing. Moreover, we also investigated whether the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could reverse early-life stress-induced visceral hypersensitivity and stress-induced fecal pellet output in the MS model. Significantly, SAHA reversed both of these parameters. Taken together, these data describe, for the first time, a key role of histone acetylation in the pathophysiology of early-life stress-induced visceral hypersensitivity in a well-established model of IBS. These findings will inform new research aimed at the development of novel pharmaceutical approaches targeting the epigenetic machinery for novel anti-IBS drugs.
Collapse
Affiliation(s)
- R D Moloney
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - R M Stilling
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - T G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - J F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Gölzenleuchter M, Kanwar R, Zaibak M, Al Saiegh F, Hartung T, Klukas J, Smalley RL, Cunningham JM, Figueroa ME, Schroth GP, Therneau TM, Banck MS, Beutler AS. Plasticity of DNA methylation in a nerve injury model of pain. Epigenetics 2015; 10:200-12. [PMID: 25621511 DOI: 10.1080/15592294.2015.1006493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The response of the peripheral nervous system (PNS) to injury may go together with alterations in epigenetics, a conjecture that has not been subjected to a comprehensive, genome-wide test. Using reduced representation bisulfite sequencing, we report widespread remodeling of DNA methylation in the rat dorsal root ganglion (DRG) occurring within 24 h of peripheral nerve ligation, a neuropathy model of allodynia. Significant (P < 10(-4)) cytosine hyper- and hypo-methylation was found at thousands of CpG sites. Remodeling occurred outside of CpG islands. Changes affected genes with known roles in the PNS, yet methylome remodeling also involved genes that were not linked to neuroplasticity by prior evidence. Consistent with emerging models relying on genome-wide methylation and RNA-seq analysis of promoter regions and gene bodies, variation of methylation was not tightly linked with variation of gene expression. Furthermore, approximately 44% of the dynamically changed CpGs were located outside of genes. We compared their positions with the intergenic, tissue-specific differentially methylated CpGs (tDMCs) of an independent experimental set consisting of liver, spleen, L4 control DRG, and muscle. Dynamic changes affected those intergenic CpGs that were different between tissues (P < 10(-15)) and almost never the invariant portion of the methylome (those CpGs that were identical across all tissues). Our findings-obtained in mixed tissue-show that peripheral nerve injury leads to methylome remodeling in the DRG. Future studies may address which of the cell types found in the DRG, such as specific groups of neurons or non-neuronal cells are affected by which aspect of the observed methylome remodeling.
Collapse
Affiliation(s)
- Meike Gölzenleuchter
- a Departments of Anesthesiology; Oncology; and Biostatistics and Bioinformatics; Mayo Clinic , Rochester , MN USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mohan R, Tosolini A, Morris R. Segmental distribution of the motor neuron columns that supply the rat hindlimb: A muscle/motor neuron tract-tracing analysis targeting the motor end plates. Neuroscience 2015; 307:98-108. [DOI: 10.1016/j.neuroscience.2015.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022]
|
39
|
Liang L, Lutz BM, Bekker A, Tao YX. Epigenetic regulation of chronic pain. Epigenomics 2015; 7:235-45. [PMID: 25942533 DOI: 10.2217/epi.14.75] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic pain arising from peripheral inflammation and tissue or nerve injury is a common clinical symptom. Although intensive research on the neurobiological mechanisms of chronic pain has been carried out during previous decades, this disorder is still poorly managed by current drugs such as opioids and nonsteroidal anti-inflammatory drugs. Inflammation, tissue injury and/or nerve injury-induced changes in gene expression in sensory neurons of the dorsal root ganglion, spinal cord dorsal horn and pain-associated brain regions are thought to participate in chronic pain genesis; however, how these changes occur is still elusive. Epigenetic modifications including DNA methylation and covalent histone modifications control gene expression. Recent studies have shown that peripheral noxious stimulation changes DNA methylation and histone modifications and that these changes may be related to the induction of pain hypersensitivity under chronic pain conditions. This review summarizes the current knowledge and progress in epigenetic research in chronic pain and discusses the potential role of epigenetic modifications as therapeutic antinociceptive targets in this disorder.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Avenue, MSB F-548, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
40
|
Manners MT, Tian Y, Zhou Z, Ajit SK. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity. FEBS Open Bio 2015; 5:733-40. [PMID: 26448907 PMCID: PMC4571540 DOI: 10.1016/j.fob.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/16/2015] [Indexed: 12/31/2022] Open
Abstract
Nerve injury induces chronic pain and dysregulation of microRNAs in dorsal root ganglia (DRG). Several downregulated microRNAs are predicted to target Mecp2. MECP2 mutations cause Rett syndrome and these patients report decreased pain perception. We confirmed MeCP2 upregulation in DRG following nerve injury and repression of MeCP2 by miRNAs in vitro. MeCP2 regulates brain-derived neurotrophic factor (BDNF) and downregulation of MeCP2 by microRNAs decreased Bdnf in vitro. MeCP2 T158A mice exhibited reduced mechanical sensitivity and Mecp2-null and MeCP2 T158A mice have decreased Bdnf in DRG. MeCP2-mediated regulation of Bdnf in the DRG could contribute to altered pain sensitivity.
Collapse
Key Words
- +/Y, male wild-type littermate control for either MeCP2 T158A knock in mouse or Mecp2-null mouse
- 3′UTR, three prime untranslated region
- ATF3, activating transcription factor 3
- BDNF
- BDNF, brain derived neurotrophic factor
- CFA, complete Freund’s adjuvant
- DRG, dorsal root ganglia
- L4/L5, 4th or 5th lumbar vertebra
- MeCP2
- MeCP2 T158A/Y, male MeCP2 T158A knock in mouse
- MeCP2, methyl-CpG-binding protein 2
- Neuropathic pain
- RTT, Rett syndrome
- SNI, spared nerve injury
- T158A, threonine 158 conversion to alanine
- TrkB, tropomyosin receptor kinase B
- miRNA
- −/Y, male Mecp2-null mouse
Collapse
Affiliation(s)
- Melissa T Manners
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Yuzhen Tian
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Seena K Ajit
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
41
|
Liu M, Kay JC, Shen S, Qiao LY. Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLCγ, PKC, and PI3K/Akt pathways during colitis. J Neuroinflammation 2015; 12:151. [PMID: 26289587 PMCID: PMC4545933 DOI: 10.1186/s12974-015-0371-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background Spinal central sensitization is an important process in the generation and maintenance of visceral hypersensitivity. The release of brain-derived neurotrophic factor (BDNF) from the primary afferent neurons to the spinal cord contributes to spinal neuronal plasticity and increases neuronal activity and synaptic efficacy. The N-Methyl-D-aspartic acid (NMDA) receptor possesses ion channel properties, and its activity is modulated by phosphorylation of its subunits including the NMDA receptor 1 (NR1). Methods Colonic inflammation was induced by a single dose of intracolonic instillation of tri-nitrobenzene sulfonic acid (TNBS). NR1 phosphorylation by BDNF in vivo and in culture was examined by western blot and immunohistochemistry. Signal transduction was studied by direct examination and use of specific inhibitors. Results During colitis, the level of NR1 phospho-Ser896 was increased in the dorsal horn region of the L1 and S1 spinal cord; this increase was attenuated by injection of BDNF neutralizing antibody to colitic animals (36 μg/kg, intravenous (i.v.)) and was also reduced in BDNF+/− rat treated with TNBS. Signal transduction examination showed that the extracellular signal-regulated kinase (ERK) activation was not involved in BDNF-induced NR1 phosphorylation. In contrast, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediated BDNF-induced NR1 phosphorylation in vivo and in culture; this is an additional pathway to the phospholipase C-gamma (PLCγ) and the protein kinase C (PKC) that was widely considered to phosphorylate NR1 at Ser896. In spinal cord culture, the inhibitors to PLC (U73122), PKC (bisindolylmaleimide I), and PI3K (LY294002), but not MEK (PD98059) blocked BDNF-induced NR1 phosphorylation. In animals with colitis, treatment with LY294002 (50 μg/kg, i.v.) blocked the Akt activity as well as NR1 phosphorylation at Ser896 in the spinal cord. Conclusion BDNF participates in colitis-induced spinal central sensitization by up-regulating NR1 phosphorylation at Ser896. The PI3K/Akt pathway, in addition to PLCγ and PKC, mediates BDNF action in the spinal cord during colitis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0371-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miao Liu
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| | - Jarren C Kay
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| | - Shanwei Shen
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| |
Collapse
|
42
|
de Rezende Corrêa G, Soares VHP, de Araújo-Martins L, Dos Santos AA, Giestal-de-Araujo E. Ouabain and BDNF Crosstalk on Ganglion Cell Survival in Mixed Retinal Cell Cultures. Cell Mol Neurobiol 2015; 35:651-60. [PMID: 25651946 PMCID: PMC11486238 DOI: 10.1007/s10571-015-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known and well-studied neurotrophin. Most biological effects of BDNF are mediated by the activation of TrkB receptors. This neurotrophin regulates several neuronal functions as cell proliferation, viability, and differentiation. Ouabain is a steroid that binds to the Na(+)/K(+) ATPase, inducing the activation of several intracellular signaling pathways. Previous data from our group described that ouabain treatment increases retinal ganglion cells survival (RGC). The aim of the present study was to evaluate, if this cardiac glycoside can have a synergistic effect with BDNF, the classical trophic factor for retinal ganglion cells, as well as investigate the intracellular signaling pathways involved. Our work demonstrated that the activation of Src, PLC, and PKCδ participates in the signaling cascade mediated by 50 ng/mL BDNF, since their selective inhibitors completely blocked the trophic effect of BDNF. We also demonstrated a synergistic effect on RGC survival when we concomitantly used ouabain (0.75 nM) and BDNF (10 ng/mL). Moreover, the signaling pathways involved in this synergistic effect include Src, PLC, PKCδ, and JNK. Our results suggest that the synergism between ouabain and BDNF occurs through the activation of the Src pathway, JNK, PLC, and PKCδ.
Collapse
Affiliation(s)
- Gustavo de Rezende Corrêa
- Departamento de Neurobiologia, Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro, CEP 24020-140, Brazil,
| | | | | | | | | |
Collapse
|
43
|
Imbe H, Kimura A. Repeated forced swim stress prior to complete Freund's adjuvant injection enhances mechanical hyperalgesia and attenuates the expression of pCREB and ΔFosB and the acetylation of histone H3 in the insular cortex of rat. Neuroscience 2015; 301:12-25. [PMID: 26047723 DOI: 10.1016/j.neuroscience.2015.05.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022]
Abstract
Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and ΔFosB and the acetylation of histone H3 in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in rats with stress-induced hyperalgesia. CFA injection into the hindpaw or FS (day 1, 10min; days 2-3, 20min) induced a significant increase in the expression of pCREB and ΔFosB and the acetylation of histone H3 in the IC. Quantitative image analysis showed that the numbers of ΔFosB-immunoreactivity (IR) cells in the bilateral anterior and posterior IC (AIC and PIC) were significantly higher in the CFA group (AIC R, 548.0±98.6; AIC L, 433.5±89.4; PIC R, 546.1±72.8; PIC L, 415.5±53.5) than those in the naive group (AIC R, 86.6±14.8; AIC L, 85.5±24.7; PIC R, 124.5±29.9; PIC L, 107.0±19.8, p<0.01). However the FS prior to the CFA injection enhanced the mechanical hyperalgesia and attenuated the expression of pCREB and ΔFosB and the acetylation of histone H3 in the IC. There was no significant difference in the numbers of ΔFosB-IR cells in the bilateral PIC between the FS+CFA and naive groups. These findings suggest neuroplasticity in the IC after the FS, which may be involved in the enhancement of CFA-induced mechanical hyperalgesia through dysfunction of the descending pain modulatory system.
Collapse
Affiliation(s)
- H Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | - A Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| |
Collapse
|
44
|
Bai G, Ren K, Dubner R. Epigenetic regulation of persistent pain. Transl Res 2015; 165:177-99. [PMID: 24948399 PMCID: PMC4247805 DOI: 10.1016/j.trsl.2014.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/09/2023]
Abstract
Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.
Collapse
Affiliation(s)
- Guang Bai
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD.
| | - Ke Ren
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| | - Ronald Dubner
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
45
|
Géranton SM, Tochiki KK. Regulation of Gene Expression and Pain States by Epigenetic Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:147-83. [DOI: 10.1016/bs.pmbts.2014.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Schimmang T, Durán Alonso B, Zimmermann U, Knipper M. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging? Neuroscience 2014; 283:26-43. [PMID: 25064058 DOI: 10.1016/j.neuroscience.2014.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system.
Collapse
Affiliation(s)
- T Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain.
| | - B Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain
| | - U Zimmermann
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M Knipper
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
47
|
Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology 2014; 121:852-65. [PMID: 25093591 DOI: 10.1097/aln.0000000000000403] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a painful condition with approximately 50,000 annual new cases in the United States. It is a major cause of work-related disability, chronic pain after limb fractures, and persistent pain after extremity surgery. Additionally, CRPS patients often experience cognitive changes, anxiety, and depression. The supraspinal mechanisms linked to these CRPS-related comorbidities remain poorly understood. METHODS The authors used a previously characterized mouse model of tibia fracture/cast immobilization showing the principal stigmata of CRPS (n = 8 to 20 per group) observed in humans. The central hypothesis was that fracture/cast mice manifest changes in measures of thigmotaxis (indicative of anxiety) and working memory reflected in neuroplastic changes in amygdala, perirhinal cortex, and hippocampus. RESULTS The authors demonstrate that nociceptive sensitization in these mice is accompanied by altered thigmotactic behaviors in the zero maze but not open field assay, and working memory dysfunction in novel object recognition and social memory but not in novel location recognition. Furthermore, the authors found evidence of structural changes and synaptic plasticity including changes in dendritic architecture and decreased levels of synaptophysin and brain-derived neurotrophic factor in specific brain regions. CONCLUSIONS The study findings provide novel observations regarding behavioral changes and brain plasticity in a mouse model of CRPS. In addition to elucidating some of the supraspinal correlates of the syndrome, this work supports the potential use of therapeutic interventions that not only directly target sensory input and other peripheral mechanisms, but also attempt to ameliorate the broader pain experience by modifying its associated cognitive and emotional comorbidities.
Collapse
|
48
|
Al-Sabbagh M, Okeson JP, Khalaf MW, Bhavsar I. Persistent pain and neurosensory disturbance after dental implant surgery: pathophysiology, etiology, and diagnosis. Dent Clin North Am 2014; 59:131-42. [PMID: 25434562 DOI: 10.1016/j.cden.2014.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many studies have documented the successful outcomes of dental implants, but have also reported the association of sensory disturbances with the surgical implant procedure. Postsurgical pain is a normal response to tissue injury, and usually resolves after the tissue heals. However, some patients who receive dental implants experience persistent pain even after normal healing. This article describes the basic anatomy and pathophysiology associated with nerve injury. The incidence and diagnosis of these problems, in addition to factors that result in the development of chronic persistent neuropathic pain and sensory disturbances associated with surgical implant placement, are discussed.
Collapse
Affiliation(s)
- Mohanad Al-Sabbagh
- Division of Periodontology, Department of Oral Health Practice, University of Kentucky, College of Dentistry, 800 Rose Street, Lexington, KY 40536, USA.
| | - Jeffrey P Okeson
- Department of Oral Health Science, College of Dentistry, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | - Mohd W Khalaf
- Orofacial Pain and Oral Medicine Division, Department of Head and Neck Surgery, Kaiser Permanente, 7300 Wyndham Street, Sacramento, CA 95823, USA
| | - Ishita Bhavsar
- Division of Periodontology, Department of Oral Health Practice, University of Kentucky, College of Dentistry, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
49
|
Liang DY, Sun Y, Shi XY, Sahbaie P, Clark JD. Epigenetic regulation of spinal cord gene expression controls opioid-induced hyperalgesia. Mol Pain 2014; 10:59. [PMID: 25217253 PMCID: PMC4171542 DOI: 10.1186/1744-8069-10-59] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/04/2014] [Indexed: 12/14/2022] Open
Abstract
Background The long term use of opioids for the treatment of pain leads to a group of maladaptations which includes opioid-induced hyperalgesia (OIH). OIH typically resolves within few days after cessation of morphine treatment in mice but is prolonged for weeks if histone deacetylase (HDAC) activity is inhibited during opioid treatment. The present work seeks to identify gene targets supporting the epigenetic effects responsible for OIH prolongation. Results Mice were treated with morphine according to an ascending dose protocol. Some mice also received the selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) additionally. Chronic morphine treatment with simultaneous HDAC inhibition enhanced OIH, and several spinal cord genes were up-regulated. The expression of Bdnf (Brain-derived neurotrophic factor) and Pdyn (Prodynorphin) were most closely related to the observed behavioral changes. ChIP (Chromatin immuoprecipation) assays demonstrated that promoter regions of Pdyn and Bdnf were strongly associated with aceH3K9 (Acetylated histone H3 Lysine9) after morphine and SAHA treatment. Furthermore, morphine treatment caused an increase in spinal BDNF and dynorphin levels, and these levels were further increased in SAHA treated mice. The selective TrkB (tropomyosin-receptor-kinase) antagonist ANA-12 reduced OIH when given one or seven days after cessation of morphine. Treatment with the selective kappa opioid receptor antagonist nor-BNI also reduced established OIH. The co-administration of either receptor antagonist agent daily with morphine resulted in attenuation of hyperalgesia present one day after cessation of treatment. Additionally, repeated morphine exposure induced a rise in BDNF expression that was associated with an increased number of BDNF+ cells in the spinal cord dorsal horn, showing strong co-localization with aceH3K9 in neuronal cells. Lastly, spinal application of low dose BDNF or Dynorphin A after resolution of OIH produced mechanical hypersensitivity, with no effect in controls. Conclusions The present study identified two genes whose expression is regulated by epigenetic mechanisms during morphine exposure. Treatments aimed at preventing the acetylation of histones or blocking BDNF and dynorphin signaling may reduce OIH and improve long-term pain using opioids.
Collapse
Affiliation(s)
| | | | | | - Peyman Sahbaie
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
50
|
Kumar A, Varendi K, Peränen J, Andressoo JO. Tristetraprolin is a novel regulator of BDNF. SPRINGERPLUS 2014; 3:502. [PMID: 25279294 PMCID: PMC4164675 DOI: 10.1186/2193-1801-3-502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/25/2014] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates multiple biological processes ranging from central nervous system development and function to neuroinflammation and myogenic differentiation and repair. While coordination of BDNF levels is central in determining the biological outcome, mechanisms involved in controlling BDNF levels are not fully understood. Here we find that both short (BDNF-S) and long (BDNF-L) BDNF 3’UTR isoforms contain conserved adenylate- and uridylate rich elements (AREs) that may serve as binding sites for RNA-binding proteins (ARE-BPs). We demonstrate that ARE-BPs tristetraprolin (TTP) and its family members butyrate response factor 1 (BRF1) and 2 (BRF2) negatively regulate expression from both BDNF-S and BDNF-L containing transcripts in several cell-lines and that interaction between TTP and AU-rich region in proximal 5’ end of BDNF 3’UTR is direct. In line with the above, endogenous BDNF mRNA co-immunoprecipitates with endogenous TTP in differentiated mouse myoblast C2C12 cells and TTP overexpression destabilizes BDNF-S containing transcript. Finally, RNAi-mediated knock-down of TTP increases the levels of endogenous BDNF protein in C2C12 cells. Our findings uncover TTP as a novel regulator of BDNF assisting future studies in different physiological and pathological contexts.
Collapse
Affiliation(s)
- Anmol Kumar
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014 Finland
| | - Kärt Varendi
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014 Finland
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014 Finland
| | | |
Collapse
|