1
|
Kirschmann EK, Smith TT, Shold JN, Donny EC, Sved AF, Thiels E. Locomotor Response to Novelty: What Does It Tell Us? Dev Psychobiol 2025; 67:e70024. [PMID: 39935251 PMCID: PMC11814917 DOI: 10.1002/dev.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025]
Abstract
Individual differences in response strategies may be utilized to identify those at risk for the development of neuropsychiatric disorders such as depression, anxiety, and substance use. One behavioral attribute that has been used to predict later mood disorders and substance use disorders is an organism's predisposition for novelty-seeking, modeled in rodents as increased exploration of novel environments or stimuli. Despite documented correlations of locomotor response to a novel environment and disease-specific tendencies, it remains unclear whether the "response to novelty trait" is stable across time and environments. Adolescence is an important transitional time, associated with vulnerability for neuropsychiatric disorders. Only a few studies have assessed whether variations in novelty-seeking behaviors in adolescent animals translate to variations of susceptibility to neuropsychiatric disorders later in life, and it is unclear whether initial locomotor responses to novelty are stable across time and development. We examined whether locomotor response to a novel environment is a stable attribute across time in a series of Open Field tests in early adolescent (postnatal day [p] 23-25) late adolescent (p58-59) and adult (p72 and older) male Sprague-Dawley rats. We also examined the relation between the locomotor response to a novel environment and other measures of responding to novelty. Results suggest that locomotor response to a novel environment does not emerge as a stable behavioral attribute until late adolescence. They also suggest that locomotor response to a novel environment and novelty-seeking, as assessed with the Novelty Place Preference paradigm, capture nonoverlapping behavioral tendencies.
Collapse
Affiliation(s)
- Erin K. Kirschmann
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for NeuroscienceUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for the Neural Basis of Cognition, University of PittsburghPittsburghPennsylvaniaUSA
| | - Tracy T. Smith
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jenna N. Shold
- Center for NeuroscienceUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eric C. Donny
- Center for the Neural Basis of Cognition, University of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alan F. Sved
- Center for NeuroscienceUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeuroscienceUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Edda Thiels
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for NeuroscienceUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for the Neural Basis of Cognition, University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
O'Connor AM, Hagenauer MH, Thew Forrester LC, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. Neurobiol Stress 2024; 31:100651. [PMID: 38933284 PMCID: PMC11201356 DOI: 10.1016/j.ynstr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | - Megan Hastings Hagenauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Liam Cannon Thew Forrester
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Pamela M. Maras
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Keiko Arakawa
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huzefa Khalil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Evelyn R. Richardson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Farizah I. Rob
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Yusra Sannah
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Stanley J. Watson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huda Akil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
3
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Mickle AM, Sibille KT. Deciphering relationships between stress biomarkers and fibromyalgia syndrome with implications relevant to other chronic pain conditions. Pain 2024; 165:243-245. [PMID: 38100365 PMCID: PMC10752222 DOI: 10.1097/j.pain.0000000000003111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Affiliation(s)
- Angela M Mickle
- Department of Physical Medicine & Rehabilitation, University of Florida, Gainesville, FL, United States
| | - Kimberly T Sibille
- Department of Physical Medicine & Rehabilitation, University of Florida, Gainesville, FL, United States
- Division of Pain Medicine, Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
6
|
Fernández-Teruel A. Conflict between Threat Sensitivity and Sensation Seeking in the Adolescent Brain: Role of the Hippocampus, and Neurobehavioural Plasticity Induced by Pleasurable Early Enriched Experience. Brain Sci 2021; 11:brainsci11020268. [PMID: 33672653 PMCID: PMC7924176 DOI: 10.3390/brainsci11020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 01/28/2023] Open
Abstract
Adolescence is characterized both by the exacerbation of the experience of anxiety, fear or threat, on one hand, and by increased reward seeking (reward sensitivity) and risk taking on the other hand. The rise of these apparently opposite processes, i.e., threat-related anxiety and reward-related sensation seeking, seems to stem from a relatively decreased top-down inhibition of amygdala and striatal circuits by regulatory systems (e.g., prefrontal cortex, hippocampus) that mature later. The present commentary article aims to discuss recent related literature and focusses on two main issues: (i) the septo-hippocampal system (in particular the ventral hippocampus) might be a crucial region for the regulation of approach–avoidance conflict and also for the selection of the most appropriate responses during adolescence, and (ii) developmental studies involving early-life pleasurable-enriched experience (as opposed to early-life adversity) might be a useful study paradigm in order to decipher whether neuroplasticity induced by such experiences (for example, in the hippocampus and associated circuitry) may lead to better top-down inhibition and more “balanced” adolescent responses to environmental demands.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Department of Psychiatry & Forensic Medicine, Medical Psychology Unit, School of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
7
|
Simola N, Brudzynski SM. Rat 50-kHz ultrasonic vocalizations as a tool in studying neurochemical mechanisms that regulate positive emotional states. J Neurosci Methods 2018; 310:33-44. [PMID: 29959002 DOI: 10.1016/j.jneumeth.2018.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adolescent and adult rats emit 50-kHz ultrasonic vocalizations (USVs) to communicate the appetitive arousal and the presence of positive emotional states to conspecifics. NEW METHOD Based on its communicative function, emission of 50-kHz USVs is increasingly being evaluated in preclinical studies of affective behavior, motivation and social behavior. RESULTS Emission of 50-kHz USVs is initiated by the activation of dopamine receptors in the shell subregion of the nucleus accumbens. However, several lines of evidence show that non-dopaminergic receptors may influence the numbers of 50-kHz USVs that are emitted, as well as the acoustic parameters of calls. COMPARISON WITH EXISTING METHODS Emission of 50-kHz USVs is a non-invasive method that may be used to study reward and motivation without the need for extensive training and complex animal manipulations. Moreover, emission of 50-kHz USVs can be used alone or combined with other well-standardized behavioral paradigms (e.g., conditioned place preference, self-administration). CONCLUSIONS This review summarizes the current evidence concerning molecular mechanisms that regulate the emission of 50-kHz USVs. Moreover, the review discusses the usefulness of 50-kHz USVs as an experimental tool to investigate how different neurotransmitter systems regulate the manifestations of positive emotional states, and also use of this tool in preclinical modeling of psychiatric diseases.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Neuropsychopharmacology Division, University of Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| | - Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON, L3 3A1 Canada
| |
Collapse
|
8
|
Moskal JR, Burgdorf J. Ultrasonic Vocalizations in Rats as a Measure of Emotional Responses to Stress: Models of Anxiety and Depression. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00039-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, Meaney MJ, Nestler EJ. Treatment resistant depression: A multi-scale, systems biology approach. Neurosci Biobehav Rev 2018; 84:272-288. [PMID: 28859997 PMCID: PMC5729118 DOI: 10.1016/j.neubiorev.2017.08.019] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/21/2017] [Accepted: 08/26/2017] [Indexed: 01/10/2023]
Abstract
An estimated 50% of depressed patients are inadequately treated by available interventions. Even with an eventual recovery, many patients require a trial and error approach, as there are no reliable guidelines to match patients to optimal treatments and many patients develop treatment resistance over time. This situation derives from the heterogeneity of depression and the lack of biomarkers for stratification by distinct depression subtypes. There is thus a dire need for novel therapies. To address these known challenges, we propose a multi-scale framework for fundamental research on depression, aimed at identifying the brain circuits that are dysfunctional in several animal models of depression as well the changes in gene expression that are associated with these models. When combined with human genetic and imaging studies, our preclinical studies are starting to identify candidate circuits and molecules that are altered both in models of disease and in patient populations. Targeting these circuits and mechanisms can lead to novel generations of antidepressants tailored to specific patient populations with distinctive types of molecular and circuit dysfunction.
Collapse
Affiliation(s)
- Huda Akil
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; University of Michigan, United States
| | - Joshua Gordon
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Columbia University, United States; New York State Psychiatric Institute, United States
| | - Rene Hen
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Columbia University, United States; New York State Psychiatric Institute, United States
| | - Jonathan Javitch
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Columbia University, United States; New York State Psychiatric Institute, United States
| | - Helen Mayberg
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Emory University, United States
| | - Bruce McEwen
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Rockefeller University, United States
| | - Michael J Meaney
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; McGill University, United States; Singapore Institute for Clinical Science, Singapore
| | - Eric J Nestler
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Icahn School of Medicine at Mount Sinai, United States.
| |
Collapse
|
10
|
Simola N, Paci E, Serra M, Costa G, Morelli M. Modulation of Rat 50-kHz Ultrasonic Vocalizations by Glucocorticoid Signaling: Possible Relevance to Reward and Motivation. Int J Neuropsychopharmacol 2017; 21:73-83. [PMID: 29182715 PMCID: PMC5795343 DOI: 10.1093/ijnp/pyx106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rats emit 50-kHz ultrasonic vocalizations (USVs) to communicate positive emotional states, and these USVs are increasingly being investigated in preclinical studies on reward and motivation. Although it is the activation of dopamine receptors that initiates the emission of 50-kHz USVs, non-dopaminergic mechanisms may modulate calling in the 50 kHz frequency band. To further elucidate these mechanisms, the present study investigated whether the pharmacological manipulation of glucocorticoid signaling influenced calling. METHODS Rats were administered corticosterone (1-5 mg/kg, s.c.), the glucocorticoid receptor antagonist mifepristone (40 or 100 mg/kg, s.c.), or the corticosterone synthesis inhibitor metyrapone (50 or 100 mg/kg, i.p.). The effects of these drugs on calling initiation and on calling recorded during nonaggressive social contacts or after the administration of amphetamine (0.25 or 1 mg/kg, i.p.) were then evaluated. RESULTS Corticosterone failed to initiate the emission of 50-kHz USVs and did not influence pro-social and amphetamine-stimulated calling. Similarly, mifepristone and metyrapone did not initiate calling. However, metyrapone suppressed pro-social calling and calling stimulated by a moderate dose (1 mg/kg, i.p.) of amphetamine. Conversely, mifepristone attenuated calling stimulated by a low (0.25 mg/kg, i.p.), but not moderate (1 mg/kg, i.p.), dose of amphetamine and had no influence on pro-social calling. CONCLUSIONS The present results demonstrate that glucocorticoid signaling modulates calling in the 50 kHz frequency band only in certain conditions and suggest that mechanisms different from the inhibition of corticosterone synthesis may participate in the suppression of calling by metyrapone.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy,National Institute of Neuroscience, University of Cagliari, Cagliari, Italy,Correspondence: Nicola Simola, PhD, Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale, 72, 09124, Cagliari, Italy ()
| | - Elena Paci
- Department of Physiology, University of Bristol, Bristol, United Kingdom,Department of Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy,National Institute of Neuroscience, University of Cagliari, Cagliari, Italy,NCR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
11
|
Burgdorf J, Colechio EM, Stanton P, Panksepp J. Positive Emotional Learning Induces Resilience to Depression: A Role for NMDA Receptor-mediated Synaptic Plasticity. Curr Neuropharmacol 2017; 15:3-10. [PMID: 27102428 PMCID: PMC5327454 DOI: 10.2174/1570159x14666160422110344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/11/2015] [Accepted: 01/30/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Positive emotions have been shown to induce resilience to depression and anxiety in humans, as well as increase cognitive abilities (learning, memory and problem solving) and improve overall health. In rats, frequency modulated 50-kHz ultrasonic vocalizations (Hedonic 50-kHz USVs) reflect a positive affective state and are best elicited by rough-and-tumble play. METHODS The effect of positive affect induced by rough-and tumble play was examined on models of depression and learning and memory. The molecular and pharmacological basis of play induced positive affect was also examined. RESULTS Rough-and-tumble play induced Hedonic 50-kHz USVs, lead to resilience to depression and anxiety, and facilitation of learning and memory. These effects are mediated, in part, by increased NMDAR expression and activation in the medial prefrontal cortex. CONCLUSIONS We hypothesize that positive affect induces resilience to depression by facilitating NMDAR-dependent synaptic plasticity in the medial prefrontal cortex. Targeting MPFC synaptic plasticity may lead to novel treatments for depression.
Collapse
Affiliation(s)
- Jeffrey Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, 1801 Maple Ave., Suite 4300, Evanston IL, 60201, USA
| | | | - Patric Stanton
- Department of Cell Biology & Anatomy, Basic Sciences Bldg., Rm. 217, New York Medical College, Valhalla, NY 10595, USA
| | - Jaak Panksepp
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99163 USA
| |
Collapse
|
12
|
Shiota N, Narikiyo K, Masuda A, Aou S. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats. J Physiol Sci 2016; 66:265-73. [PMID: 26586000 PMCID: PMC10717009 DOI: 10.1007/s12576-015-0424-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
Abstract
Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.
Collapse
Affiliation(s)
- Noboru Shiota
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Department of Health and Welfare, Seinan Jo Gakuin University, Kitakyushu, 803-0835, Japan
| | - Kimiya Narikiyo
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Akira Masuda
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Shuji Aou
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
13
|
Heyse NC, Brenes JC, Schwarting RK. Exercise reward induces appetitive 50-kHz calls in rats. Physiol Behav 2015; 147:131-40. [DOI: 10.1016/j.physbeh.2015.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/14/2023]
|
14
|
Compromised NMDA/Glutamate Receptor Expression in Dopaminergic Neurons Impairs Instrumental Learning, But Not Pavlovian Goal Tracking or Sign Tracking. eNeuro 2015; 2:eN-NWR-0040-14. [PMID: 26464985 PMCID: PMC4586930 DOI: 10.1523/eneuro.0040-14.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 11/21/2022] Open
Abstract
Behavior is shaped to a dramatic degree by the occurrence of rewards, through both pavlovian and instrumental conditioning processes; these mechanisms give rise to both normal and abnormal behavior. It is crucial to understand the neural mechanisms that give rise to normal actions and how they lead to pathological behaviors, such as overeating and drug addictions. Two theories regarding the role for dopamine neurons in learning include the concepts that their activity serves as a (1) mechanism that confers incentive salience onto rewards and associated cues and/or (2) contingency teaching signal reflecting reward prediction error. While both theories are provocative, the causal role for dopamine cell activity in either mechanism remains controversial. In this study mice that either fully or partially lacked NMDARs in dopamine neurons exclusively, as well as appropriate controls, were evaluated for reward-related learning; this experimental design allowed for a test of the premise that NMDA/glutamate receptor (NMDAR)-mediated mechanisms in dopamine neurons, including NMDA-dependent regulation of phasic discharge activity of these cells, modulate either the instrumental learning processes or the likelihood of pavlovian cues to become highly motivating incentive stimuli that directly attract behavior. Loss of NMDARs in dopamine neurons did not significantly affect baseline dopamine utilization in the striatum, novelty evoked locomotor behavior, or consumption of a freely available, palatable food solution. On the other hand, animals lacking NMDARs in dopamine cells exhibited a selective reduction in reinforced lever responses that emerged over the course of instrumental learning. Loss of receptor expression did not, however, influence the likelihood of an animal acquiring a pavlovian conditional response associated with attribution of incentive salience to reward-paired cues (sign tracking). These data support the view that reductions in NMDAR signaling in dopamine neurons affect instrumental reward-related learning but do not lend support to hypotheses that suggest that the behavioral significance of this signaling includes incentive salience attribution.
Collapse
|
15
|
Connors EJ, Shaik AN, Migliore MM, Kentner AC. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun 2014; 42:178-90. [PMID: 25011058 DOI: 10.1016/j.bbi.2014.06.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022] Open
Abstract
Modest environmental enrichment (EE) is well recognized to protect and rescue the brain from the consequences of a variety of insults. Although animal models of maternal immune activation (MIA) are associated with several neurodevelopmental impairments in both the behavioral and cognitive functioning of offspring, the impact of EE in protecting or reversing these effects has not been fully evaluated. In the present study, female Sprague-Dawley rats were randomized into EE (pair-housed in a large multi-level cage with toys, tubes and ramps) or animal care control (ACC; pair-housed in standard cages) conditions. Each pair was bred, following assignment to their housing condition, and administered 100μg/kg of lipopolysaccharide (LPS) on gestational day 11. After birth, and until the end of the study, offspring were maintained in their respective housing conditions. EE protected against both the social and hypothalamic pituitary adrenal axis consequences of MIA in juvenile male rats, but surprisingly not against the spatial discrimination deficits or accompanying decrease in glutamate levels within the hippocampus (as measured via LCMS-MS). Based on these preliminary results, the mechanisms that underlie the sex-specific consequences that follow MIA appear to be dependent on environmental context. Together, this work highlights the importance of environmental complexity in the prevention of neurodevelopmental deficits following MIA.
Collapse
Affiliation(s)
- E J Connors
- School of Arts & Sciences, Health Psychology Program, MCPHS University (formerly Massachusetts College of Pharmacy & Health Sciences), Boston, MA 02115, United States
| | - A N Shaik
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| | - M M Migliore
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| | - A C Kentner
- School of Arts & Sciences, Health Psychology Program, MCPHS University (formerly Massachusetts College of Pharmacy & Health Sciences), Boston, MA 02115, United States.
| |
Collapse
|