1
|
Klimova M, Kwon M. Impact of Rod-Dominant Mesopic Conditions on Spatial Summation and Surround Suppression in Early Visual Cortex. J Neurosci 2025; 45:e1649242025. [PMID: 40228899 PMCID: PMC12096048 DOI: 10.1523/jneurosci.1649-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
Mesopic (dim light) conditions are prevalent in everyday environments, yet most human vision research is conducted under idealized, photopic (bright) conditions. Electrophysiological studies suggest that under mesopic conditions, contrast-encoding retinal ganglion cell receptive fields expand their center width while diminishing surround inhibition. These retinal modifications enhance light capture by increasing the summation area but they limit spatial resolution. However, the impact of mesopic conditions on human cortical spatial integration mechanisms remains unclear. To address this, we investigate how mesopic conditions affect early visuocortical processing, specifically spatial summation and surround suppression. Across two experiments, we acquired fMRI BOLD responses from 11 normally sighted participants of both sexes under photopic and mesopic conditions in visual areas V1-V3. The first experiment estimated population receptive field (pRF) properties while the second experiment assessed cortical surround suppression. Photopic and mesopic psychophysical surround suppression, contrast sensitivity function (CSF), and visual acuity were also measured. At the cortical level, mesopic conditions were associated with smaller pRF sizes, while surround suppression remained robust. At the perceptual level, mesopic conditions led to reduced acuity, lower CSF, and weaker suppression, diverging from the observed cortical effects. Importantly, individual differences linked these findings: participants who exhibited greater mesopic reductions in visual acuity also showed larger decreases in early visuocortical surround suppression, underscoring its role in contrast coding and spatial resolution. Altogether, our fMRI findings contrast with retinal electrophysiology and suggest that early visual cortex may employ distinct, perhaps compensatory, mechanisms in response to reduced retinal input under mesopic conditions.
Collapse
Affiliation(s)
- Michaela Klimova
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
2
|
Seo S, Bharmauria V, Schütz A, Yan X, Wang H, Crawford JD. Multiunit Frontal Eye Field Activity Codes the Visuomotor Transformation, But Not Gaze Prediction or Retrospective Target Memory, in a Delayed Saccade Task. eNeuro 2024; 11:ENEURO.0413-23.2024. [PMID: 39054056 PMCID: PMC11373882 DOI: 10.1523/eneuro.0413-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
Collapse
Affiliation(s)
- Serah Seo
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida 33606
| | - Adrian Schütz
- Department of Neurophysics, Philipps-Universität Marburg, 35032 Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, 35032 Marburg, and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Xiaogang Yan
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Hongying Wang
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
3
|
Deng H, Cui Y, Liu H, Zhang G, Chai X, Yang X, Gong Q, Yu S, Guo D, Xia Y, Yao D, Chen K. The influence of electrode types to the visually induced gamma oscillations in mouse primary visual cortex. Cereb Cortex 2024; 34:bhae191. [PMID: 38725292 DOI: 10.1093/cercor/bhae191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 01/28/2025] Open
Abstract
The local field potential (LFP) is an extracellular electrical signal associated with neural ensemble input and dendritic signaling. Previous studies have linked gamma band oscillations of the LFP in cortical circuits to sensory stimuli encoding, attention, memory, and perception. Inconsistent results regarding gamma tuning for visual features were reported, but it remains unclear whether these discrepancies are due to variations in electrode properties. Specifically, the surface area and impedance of the electrode are important characteristics in LFP recording. To comprehensively address these issues, we conducted an electrophysiological study in the V1 region of lightly anesthetized mice using two types of electrodes: one with higher impedance (1 MΩ) and a sharp tip (10 μm), while the other had lower impedance (100 KΩ) but a thicker tip (200 μm). Our findings demonstrate that gamma oscillations acquired by sharp-tip electrodes were significantly stronger than those obtained from thick-tip electrodes. Regarding size tuning, most gamma power exhibited surround suppression at larger gratings when recorded from sharp-tip electrodes. However, the majority showed enhanced gamma power at larger gratings when recorded from thick-tip electrodes. Therefore, our study suggests that microelectrode parameters play a significant role in accurately recording gamma oscillations and responsive tuning to sensory stimuli.
Collapse
Affiliation(s)
- Haoran Deng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yan Cui
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Haolun Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Guizhi Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaoqian Chai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaotong Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Nanming District, Guiyang, Guizhou, 550002, P.R. China
| | - Qiang Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Shuang Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Daqing Guo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yang Xia
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Xiyuan road 2006, Chengdu 611731, China
| | - Ke Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
| |
Collapse
|
4
|
Bastos G, Holmes JT, Ross JM, Rader AM, Gallimore CG, Wargo JA, Peterka DS, Hamm JP. Top-down input modulates visual context processing through an interneuron-specific circuit. Cell Rep 2023; 42:113133. [PMID: 37708021 PMCID: PMC10591868 DOI: 10.1016/j.celrep.2023.113133] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Visual stimuli that deviate from the current context elicit augmented responses in the primary visual cortex (V1). These heightened responses, known as "deviance detection," require local inhibition in the V1 and top-down input from the anterior cingulate area (ACa). Here, we investigated the mechanisms by which the ACa and V1 interact to support deviance detection. Local field potential recordings in mice during an oddball paradigm showed that ACa-V1 synchrony peaks in the theta/alpha band (≈10 Hz). Two-photon imaging in the V1 revealed that mainly pyramidal neurons exhibited deviance detection, while contextually redundant stimuli increased vasoactive intestinal peptide (VIP)-positive interneuron (VIP) activity and decreased somatostatin-positive interneuron (SST) activity. Optogenetic drive of ACa-V1 inputs at 10 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of V1-VIPs disrupted Aca-V1 synchrony and deviance detection in the V1. These results outline temporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.
Collapse
Affiliation(s)
- Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Anna M Rader
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Joseph A Wargo
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA.
| |
Collapse
|
5
|
Bastos G, Holmes JT, Ross JM, Rader AM, Gallimore CG, Peterka DS, Hamm JP. A frontosensory circuit for visual context processing is synchronous in the theta/alpha band. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530044. [PMID: 36865311 PMCID: PMC9980180 DOI: 10.1101/2023.02.25.530044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as "deviance detection," require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6-12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6-12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.
Collapse
Affiliation(s)
- Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Anna M Rader
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| |
Collapse
|
6
|
Kirchberger L, Mukherjee S, Self MW, Roelfsema PR. Contextual drive of neuronal responses in mouse V1 in the absence of feedforward input. SCIENCE ADVANCES 2023; 9:eadd2498. [PMID: 36662858 PMCID: PMC9858514 DOI: 10.1126/sciadv.add2498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Neurons in the primary visual cortex (V1) respond to stimuli in their receptive field (RF), which is defined by the feedforward input from the retina. However, V1 neurons are also sensitive to contextual information outside their RF, even if the RF itself is unstimulated. Here, we examined the cortical circuits for V1 contextual responses to gray disks superimposed on different backgrounds. Contextual responses began late and were strongest in the feedback-recipient layers of V1. They differed between the three main classes of inhibitory neurons, with particularly strong contextual drive of VIP neurons, indicating a contribution of disinhibitory circuits to contextual drive. Contextual drive was strongest when the gray disk was perceived as figure, occluding its background, rather than a hole. Our results link contextual drive in V1 to perceptual organization and provide previously unknown insight into how recurrent processing shapes the response of sensory neurons to facilitate figure perception.
Collapse
Affiliation(s)
- Lisa Kirchberger
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Sreedeep Mukherjee
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Matthew W. Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Pieter R. Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
7
|
Wilson MN, Thunemann M, Liu X, Lu Y, Puppo F, Adams JW, Kim JH, Ramezani M, Pizzo DP, Djurovic S, Andreassen OA, Mansour AA, Gage FH, Muotri AR, Devor A, Kuzum D. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat Commun 2022; 13:7945. [PMID: 36572698 PMCID: PMC9792589 DOI: 10.1038/s41467-022-35536-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Human cortical organoids, three-dimensional neuronal cultures, are emerging as powerful tools to study brain development and dysfunction. However, whether organoids can functionally connect to a sensory network in vivo has yet to be demonstrated. Here, we combine transparent microelectrode arrays and two-photon imaging for longitudinal, multimodal monitoring of human cortical organoids transplanted into the retrosplenial cortex of adult mice. Two-photon imaging shows vascularization of the transplanted organoid. Visual stimuli evoke electrophysiological responses in the organoid, matching the responses from the surrounding cortex. Increases in multi-unit activity (MUA) and gamma power and phase locking of stimulus-evoked MUA with slow oscillations indicate functional integration between the organoid and the host brain. Immunostaining confirms the presence of human-mouse synapses. Implantation of transparent microelectrodes with organoids serves as a versatile in vivo platform for comprehensive evaluation of the development, maturation, and functional integration of human neuronal networks within the mouse brain.
Collapse
Affiliation(s)
- Madison N Wilson
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Xin Liu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Lu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Francesca Puppo
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jason W Adams
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jeong-Hoon Kim
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Mehrdad Ramezani
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Donald P Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Center, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K. G. Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Center, Oslo, Norway
- K. G. Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Abed AlFatah Mansour
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Ein Kerem-Jerusalem, Israel
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, CA, USA
- Archealization Center, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Uguz I, Shepard KL. Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. SCIENCE ADVANCES 2022; 8:eabq6354. [PMID: 36260686 PMCID: PMC9581492 DOI: 10.1126/sciadv.abq6354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Most neuromodulation approaches rely on extracellular electrical stimulation with penetrating electrodes at the cost of cortical damage. Surface electrodes, in contrast, are much less invasive but are challenged by the lack of proximity to axonal processes, leading to poor resolution. Here, we demonstrate that high-density (40-μm pitch), high-capacitance (>1 nF), single neuronal resolution PEDOT:PSS electrodes can be programmed to shape the charge injection front selectively at depths approaching 300 micrometers with a lateral resolution better than 100 micrometers. These electrodes, patterned on thin-film parylene substrate, can be subdurally implanted and adhere to the pial surface in chronic settings. By leveraging surface arrays that are optically transparent with PEDOT:PSS local interconnects and integrated with depth electrodes, we are able to combine surface stimulation and recording with calcium imaging and depth recording to demonstrate these spatial limits of bidirectional communication with pyramidal neurons in mouse visual cortex both laterally and at depth from the surface.
Collapse
|
9
|
Morrill RJ, Bigelow J, DeKloe J, Hasenstaub AR. Audiovisual task switching rapidly modulates sound encoding in mouse auditory cortex. eLife 2022; 11:e75839. [PMID: 35980027 PMCID: PMC9427107 DOI: 10.7554/elife.75839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In everyday behavior, sensory systems are in constant competition for attentional resources, but the cellular and circuit-level mechanisms of modality-selective attention remain largely uninvestigated. We conducted translaminar recordings in mouse auditory cortex (AC) during an audiovisual (AV) attention shifting task. Attending to sound elements in an AV stream reduced both pre-stimulus and stimulus-evoked spiking activity, primarily in deep-layer neurons and neurons without spectrotemporal tuning. Despite reduced spiking, stimulus decoder accuracy was preserved, suggesting improved sound encoding efficiency. Similarly, task-irrelevant mapping stimuli during inter-trial intervals evoked fewer spikes without impairing stimulus encoding, indicating that attentional modulation generalized beyond training stimuli. Importantly, spiking reductions predicted trial-to-trial behavioral accuracy during auditory attention, but not visual attention. Together, these findings suggest auditory attention facilitates sound discrimination by filtering sound-irrelevant background activity in AC, and that the deepest cortical layers serve as a hub for integrating extramodal contextual information.
Collapse
Affiliation(s)
- Ryan J Morrill
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| | - James Bigelow
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| | - Jefferson DeKloe
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| | - Andrea R Hasenstaub
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
10
|
Land R, Kral A. Temporal acuity is preserved in the auditory midbrain of aged mice. Neurobiol Aging 2022; 110:47-60. [PMID: 34852306 DOI: 10.1016/j.neurobiolaging.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
Impaired temporal resolution of the central auditory system has long been suggested to contribute to speech understanding deficits in the elderly. However, it has been difficult to differentiate between direct age-related central deficits and indirect effects of confounding peripheral age-related hearing loss on temporal resolution. To differentiate this, we measured temporal acuity in the inferior colliculus (IC) of aged CBA/J and C57BL/6 mice, as a model of aging with and without concomitant hearing loss. We used two common measures of auditory temporal processing: gap detection as a measure of temporal fine structure and amplitude-modulated noise as a measure of envelope sensitivity. Importantly, auditory temporal acuity remained precise in the IC of old CBA/J mice when no or only minimal age-related hearing loss was present. In contrast, temporal acuity was only indirectly reduced by the presence of age-related hearing loss in aged C57BL/6 mice, not by affecting the brainstem precision, but by affecting the signal-to-noise ratio of the neuronal activity in the IC. This demonstrates that indirect effects of age-related peripheral hearing loss likely remain an important factor for temporal processing in aging in comparison to 'pure' central auditory decline itself. It also draws attention to the issue that the threshold difference between 'nearly normal' or 'clinically normal' hearing aging subjects in comparison to normal hearing young subjects still can have indirect effects on central auditory neural representations of temporal processing.
Collapse
Affiliation(s)
- Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany.
| | - Andrej Kral
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany; Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
11
|
Perenboom MJL, Schenke M, Ferrari MD, Terwindt GM, van den Maagdenberg AMJM, Tolner EA. Responsivity to light in familial hemiplegic migraine type 1 mutant mice reveals frequency-dependent enhancement of visual network excitability. Eur J Neurosci 2020; 53:1672-1686. [PMID: 33170971 PMCID: PMC8048865 DOI: 10.1111/ejn.15041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 12/01/2022]
Abstract
Migraine patients often report (inter)ictal hypersensitivity to light, but the underlying mechanisms remain an enigma. Both hypo- and hyperresponsivity of the visual network have been reported, which may reflect either intra-individual dynamics of the network or large inter-individual variation in the measurement of human visual evoked potential data. Therefore, we studied visual system responsivity in freely behaving mice using combined epidural electroencephalography and intracortical multi-unit activity to reduce variation in recordings and gain insight into visual cortex dynamics. For better clinical translation, we investigated transgenic mice that carry the human pathogenic R192Q missense mutation in the α1A subunit of voltage-gated CaV 2.1 Ca2+ channels leading to enhanced neurotransmission and familial hemiplegic migraine type 1 in patients. Visual evoked potentials were studied in response to visual stimulation paradigms with flashes of light. Following intensity-dependent visual stimulation, FHM1 mutant mice displayed faster visual evoked potential responses, with lower initial amplitude, followed by less pronounced neuronal suppression compared to wild-type mice. Similar to what was reported for migraine patients, frequency-dependent stimulation in mutant mice revealed enhanced photic drive in the EEG beta-gamma band. The frequency-dependent increases in visual network responses in mutant mice may reflect the context-dependent enhancement of visual cortex excitability, which could contribute to our understanding of sensory hypersensitivity in migraine.
Collapse
Affiliation(s)
| | - Maarten Schenke
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Cheng L, Guo ZY, Qu YL. Cross-modality modulation of auditory midbrain processing of intensity information. Hear Res 2020; 395:108042. [PMID: 32810721 DOI: 10.1016/j.heares.2020.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 02/03/2023]
Abstract
In nature, animals constantly receive a multitude of sensory stimuli, such as visual, auditory, and somatosensory. The integration across sensory modalities is advantageous for the precise processing of sensory inputs which is essential for animals to survival. Although some principles of cross-modality integration have been revealed by many studies, little insight has been gained into its functional potentials. In this study, the functional influence of cross-modality modulation on auditory processing of intensity information was investigated via recording neuronal activity in the auditory midbrain (i.e., inferior colliculus, IC) under the conditions of visual, auditory, and audiovisual stimuli, respectively. Results demonstrated that combined audiovisual stimuli either enhanced or suppressed the responses of IC neurons compared to auditory stimuli alone, even though the same visual stimuli alone induced no response. Audiovisual modulation appeared to be strongest when the combined audiovisual stimuli were located at the best auditory azimuth of neurons as well as when presented with intensity at near-threshold levels. Additionally, the rate-intensity function of IC neurons to auditory stimuli was expanded or compressed by audiovisual modulation, which was highly dependent on the minimal threshold (MT) of neurons. Lowering of the MT and greater audiovisual modulation for the neuron indicated an intensity-specific enhancement of auditory intensity sensitivity by cross-modality modulation. Overall, evidence suggests a potential functional role of cross-modality modulation in IC that serves to instruct adaptive plasticity to enhance the auditory perception of intensity information.
Collapse
Affiliation(s)
- Liang Cheng
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China; School of Life Sciences & Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| | - Zhao-Yang Guo
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| | - Yi-Li Qu
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
13
|
Tariq T, Satti MH, Kamboh HM, Saeed M, Kamboh AM. Computationally efficient fully-automatic online neural spike detection and sorting in presence of multi-unit activity for implantable circuits. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 179:104986. [PMID: 31443868 DOI: 10.1016/j.cmpb.2019.104986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spike sorting is a basic step for implantable neural interfaces. With the growing number of channels, the process should be computationally efficient, automatic,robust and applicable on implantable circuits. NEW METHOD The proposed method is a combination of fully-automatic offline and online processes. It introduces a novel method for automatically determining a data-aware spike detection threshold, computationally efficient spike feature extraction, automatic optimal cluster number evaluation and verification coupled with Self-Organizing Maps to accurately determine cluster centroids. The system has the ability of unsupervised online operation after initial fully-automatic offline training. The prime focus of this paper is to fully-automate the complete spike detection and sorting pipeline, while keeping the accuracy high. RESULTS The proposed system is simulated on two well-known datasets. The automatic threshold improves detection accuracies significantly( > 15%) as compared to the most common detector. The system is able to effectively handle background multi-unit activity with improved performance. COMPARISON Most of the existing methods are not fully-automatic; they require supervision and expert intervention at various stages of the pipeline. Secondly, existing works focus on foreground neural activity. Recent research has highlighted importance of background multi-unit activity, and this work is amongst the first efforts that proposes and verifies an automatic methodology to effectively handle them as well. CONCLUSION This paper proposes a fully-automatic, computationally efficient system for spike sorting for both single-unit and multi-unit spikes. Although the scope of this work is design and verification through computer simulations, the system has been designed to be easily transferable into an integrated hardware form.
Collapse
Affiliation(s)
- Taimoor Tariq
- National University of Sciences and Technology, Islamabad, Pakistan.
| | - M Hashim Satti
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Hamid M Kamboh
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Saeed
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Awais M Kamboh
- University of Jeddah, Jeddah, Saudia Arabia; National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
14
|
32-channel mouse EEG: Visual evoked potentials. J Neurosci Methods 2019; 325:108316. [PMID: 31251949 DOI: 10.1016/j.jneumeth.2019.108316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Measuring visual evoked potentials (VEP) by means of EEG allows the quasi non-invasive assessment of visual function in mice. Such sensory phenotyping is important to screen for genetic or aging effects on vision in preclinical mouse models. Thus, a standardized EEG-like approach for the assessment of sensory evoked potentials in mice is desirable. NEW METHOD We describe a method to obtain the topographical distribution of flash evoked VEPs with 32-channel thin-film EEG electrode arrays in anesthetized mice. Further, we provide suggestions for the optimal choice of adequate digital filtering, referencing, and stimulus parameters for fast and reliable assessment of VEP parameters and distribution. RESULTS 32-channel thin-film electrodes provided clear information on the VEP topography across the skull. Re-referencing, such as bipolar, common average, and local average montages could be used to further refine the information on VEP topography. A balanced choice of digital high-pass filter, signal averaging and stimulus rate allowed to minimize measurement duration and at the same time assured good VEP signal-to-noise ratio. COMPARISON WITH EXISTING METHODS Subdermal electrodes or single skull screws provide only limited topographical information of the VEP. Assessment of VEPs with 32-channel thin-film electrodes can provide comparable signal quality with superior spatial resolution and standardized topographical and hemispheric information of VEP distribution. CONCLUSIONS EEG-like thin-film electrodes are an efficient tool for fast, comprehensive sensory phenotyping with topographical information in mice. This is a step towards the use of standardized mouse EEG to characterize EEG biomarkers in mouse models of human diseases.
Collapse
|
15
|
Yildirim F, Carvalho J, Cornelissen FW. A second-order orientation-contrast stimulus for population-receptive-field-based retinotopic mapping. Neuroimage 2017; 164:183-193. [PMID: 28666882 DOI: 10.1016/j.neuroimage.2017.06.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 05/31/2017] [Accepted: 06/26/2017] [Indexed: 12/01/2022] Open
Abstract
Visual field or retinotopic mapping is one of the most frequently used paradigms in fMRI. It uses activity evoked by position-varying high luminance contrast visual patterns presented throughout the visual field for determining the spatial organization of cortical visual areas. While the advantage of using high luminance contrast is that it tends to drive a wide range of neural populations - thus resulting in high signal-to-noise BOLD responses - this may also be a limitation, especially for approaches that attempt to squeeze more information out of the BOLD response, such as population receptive field (pRF) mapping. In that case, more selective stimulation of a subset of neurons - despite reduced signals - could result in better characterization of pRF properties. Here, we used a second-order stimulus based on local differences in orientation texture - to which we refer as orientation contrast - to perform retinotopic mapping. Participants in our experiment viewed arrays of Gabor patches composed of a foreground (a bar) and a background. These could only be distinguished on the basis of a difference in patch orientation. In our analyses, we compare the pRF properties obtained using this new orientation contrast-based retinotopy (OCR) to those obtained using classic luminance contrast-based retinotopy (LCR). Specifically, in higher order cortical visual areas such as LO, our novel approach resulted in non-trivial reductions in estimated population receptive field size of around 30%. A set of control experiments confirms that the most plausible cause for this reduction is that OCR mainly drives neurons sensitive to orientation contrast. We discuss how OCR - by limiting receptive field scatter and reducing BOLD displacement - may result in more accurate pRF localization as well. Estimation of neuronal properties is crucial for interpreting cortical function. Therefore, we conclude that using our approach, it is possible to selectively target particular neuronal populations, opening the way to use pRF modeling to dissect the response properties of more clearly-defined neuronal populations in different visual areas.
Collapse
Affiliation(s)
- Funda Yildirim
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | - Joana Carvalho
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
16
|
The contribution of inferior colliculus activity to the auditory brainstem response (ABR) in mice. Hear Res 2016; 341:109-118. [PMID: 27562195 DOI: 10.1016/j.heares.2016.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022]
Abstract
In mice, the auditory brainstem response (ABR) is frequently used to assess hearing status in transgenic hearing models. The diagnostic value of the ABR depends on knowledge about the anatomical sources of its characteristic waves. Here, we studied the contribution of the inferior colliculus (IC) to the click-evoked scalp ABR in mice. We demonstrate a non-invasive correlate of the IC response that can be measured in the scalp ABR as a slow positive wave P0 with peak latency 7-8 ms when recorded with adequate band-pass filtering. Wave P0 showed close correspondence in latency, magnitude and shape with the sustained part of evoked spiking activity and local field potentials (LFP) in the central nucleus of the IC. In addition, the onset peaks of the IC response were related temporally to ABR wave V and to some extent to wave IV. This relation was further supported by depth-dependent modulation of the shape of ABR wave IV and V within the IC suggesting generation within or in close vicinity to the IC. In conclusion, the slow ABR wave P0 in the scalp ABR may represent a complementary non-invasive marker for IC activity in the mouse. Further, the latency of synchronized click-evoked activity in the IC supports the view that IC contributes to ABR wave V, and possibly also to ABR wave IV.
Collapse
|
17
|
Kozai TDY, Du Z, Gugel ZV, Smith MA, Chase SM, Bodily LM, Caparosa EM, Friedlander RM, Cui XT. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J Neurosci Methods 2014; 242:15-40. [PMID: 25542351 DOI: 10.1016/j.jneumeth.2014.12.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intracortical electrode arrays that can record extracellular action potentials from small, targeted groups of neurons are critical for basic neuroscience research and emerging clinical applications. In general, these electrode devices suffer from reliability and variability issues, which have led to comparative studies of existing and emerging electrode designs to optimize performance. Comparisons of different chronic recording devices have been limited to single-unit (SU) activity and employed a bulk averaging approach treating brain architecture as homogeneous with respect to electrode distribution. NEW METHOD In this study, we optimize the methods and parameters to quantify evoked multi-unit (MU) and local field potential (LFP) recordings in eight mice visual cortices. RESULTS These findings quantify the large recording differences stemming from anatomical differences in depth and the layer dependent relative changes to SU and MU recording performance over 6-months. For example, performance metrics in Layer V and stratum pyramidale were initially higher than Layer II/III, but decrease more rapidly. On the other hand, Layer II/III maintained recording metrics longer. In addition, chronic changes at the level of layer IV are evaluated using visually evoked current source density. COMPARISON WITH EXISTING METHOD(S) The use of MU and LFP activity for evaluation and tracking biological depth provides a more comprehensive characterization of the electrophysiological performance landscape of microelectrodes. CONCLUSIONS A more extensive spatial and temporal insight into the chronic electrophysiological performance over time will help uncover the biological and mechanical failure mechanisms of the neural electrodes and direct future research toward the elucidation of design optimization for specific applications.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| | - Zhanhong Du
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| | - Zhannetta V Gugel
- Bioengineering, University of Pittsburgh, United States; Division of Biology and Biological Engineering, California Institute of Technology, United States
| | - Matthew A Smith
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; Ophthalmology, University of Pittsburgh, United States
| | - Steven M Chase
- Center for the Neural Basis of Cognition, United States; Biomedical Engineering, Carnegie Mellon University, United States
| | - Lance M Bodily
- Neurological Surgery, University of Pittsburgh, United States
| | | | | | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| |
Collapse
|