1
|
Nagori K, Pradhan M, Sharma M, Ajazuddin, Badwaik HR, Nakhate KT. Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:50-68. [PMID: 38529600 DOI: 10.2174/0115672050306008240321034006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer's disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.
Collapse
Affiliation(s)
- Kushagra Nagori
- Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Madhulika Pradhan
- Department of Pharmaceutical Technology, Gracious College of Pharmacy, Abhanpur 493661, Chhattisgarh, India
| | - Mukesh Sharma
- Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Hemant R Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| |
Collapse
|
2
|
Li H, Li X, Gao S, Wang D, Gao X, Li Y, Wang X, Cui Z, Ma H, Liu Q, Li M. Exposure to Cigarette Smoke Augments Post-ischemic Brain Injury and Inflammation via Mobilization of Neutrophils and Monocytes. Front Immunol 2019; 10:2576. [PMID: 31787973 PMCID: PMC6853894 DOI: 10.3389/fimmu.2019.02576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Cigarette smoke is a major preventable risk factor of ischemic stroke. Cigarette smoke induces a significant increase in circulating leukocytes. However, it remains unclear to what extent and by what mechanisms smoke priming influences stroke severity. Here we report that exposure to cigarette smoke exacerbated ischemic brain injury in mice subjected to transient middle cerebral artery occlusion (MCAO). The augmentation of neurodeficits and brain infarction was accompanied by increased production of pro-inflammatory factors and brain infiltration of neutrophils and monocytes. Prior to brain ischemia, exposure to cigarette smoke induced mobilization of peripheral neutrophils, and monocytes. Furthermore, the detrimental effects of smoke priming on ischemic brain injury were abolished either by pharmacological inhibition of the recruitment of neutrophils and monocytes or by blockade of the NLRP3 inflammasome, an effector protein of neutrophils and monocytes. Our findings suggest that cigarette smoke-induced mobilization of peripheral neutrophils and monocytes augments ischemic brain injury.
Collapse
Affiliation(s)
- Handong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuping Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Siman Gao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolin Gao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujing Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuejiao Wang
- Center for Neurological Diseases, The Third People's Hospital of Datong, Datong, China
| | - Zhigang Cui
- Center for Neurological Diseases, The Third People's Hospital of Datong, Datong, China
| | - Hongshan Ma
- Center for Neurological Diseases, The Third People's Hospital of Datong, Datong, China
| | - Qiang Liu
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
3
|
Zhao H, Feng Y, Wei C, Li Y, Ma H, Wang X, Cui Z, Jin WN, Shi FD. Colivelin Rescues Ischemic Neuron and Axons Involving JAK/STAT3 Signaling Pathway. Neuroscience 2019; 416:198-206. [DOI: 10.1016/j.neuroscience.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
|
4
|
Li Z, Han J, Ren H, Ma CG, Shi FD, Liu Q, Li M. Astrocytic Interleukin-15 Reduces Pathology of Neuromyelitis Optica in Mice. Front Immunol 2018; 9:523. [PMID: 29616032 PMCID: PMC5867910 DOI: 10.3389/fimmu.2018.00523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/05/2022] Open
Abstract
Astrocyte loss induced by neuromyelitis optica (NMO)-IgG and complement-dependent cytotoxicity (CDC) is the hallmark of NMO pathology. The survival of astrocytes is thought to reflect astrocyte exposure to environmental factors in the CNS and the response of astrocytes to these factors. However, still unclear are how astrocytes respond to NMO-IgG and CDC, and what CNS environmental factors may impact the survival of astrocytes. In a murine model of NMO induced by intracerebral injection of NMO-IgG and human complement, we found dramatic upregulation of IL-15 in astrocytes. To study the role of astrocytic IL-15 in NMO, we generated a transgenic mouse line with targeted expression of IL-15 in astrocytes (IL-15tg), in which the expression of IL-15 is controlled by a glial fibrillary acidic protein promoter. We showed that astrocyte-targeted expression of IL-15 attenuates astrocyte injury and the loss of aquaporin-4 in the brain. Reduced blood–brain barrier leakage and immune cell infiltration are also found in the lesion of IL-15tg mice subjected to NMO induction. IL-15tg astrocytes are less susceptible to NMO-IgG-mediated CDC than their wild-type counterparts. The enhanced resistance of IL-15tg astrocytes to cytotoxicity and cell death involves NF-κB signaling pathway. Our findings suggest that IL-15 reduces astrocyte loss and NMO pathology.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinrui Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cun-Gen Ma
- Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Jin WN, Ducruet AF, Liu Q, Shi SXY, Waters M, Zou M, Sheth KN, Gonzales R, Shi FD. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia. FASEB J 2018; 32:2757-2767. [PMID: 29401578 DOI: 10.1096/fj.201700962r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke-induced immune suppression predisposes the host to infections and can contribute to high morbidity and mortality in stroke patients. Because ischemic stroke has a profound effect on the systemic immune response, which may explain the increased susceptibility of stroke patients to infection, an urgent need persists for a better understanding of mechanisms associated with immune suppression; new and effective treatments for stroke can then be identified. NK cells play a key role in early host defense against pathogens by killing infected cells and/or producing cytokines such as IFN-γ. Because the phenotype and function of peripheral NK cells have been widely investigated in ischemic stroke, nCounter Inflammation Gene Array Analysis was used to build immune-related gene profiles of NK cells to comprehensively analyze the molecular signature of NK cells after ischemic brain injury. We observed distinct gene expression profiles reflecting different splenic NK-cell phenotypes and functional properties across the time course of transient middle cerebral artery occlusion (MCAO). Based on gene expression and pathway-network analysis, lower expression levels of signal transducer and activator of transcription-3 (STAT3) were observed in animals with MCAO compared with sham control animals. Genetic activation of STAT3 through the introduction of STAT3 clustered regularly interspaced short palindromic repeats (CRISPR) plasmid prevented the loss of NK-cell-derived IFN-γ production after MCAO, together with reduced bacterial burden and mortality. Our data suggest that brain ischemia impairs NK-cell-mediated immune defense in the periphery, at least in part through the JAK-STAT3 pathway, which can be readdressed by modulating STAT3 activation status.-Jin, W.-N., Ducruet, A. F., Liu, Q., Shi, S. X.-Y., Waters, M., Zou, M., Sheth, K. N., Gonzales, R., Shi, F.-D. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia.
Collapse
Affiliation(s)
- Wei-Na Jin
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Samuel Xiang-Yu Shi
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; and
| | - Michael Waters
- Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ming Zou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rayna Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; and
| | - Fu-Dong Shi
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Feng Y, Liao S, Wei C, Jia D, Wood K, Liu Q, Wang X, Shi FD, Jin WN. Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. J Neuroinflammation 2017; 14:248. [PMID: 29246244 PMCID: PMC5732427 DOI: 10.1186/s12974-017-1017-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023] Open
Abstract
Background Evidence suggests that brain infiltration of lymphocytes contributes to acute neural injury after cerebral ischemia. However, the spatio-temporal dynamics of brain-infiltrating lymphocytes during the late stage after cerebral ischemia remains unclear. Methods C57BL/6 (B6) mice were subjected to sham, photothrombosis, or 60-min transient middle cerebral artery occlusion (MCAO) procedures. Infarct volume, neurodeficits, production of reactive oxygen species (ROS) and inflammatory factors, brain-infiltrating lymphocytes, and their activation as well as pro-inflammatory cytokine IFN-γ production were assessed. Brain-infiltrating lymphocytes were also measured in tissue sections from post-mortem patients after ischemic stroke by immunostaining. Results In mice subjected to transient MCAO or photothrombotic stroke, we found that lymphocyte infiltration persists in the ischemic brain until at least day 14 after surgery, during which brain infarct volume significantly diminished. These brain-infiltrating lymphocytes express activation marker CD69 and produce proinflammatory cytokines such as IFN-γ, accompanied with a sustained increase of reactive oxygen species (ROS) and inflammatory cytokines release in the brain. In addition, brain-infiltrating lymphocytes were observed in post-mortem brain sections from patients during the late stage of ischemic stroke. Conclusion Our results demonstrate that brain-infiltration of lymphocytes persists after the acute stage of cerebral ischemia, facilitating future advanced studies to reveal the precise role of lymphocytes during late stage of stroke. Electronic supplementary material The online version of this article (10.1186/s12974-017-1017-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Center for Neuroinflammation, Beijing TianTan Hospital, Beijing, 100070, China
| | - Shiwei Liao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changjuan Wei
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dongmei Jia
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, MA, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Center for Neuroinflammation, Beijing TianTan Hospital, Beijing, 100070, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Center for Neuroinflammation, Beijing TianTan Hospital, Beijing, 100070, China. .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, 85013, AZ, USA.
| |
Collapse
|
7
|
Li HD, Li M, Shi E, Jin WN, Wood K, Gonzales R, Liu Q. A translocator protein 18 kDa agonist protects against cerebral ischemia/reperfusion injury. J Neuroinflammation 2017; 14:151. [PMID: 28754131 PMCID: PMC5534039 DOI: 10.1186/s12974-017-0921-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cerebral ischemia is a leading cause of death and disability with limited treatment options. Although inflammatory and immune responses participate in ischemic brain injury, the molecular regulators of neuroinflammation after ischemia remain to be defined. Translocator protein 18 kDa (TSPO) mainly localized to the mitochondrial outer membrane is predominantly expressed in glia within the central nervous system during inflammatory conditions. This study investigated the effect of a TSPO agonist, etifoxine, on neuroinflammation and brain injury after ischemia/reperfusion. Methods We used a mouse model of middle cerebral artery occlusion (MCAO) to examine the therapeutic potential and mechanisms of neuroprotection by etifoxine. Results TSPO was upregulated in Iba1+ or CD11b+CD45int cells from mice subjected to MCAO and reperfusion. Etifoxine significantly attenuated neurodeficits and infarct volume after MCAO and reperfusion. The attenuation was pronounced in mice subjected to 30, 60, or 90 min MCAO. Etifoxine reduced production of pro-inflammatory factors in the ischemic brain. In addition, etifoxine treatment led to decreased expression of interleukin-1β, interleukin-6, tumor necrosis factor-α, and inducible nitric oxide synthase by microglia. Notably, the benefit of etifoxine against brain infarction was ablated in mice depleted of microglia using a colony-stimulating factor 1 receptor inhibitor. Conclusions These findings indicate that the TSPO agonist, etifoxine, reduces neuroinflammation and brain injury after ischemia/reperfusion. The therapeutic potential of targeting TSPO requires further investigations in ischemic stroke.
Collapse
Affiliation(s)
- Han-Dong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Elaine Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Rayna Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
8
|
Jin WN, Shi SXY, Li Z, Li M, Wood K, Gonzales RJ, Liu Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab 2017; 37:2224-2236. [PMID: 28273719 PMCID: PMC5444553 DOI: 10.1177/0271678x17694185] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 11/15/2022]
Abstract
Brain ischemia elicits microglial activation and microglia survival depend on signaling through colony-stimulating factor 1 receptor (CSF1R). Although depletion of microglia has been linked to worse stroke outcomes, it remains unclear to what extent and by what mechanisms activated microglia influence ischemia-induced inflammation and injury in the brain. Using a mouse model of transient focal cerebral ischemia and reperfusion, we demonstrated that depletion of microglia via administration of the dual CSF1R/c-Kit inhibitor PLX3397 exacerbates neurodeficits and brain infarction. Depletion of microglia augmented the production of inflammatory mediators, leukocyte infiltration, and cell death during brain ischemia. Of note, microglial depletion-induced exacerbation of stroke severity did not solely depend on lymphocytes and monocytes. Importantly, depletion of microglia dramatically augmented the production of inflammatory mediators by astrocytes after brain ischemia . In vitro studies reveal that microglia restricted ischemia-induced astrocyte response and provided neuroprotective effects. Our findings suggest that neuroprotective effects of microglia may result, in part, from its inhibitory action on astrocyte response after ischemia.
Collapse
Affiliation(s)
- Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Samuel Xiang-Yu Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
9
|
Yao Y, Miao W, Liu Z, Han W, Shi K, Shen Y, Li H, Liu Q, Fu Y, Huang D, Shi FD. Dimethyl Fumarate and Monomethyl Fumarate Promote Post-Ischemic Recovery in Mice. Transl Stroke Res 2016; 7:535-547. [PMID: 27614618 PMCID: PMC5065588 DOI: 10.1007/s12975-016-0496-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/21/2023]
Abstract
Oxidative stress plays an important role in cerebral ischemia-reperfusion injury. Dimethyl fumarate (DMF) and its primary metabolite monomethyl fumarate (MMF) are antioxidant agents that can activate the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and induce the expression of antioxidant proteins. Here, we evaluated the impact of DMF and MMF on ischemia-induced brain injury and whether the Nrf2 pathway mediates the effects provided by DMF and MMF in cerebral ischemia-reperfusion injury. Using a mouse model of transient focal brain ischemia, we show that DMF and MMF significantly reduce neurological deficits, infarct volume, brain edema, and cell death. Further, DMF and MMF suppress glial activation following brain ischemia. Importantly, the protection of DMF and MMF was mostly evident during the subacute stage and was abolished in Nrf2-/- mice, indicating that the Nrf2 pathway is required for the beneficial effects of DMF and MMF. Together, our data indicate that DMF and MMF have therapeutic potential in cerebral ischemia-reperfusion injury and their protective role is likely mediated by the Nrf2 pathway.
Collapse
Affiliation(s)
- Yang Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Weimin Miao
- The State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Zhijia Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Han
- Department of Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kaibin Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yi Shen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Handong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ying Fu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - DeRen Huang
- Neurology and Neuroscience Associates, Unity Health Network, Akron, OH, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
10
|
Zuo L, Tan Y, Li CSR, Wang Z, Wang K, Zhang X, Lin X, Chen X, Zhong C, Wang X, Guo X, Wang J, Lu L, Luo X. Associations of rare nicotinic cholinergic receptor gene variants to nicotine and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1057-1071. [PMID: 27473937 PMCID: PMC5587505 DOI: 10.1002/ajmg.b.32476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Nicotine's rewarding effects are mediated through distinct subunits of nAChRs, encoded by different nicotinic cholinergic receptor (CHRN) genes and expressed in discrete regions in the brain. In the present study, we aimed to test the associations between rare variants at CHRN genes and nicotine dependence (ND), and alcohol dependence (AD). A total of 26,498 subjects with nine different neuropsychiatric disorders in 15 independent cohorts, which were genotyped on Illumina, Affymetrix, or PERLEGEN microarray platforms, were analyzed. Associations between rare variants (minor allele frequency (MAF) <0.05) at CHRN genes and nicotine dependence, and alcohol dependence were tested. The mRNA expression of all Chrn genes in whole mouse brain and 10 specific brain areas was investigated. All CHRN genes except the muscle-type CHRNB1, including eight genomic regions containing 11 neuronal CHRN genes and three genomic regions containing four muscle-type CHRN genes, were significantly associated with ND, and/or AD. All of these genes were expressed in the mouse brain. We conclude that CHRNs are associated with ND (mainly) and AD, supporting the hypothesis that the full catalog of ND/AD risk genes may contain most neuronal nAChRs-encoding genes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Xiangyang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiandong Lin
- Provincial Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Chunlong Zhong
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai First People’s Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Xiaoyun Guo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Jijun Wang
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Lu Lu
- Provincial Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, China
- Departments of Genetics, Genomics, Informatics, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
11
|
Zhao P, Yang X, Yang L, Li M, Wood K, Liu Q, Zhu X. Neuroprotective effects of fingolimod in mouse models of Parkinson's disease. FASEB J 2016; 31:172-179. [PMID: 27671228 DOI: 10.1096/fj.201600751r] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/16/2016] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons with limited treatment options. Emerging evidence shows that FTY720 protects against neural injury via modulation of the sphingosine-1-phosphate 1 receptor (S1PR1). However, it remains unclear whether FTY720 could influence neurodegeneration in PD. Therefore, the present study was designed to determine the impact of fingolimod (FTY720), a sphingosine-1-phosphate receptor (S1PR) agonist, on 2 mouse models of PD. We found that FTY720 significantly reduced the deficit of motor function, diminished the loss of tyrosine hydroxylase-positive neurons in the substantia nigra, and attenuated the decrease of striatal dopamine and metabolite levels in mice receiving 6-hydroxydopamine (6-OHDA) or rotenone to simulate PD. An S1PR1-selective antagonist, W146, blocked the neuroprotective effects of FTY720. Of note, FTY720 retained the phosphorylation of ERK, together with a decreased expression of cleaved caspase-3 in mice treated with 6-OHDA or rotenone. In vitro studies revealed that FTY720 also attenuated 6-OHDA- or rotenone-induced toxicity in SH-SY5Y cells. These findings suggest the potential of S1PR modulation as a treatment for PD.-Zhao, P., Yang, X., Yang, L., Li, M., Wood, K., Liu, Q., Zhu, X. Neuroprotective effects of fingolimod in mouse models of Parkinson's disease.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Liu Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kristofer Wood
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and .,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and .,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
12
|
Jin WN, Yang X, Li Z, Li M, Shi SXY, Wood K, Liu Q, Fu Y, Han W, Xu Y, Shi FD, Liu Q. Non-invasive tracking of CD4+ T cells with a paramagnetic and fluorescent nanoparticle in brain ischemia. J Cereb Blood Flow Metab 2016; 36:1464-76. [PMID: 26661207 PMCID: PMC4971610 DOI: 10.1177/0271678x15611137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
Abstract
Recent studies have demonstrated that lymphocytes play a key role in ischemic brain injury. However, there is still a lack of viable approaches to non-invasively track infiltrating lymphocytes and reveal their key spatiotemporal events in the inflamed central nervous system (CNS). Here we describe an in vivo imaging approach for sequential monitoring of brain-infiltrating CD4(+) T cells in experimental ischemic stroke. We show that magnetic resonance imaging (MRI) or Xenogen imaging combined with labeling of SPIO-Molday ION Rhodamine-B (MIRB) can be used to monitor the dynamics of CD4(+) T cells in a passive transfer model. MIRB-labeled CD4(+) T cells can be longitudinally visualized in the mouse brain and peripheral organs such as the spleen and liver after cerebral ischemia. Immunostaining of tissue sections showed similar kinetics of MIRB-labeled CD4(+) T cells when compared with in vivo observations. Our results demonstrated the use of MIRB coupled with in vivo imaging as a valid method to track CD4(+) T cells in ischemic brain injury. This approach will facilitate future investigations to identify the dynamics and key spatiotemporal events for brain-infiltrating lymphocytes in CNS inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Na Jin
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Xiaoxia Yang
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiguo Li
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Minshu Li
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Samuel Xiang-Yu Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Qingwei Liu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Ying Fu
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Han
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School; Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Fu-Dong Shi
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Qiang Liu
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
13
|
Perinatal hypoxia-ischemia reduces α 7 nicotinic receptor expression and selective α 7 nicotinic receptor stimulation suppresses inflammation and promotes microglial Mox phenotype. BIOMED RESEARCH INTERNATIONAL 2014; 2014:718769. [PMID: 24757672 PMCID: PMC3976804 DOI: 10.1155/2014/718769] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
Inflammation plays a central role in neonatal brain injury. During brain inflammation the resident macrophages of the brain, the microglia cells, are rapidly activated. In the periphery, α7 nicotinic acetylcholine receptors (α7R) present on macrophages can regulate inflammation by suppressing cytokine release. In the current study we investigated α7R expression in neonatal mice after hypoxia-ischemia (HI). We further examined possible anti-inflammatory role of α7R stimulation in vitro and microglia polarization after α7R agonist treatment. Real-time PCR analysis showed a 33% reduction in α7R expression 72 h after HI. Stimulation of primary microglial cells with LPS in combination with increasing doses of the selective α7R agonist AR-R 17779 significantly attenuated TNFα release and increased α7R transcript in microglial cells. Gene expression of M1 markers CD86 and iNOS, as well as M2 marker CD206 was not influenced by LPS and/or α7R agonist treatment. Further, Mox markers heme oxygenase (Hmox1) and sulforedoxin-1 (Srx1) were significantly increased, suggesting a polarization towards the Mox phenotype after α7R stimulation. Thus, our data suggest a role for the α7R also in the neonatal brain and support the anti-inflammatory role of α7R in microglia, suggesting that α7R stimulation could enhance the polarization towards a reparative Mox phenotype.
Collapse
|