1
|
Hirono M, Kudo M, Yamada M, Yanagawa Y. The modulatory role of bone morphogenetic protein signaling in cerebellar synaptic plasticity. J Neurochem 2025; 169:e16290. [PMID: 39680498 DOI: 10.1111/jnc.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Bone morphogenetic proteins (BMPs), regulators of bone formation, have been implicated in embryogenesis and morphogenesis of various tissues and organs. BMP signaling plays a role in the formation of appropriate synaptic connections and development of normal neural circuits in the brain. However, physiological roles of BMP signaling in postnatal neural functions, including synaptic plasticity, remain largely unknown. Long-term depression (LTD) of synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum has been suggested one neuronal mechanism underlying cerebellar functions. Here, we explored the contribution of BMP signaling to the induction of mouse cerebellar LTD. We first demonstrated that BMP2 and/or 4 were expressed in GABAergic neurons in mature networks of the cerebellar cortex. mRNA encoding BMP receptor type 1B (Bmpr1b) was expressed in the PC layer. Exogenous application of noggin, a BMP ligand inhibitor, suppressed the induction of cerebellar LTD by conjunctive stimulation, which caused normal LTD under control condition. Furthermore, mice deficient in BMPR1B exhibited attenuation of the extent of LTD induction, whereas they showed normal excitatory synaptic transmission at PF-PC synapses. These results suggest that after postnatal development, BMP signaling activated by BMPR1B, expressed in the PC layer, plays a crucial role in the facilitation of cerebellar LTD, leading to the modulation of cerebellar functions and behaviors.
Collapse
Affiliation(s)
| | - Moeko Kudo
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Ehrlich M, Ehrlich KC, Lacey M, Baribault C, Sen S, Estève PO, Pradhan S. Epigenetics of Genes Preferentially Expressed in Dissimilar Cell Populations: Myoblasts and Cerebellum. EPIGENOMES 2024; 8:4. [PMID: 38390894 PMCID: PMC10885033 DOI: 10.3390/epigenomes8010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
While studying myoblast methylomes and transcriptomes, we found that CDH15 had a remarkable preference for expression in both myoblasts and cerebellum. To understand how widespread such a relationship was and its epigenetic and biological correlates, we systematically looked for genes with similar transcription profiles and analyzed their DNA methylation and chromatin state and accessibility profiles in many different cell populations. Twenty genes were expressed preferentially in myoblasts and cerebellum (Myob/Cbl genes). Some shared DNA hypo- or hypermethylated regions in myoblasts and cerebellum. Particularly striking was ZNF556, whose promoter is hypomethylated in expressing cells but highly methylated in the many cell populations that do not express the gene. In reporter gene assays, we demonstrated that its promoter's activity is methylation sensitive. The atypical epigenetics of ZNF556 may have originated from its promoter's hypomethylation and selective activation in sperm progenitors and oocytes. Five of the Myob/Cbl genes (KCNJ12, ST8SIA5, ZIC1, VAX2, and EN2) have much higher RNA levels in cerebellum than in myoblasts and displayed myoblast-specific hypermethylation upstream and/or downstream of their promoters that may downmodulate expression. Differential DNA methylation was associated with alternative promoter usage for Myob/Cbl genes MCF2L, DOK7, CNPY1, and ANK1. Myob/Cbl genes PAX3, LBX1, ZNF556, ZIC1, EN2, and VAX2 encode sequence-specific transcription factors, which likely help drive the myoblast and cerebellum specificity of other Myob/Cbl genes. This study extends our understanding of epigenetic/transcription associations related to differentiation and may help elucidate relationships between epigenetic signatures and muscular dystrophies or cerebellar-linked neuropathologies.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Tulane Cancer Center, Hayward Human Genetics Center, Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kenneth C Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
| | - Carl Baribault
- Information Technology, Tulane University, New Orleans, LA 70118, USA
| | - Sagnik Sen
- Genome Biology Division, New England Biolabs, Ipswich, MA 01938, USA
| | | | - Sriharsa Pradhan
- Genome Biology Division, New England Biolabs, Ipswich, MA 01938, USA
| |
Collapse
|
3
|
Correns A, Zimmermann LMA, Baldock C, Sengle G. BMP antagonists in tissue development and disease. Matrix Biol Plus 2021; 11:100071. [PMID: 34435185 PMCID: PMC8377005 DOI: 10.1016/j.mbplus.2021.100071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenic proteins (BMPs) are important growth regulators in embryogenesis and postnatal homeostasis. Their tight regulation is crucial for successful embryonic development as well as tissue homeostasis in the adult organism. BMP inhibition by natural extracellular biologic antagonists represents the most intensively studied mechanistic concept of BMP growth factor regulation. It was shown to be critical for numerous developmental programs, including germ layer specification and spatiotemporal gradients required for the establishment of the dorsal-ventral axis and organ formation. The importance of BMP antagonists for extracellular matrix homeostasis is illustrated by the numerous human connective tissue disorders caused by their mutational inactivation. Here, we will focus on the known functional interactions targeting BMP antagonists to the ECM and discuss how these interactions influence BMP antagonist activity. Moreover, we will provide an overview about the current concepts and investigated molecular mechanisms modulating BMP inhibitor function in the context of development and disease.
Collapse
Key Words
- ALK3, anaplastic lymphoma kinase 3
- ATF2, activating transcription factor 2
- ActR, activin receptor
- BDB2, brachydactyly type B2
- BISC, BMP-induced signalling complex
- BMP antagonists
- BMPER, BMP binding endothelial regulator
- BMPs, bone morphogenetic proteins
- Bone morphogenetic protein (BMP)
- CAN, cerberus and DAN
- CDD, craniodiaphyseal dysplasia
- CHRD domain, chordin specific domain
- CUB domain, for complement C1r/C1s, Uegf, Bmp1 domain
- Connective tissue disorder
- Cv2, crossveinless-2
- DAN, differential screening selected gene aberrative in neuroblastoma
- DSD, diaphanospondylodysostosis
- Dpp, decapentaplegic
- ECM, extracellular matrix
- ERK, extracellular signal-regulated kinases
- Extracellular matrix (ECM)
- FMF, fibrillin microfibrils
- HS, heparan sulphate
- HSPGs, heparan sulphate proteoglycans
- MAPKs, mitogen-activated protein kinases
- MGC1, megalocornea 1
- PI3K, phosphoinositide 3-kinase
- PRDC, protein related to DAN and Cerberus
- SOST, sclerostin
- SYNS1, multiple synostoses syndrome 1
- Scw, screw
- Sog, short gastrulation
- TCC, tarsal-carpal coalition syndrome
- TGF-β, transforming growth factor- β
- Tld, tolloid
- Tsg, twisted gastrulation
- VBCH, Van Buchem disease
- Xlr/Tll, xolloid-related metalloprotease
- vWC, von Willebrand factor type C
- vWD, von Willebrand factor type D
Collapse
Affiliation(s)
- Annkatrin Correns
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Laura-Marie A. Zimmermann
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, B.3016 Michael Smith Building, Oxford Road, M13 9PT, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, M13 9PT, Manchester, UK
| | - Gerhard Sengle
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Cologne Centre for Musculoskeletal Biomechanics (CCMB), Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| |
Collapse
|
4
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Hippocampal overexpression of chordin protects against the chronic social defeat stress-induced depressive-like effects in mice. Brain Res Bull 2020; 158:31-39. [PMID: 32105677 DOI: 10.1016/j.brainresbull.2020.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 01/18/2023]
Abstract
Depression is a serious and worldwide neuropsychiatric disesase, and developing novel antidepressant targets beyond the monoaminergic systems is now popular and necessary. Bone morphogenetic protein (BMP) signals modulate numerous developmental, physiological, and homeostatic processes. The functions of BMPs are also regulated by secreted extracellular antagonists such as chordin and noggin. Chordin has abundant expression in adult brain, and may play critical role in the central nervous system. In this study, the chronic social defeat stress (CSDS) model of depression, various behavioral tests, western blotting, quantitative real-time reverse transcription PCR, immunohistochemistry, recombinant mouse chordin protein and AAV-Chordin-EGFP were together used to explore the role of chordin in the pathogenesis of depression. It was found that CSDS significantly decreased the expression of chordin in the hippocampus but not other related brain regions. Moreover, both pharmacological and genetic overexpression of hippocampal chordin fully protected against the CSDS-induced depressive-like effects in mice. Collectively, hippocampal chordin could be a novel antidepressant target, and this study further highlights the importance of the hippocampal BMP system in the pathophysiology of depression.
Collapse
|
6
|
Molecular specification of facial branchial motor neurons in vertebrates. Dev Biol 2018; 436:5-13. [PMID: 29391164 DOI: 10.1016/j.ydbio.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 02/02/2023]
Abstract
Orofacial muscles are critical for life-sustaining behaviors, such as feeding and breathing. Centuries of work by neuroanatomists and surgeons resulted in the mapping of bulbar motor neurons in the brainstem and the course of the cranial nerves that carry their axons. Despite the sophisticated understanding of the anatomy of the region, the molecular mechanisms that dictate the development and maturation of facial motor neurons remain poorly understood. This fundamental problem has been recently revisited by physiologists with novel techniques of studying the rhythmic contraction of orofacial muscles in relationship to breathing. The molecular understanding of facial motor neuron development will not only lead to the comprehension of the neural basis of facial expression but may also unlock new avenues to generate stem cell-derived replacements. This review summarizes the current understanding of molecular programs involved in facial motor neuron generation, migration, and maturation, including neural circuit assembly.
Collapse
|
7
|
Abstract
Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin–BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.
Collapse
|
8
|
Chordin and noggin expression in the adult rat trigeminal nuclei. J Chem Neuroanat 2016; 78:36-41. [PMID: 27546891 DOI: 10.1016/j.jchemneu.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 01/27/2023]
Abstract
Bone morphogenetic proteins (BMP) exert its biological functions by interacting with membrane bound receptors. However, functions of BMPs are also regulated in the extracellular space by secreted antagonistic regulators, such as chordin and noggin. Although the deep involvement of BMP signaling in the development and functions of the trigeminal nuclei has been postulated, little information is available for its expression in the trigeminal nuclei. We, thus, investigated chordin and noggin expression in the adult rat trigeminal nuclei using immunohistochemistry. Chordin and noggin were intensely expressed throughout the trigeminal nuclei. In addition, interesting differences are observed between chordin expression and noggin expression. For example, chordin prefers dendritic expression than noggin, suggesting that chordin is involved in the regulation of dendritic morphology and synaptic homeostasis. Furthermore, chordin and noggin were differentially expressed in the neuropil of the trigeminal nuclei. Since BMP signaling is known to play a pivotal role to make precise neural network, theses differences might be important to keep precise interneuronal connections by regulating local BMP signaling intensity in each region. Interestingly, we also detected chordin and noggin expression in axons of the trigeminal nerves. These data indicate that chordin and noggin play pivotal roles also in the adult trigeminal system.
Collapse
|
9
|
Ali IHA, Brazil DP. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br J Pharmacol 2016; 171:3620-32. [PMID: 24758361 DOI: 10.1111/bph.12724] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.
Collapse
Affiliation(s)
- Imran H A Ali
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
10
|
Yamashita K, Mikawa S, Sato K. BMP3 expression in the adult rat CNS. Brain Res 2016; 1643:35-50. [PMID: 27130896 DOI: 10.1016/j.brainres.2016.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic protein-3 (BMP3) is a very unique member of the TGF-β superfamily, because it functions as an antagonist to both the canonical BMP and activin pathways and plays important roles in multiple biological events. Although BMP3 expression has been described in the early development of the kidney, intestine and bone, little information is available for BMP3 expression in the central nervous system (CNS). We, thus, investigated BMP3 expression in the adult rat CNS using immunohistochemistry. BMP3 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP3 protein. These data indicate that BMP3 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that BMP3 plays important roles in the adult brain.
Collapse
Affiliation(s)
- Kanna Yamashita
- Department of Basic Nursing, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Sumiko Mikawa
- Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kohji Sato
- Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
11
|
BMP5 expression in the adult rat brain. Neuroscience 2014; 284:972-987. [PMID: 25110111 DOI: 10.1016/j.neuroscience.2014.07.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/27/2023]
Abstract
Bone morphogenetic protein-5 (BMP5), a member of the transforming growth factor-β (TGF-β) superfamily, has many effects in several biological events. Although BMP5 expression has been well reported in the early development of the central nervous system (CNS), there is little information about its expression in the adult CNS. Thus, we analyzed BMP5 expression in the adult rat CNS by immunohistochemistry. Abundant BMP5 expression was observed in most neurons, and their dendrites and axons. Furthermore, strong BMP5 expression was also detected in the neuropil of the gray matters with high plasticity, such as the molecular layer of the cerebellum, locus coeruleus, and nucleus of the solitary tract. In addition, we showed BMP5 expression also in astrocytes, ependymal cells and meninges. Our data suggest that BMP5 is widely expressed throughout the adult CNS, and this abundant expression in the adult brain strongly supports the idea that BMP5 plays important roles not only in the developing brain but also in the adult brain.
Collapse
|