1
|
Su H, Liao D, Huang C, Liu Q, Yu L. Low Serum Cholinesterase Levels Predict Poor Prognosis in Patients with Ovarian Cancer. Int J Gen Med 2025; 18:1023-1033. [PMID: 40026805 PMCID: PMC11871952 DOI: 10.2147/ijgm.s509718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Previous studies reported that low cholinesterase (ChE) levels were associated with poor prognosis in various cancers, including bladder, pancreatic, lung, and colorectal cancers. This study aimed to evaluate the clinical significance of serum ChE levels as a prognostic biomarker in ovarian cancer. Materials and Methods A retrospective cohort analysis was conducted on 168 patients diagnosed with epithelial ovarian cancer at the Suzhou Ninth People's Hospital from 2019 to 2020. Serum ChE levels were measured before initiating treatment and stratified into low and high groups based on the median level (7600 U/L). Clinical and pathological data, such as FIGO stage, age, tumor histological type, and survival outcomes, were collected. Kaplan-Meier analysis and Cox proportional hazards regression were used to assess the relationship between ChE levels and overall survival and disease-free survival. Results ChE levels were significantly correlated with clinicopathological features of epithelial ovarian cancer, including FIGO stage (p < 0.001), surgery completeness (p = 0.001), and platinum-resistant (p = 0.001). Kaplan-Meier analysis demonstrated that patients in the low ChE group had significantly worse overall survival (p = 0.003) and disease-free survival (p = 0.005) than those in the high ChE group. Multivariate Cox regression analysis identified low serum ChE levels as an independent predictor of poor overall survival and disease-free survival. Conclusion Low serum ChE levels are independently associated with poor prognosis in ovarian cancer patients, reflecting systemic inflammation, malnutrition, and potential hepatic dysfunction. These findings suggest that ChE could serve as a cost-effective and non-invasive biomarker for risk stratification and prognosis in clinical practice.
Collapse
Affiliation(s)
- Hailan Su
- Department of Gynecology, Suzhou Ninth People’s Hospital, Suzhou, People’s Republic of China
| | - Danfeng Liao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| | - Chaolin Huang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| | - Qin Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People’s Republic of China
| | - Lingfang Yu
- Department of Gynecology, Suzhou Ninth People’s Hospital, Suzhou, People’s Republic of China
| |
Collapse
|
2
|
Zhu F, Yin S, Wang Y, Zhong Y, Ji Q, Wu J. Effects of Probiotics on Neurodegenerative Disease-Related Symptoms and Systemic Inflammation: A Systematic Review. Int J Gen Med 2024; 17:5941-5958. [PMID: 39678681 PMCID: PMC11645901 DOI: 10.2147/ijgm.s499406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In recent years, probiotics, as a class of biologically active microorganisms, have increasingly attracted attention for their potential in treating neurodegenerative diseases (NDDs). To comprehensively assess the effects of probiotics on clinical symptoms and systemic inflammation regulation in various NDDs, this systematic review conducted a detailed search of the Cochrane Library, Embase, PubMed, and Web of Science databases, ultimately including 22 eligible randomized controlled trials (RCTs), with 4 RCTs for Alzheimer's Disease (AD), 10 RCTs for Parkinson's Disease (PD), 2 RCTs for Multiple Sclerosis (MS), and 2 RCTs for Mild Cognitive Impairment (MCI), and intervention durations ranging from 4 to 16 weeks. The comprehensive analysis indicates that probiotics help improve clinical symptoms related to NDDs, including gastrointestinal function, cognitive function, quality of life, and mental health. Additionally, probiotics generally have a positive effect on reducing systemic inflammation and enhancing antioxidant capacity in patients. In conclusion, existing evidence supports the promising potential of probiotics in treating NDDs. However, further large-scale, high-quality studies are needed to explore specific differences in efficacy among various probiotic strains, dosages, and modes of administration. Moreover, considering that lifestyle and dietary habits may modulate the effects of probiotics, these external factors should also be included in research considerations to gain a more comprehensive understanding of the mechanisms and application strategies of probiotics in NDDs treatment.
Collapse
Affiliation(s)
- Fengya Zhu
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Shao Yin
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuan Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yue Zhong
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Qiang Ji
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Jie Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
da Costa P, Schetinger MRC, Baldissarelli J, Stefanello N, Lopes TF, Reichert KP, Assmann CE, Bottari NB, Miron VV, Vargas FFA, Gutierres JM, da Cruz IBM, Morsch VM. Blackcurrant ( Ribes nigrum L.) improves cholinergic signaling and protects against chronic Scopolamine-induced memory impairment in mice. J Psychopharmacol 2024; 38:1170-1183. [PMID: 39262284 DOI: 10.1177/02698811241273776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND Blackcurrant (Ribes nigrum L.) is a berry rich in anthocyanins, bioactive compounds known for their antioxidant and neuroprotective properties that benefit human health. AIMS This study aimed to investigate the effects of blackcurrant and its association with Donepezil on memory impairment, cholinergic neurotransmission, and antioxidant systems in a mouse model of amnesia induced by chronic administration of Scopolamine. METHODS Adult male Swiss mice were given saline, blackcurrant (50 mg/kg, orally), and/or Donepezil (5 mg/kg, orally) and/or Scopolamine (1 mg/kg, intraperitoneally). RESULTS Behavioral tests revealed that blackcurrant and/or Donepezil prevented the learning and memory deficits induced by Scopolamine. In the cerebral cortex and hippocampus, blackcurrant and/or Donepezil treatments prevented the increase in acetylcholinesterase and butyrylcholinesterase activities induced by Scopolamine. Scopolamine also disrupted the glutathione redox system and increased levels of reactive species; nevertheless, blackcurrant and/or Donepezil treatments were able to prevent oxidative stress. Furthermore, these treatments prevented the increase in gene expression and protein density of acetylcholinesterase and the decrease in gene expression of the choline acetyltransferase enzyme induced by Scopolamine. CONCLUSIONS Findings suggest that blackcurrant and Donepezil, either alone or in combination, have anti-amnesic effects by modulating cholinergic system enzymes and improving the redox profile. Therefore, blackcurrant could be used as a natural supplement for the prevention and treatment of memory impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pauline da Costa
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa C Schetinger
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Multicenter Postgraduate Program in Physiological Sciences, Department of Physiology and Pharmacology, Federal University of Pelotas, Pelotas, RS, Brazil
- Postgraduate Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Naiara Stefanello
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thauan F Lopes
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Karine P Reichert
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles E Assmann
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Vanessa V Miron
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fermina Francesca A Vargas
- Multicenter Postgraduate Program in Physiological Sciences, Department of Physiology and Pharmacology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Jessié M Gutierres
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ivana Beatrice M da Cruz
- Post graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
5
|
Gruendel MS, Brenneisen W, Wollborn J, Haaker G, Meersch M, Gurlit S, Goebel U. Perioperative point-of-care-testing of plasmacholinesterases identifies older patients at risk for postoperative delirium: an observational prospective cohort study. BMC Geriatr 2024; 24:136. [PMID: 38321383 PMCID: PMC10848373 DOI: 10.1186/s12877-023-04627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Postoperative delirium (POD) is a severe perioperative complication that may increase mortality and length-of-stay in older patients. Moreover, POD is a major economic burden to any healthcare system. An altered expression of Acetylcholine- and Butyrylcholinesterases (AChE, BuChE) due to an unbalanced neuroinflammatory response to trauma or an operative stimulus has been reported to play an essential role in the development of POD. We investigated if perioperative measurement of cholinesterases (ChEs) can help identifying patients at risk for the occurrence of POD in both, scheduled and emergency surgery patients. METHODS This monocentric prospective observational cohort study was performed in a tertiary hospital (departments of orthopaedic surgery and traumatology). One hundred and fifty-one patients aged above 75 years were enrolled for scheduled (n = 76) or trauma-related surgery (n = 75). Exclusion criteria were diagnosed dementia and anticholinergic medication. Plasma samples taken pre- and postoperatively were analysed regarding AChE and BuChE activity. Furthermore, perioperative assessment using different cognitive tests was performed. The type of anaesthesia (general vs. spinal anaesthesia) was analysed. Primary outcome was the incidence of POD assessed by the approved Confusion Assessment Method (CAM) in combination with the expression of AChE and BuChE. RESULTS Of 151 patients included, 38 (25.2%) suffered from POD; 11 (14%) in scheduled and 27 (36%) in emergency patients. AChE levels showed no difference throughout groups or time course. Trauma patients had lower BuChE levels prior to surgery than scheduled patients (p < 0.001). Decline in BuChE levels correlated positively with the incidence of POD (1669 vs. 1175 U/l; p < 0.001). Emergency patients with BuChE levels below 1556 U/L were at highest risk for POD. There were no differences regarding length of stay between groups or incidence of POD. The type of anaesthesia had no influence regarding the incidence of POD. Only Charlson Comorbidity Index and Mini Nutrition Assessment demonstrated reliable strength in respect of POD. CONCLUSIONS Perioperative measurement of BuChE activity can be used as a tool to identify patients at risk of POD. As a point-of-care test, quick results may alter the patients' course prior to the development of POD. TRIAL REGISTRATION https://drks.de/search/de/trial/DRKS00017178 .
Collapse
Affiliation(s)
- Matthias S Gruendel
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
| | - Wibke Brenneisen
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
| | - Jakob Wollborn
- Department of Anaesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, USA
| | - Gerrit Haaker
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
| | - Melanie Meersch
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Simone Gurlit
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
- Department of Public Health, District Council, Muenster, Germany
| | - Ulrich Goebel
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany.
| |
Collapse
|
6
|
Czuba-Pakuła E, Pelikant-Małecka I, Lietzau G, Wójcik S, Smoleński RT, Kowiański P. Accelerated Extracellular Nucleotide Metabolism in Brain Microvascular Endothelial Cells in Experimental Hypercholesterolemia. Cell Mol Neurobiol 2023; 43:4245-4259. [PMID: 37801200 PMCID: PMC10661815 DOI: 10.1007/s10571-023-01415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Hypercholesterolemia affects the neurovascular unit, including the cerebral blood vessel endothelium. Operation of this system, especially in the context of energy metabolism, is controlled by extracellular concentration of purines, regulated by ecto-enzymes, such as e-NTPDase-1/CD39, ecto-5'-NT/CD73, and eADA. We hypothesize that hypercholesterolemia, via modulation of the activity of nucleotide metabolism-regulating ecto-enzymes, deteriorates glycolytic efficiency and energy metabolism of endothelial cells, which may potentially contribute to development of neurodegenerative processes. We aimed to determine the effect of hypercholesterolemia on the concentration of purine nucleotides, glycolytic activity, and activity of ecto-enzymes in the murine brain microvascular endothelial cells (mBMECs). We used 3-month-old male LDLR-/-/Apo E-/- double knockout mice to model hypercholesterolemia and atherosclerosis. The age-matched wild-type C57/BL6 mice were a control group. The intracellular concentration of ATP and NAD and extracellular activity of the ecto-enzymes were measured by HPLC. The glycolytic function of mBMECs was assessed by means of the extracellular acidification rate (ECAR) using the glycolysis stress test. The results showed an increased activity of ecto-5'-NT and eADA in mBMECs of the hypercholesterolemic mice, but no differences in intracellular concentration of ATP, NAD, and ECAR between the hypercholesterolemic and control groups. The changed activity of ecto-5'-NT and eADA leads to increased purine nucleotides turnover and a shift in their concentration balance towards adenosine and inosine in the extracellular space. However, no changes in the energetic metabolism of the mBMECs are reported. Our results confirm the influence of hypercholesterolemia on regulation of purine nucleotides metabolism, which may impair the function of the cerebral vascular endothelium. The effect of hypercholesterolemia on the murine brain microvascular endothelial cells (mBMECs). An increased activity of ecto-5'-NT and eADA in mBMECs of the LDLR-/-/Apo E-/- mice leads to a shift in the concentration balance towards adenosine and inosine in the extracellular space with no differences in intracellular concentration of ATP. Figure was created with Biorender.com.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Iwona Pelikant-Małecka
- Division of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Ryszard T Smoleński
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200, Słupsk, Poland.
| |
Collapse
|
7
|
Koshkzari R, Mirzaii-Dizgah I, Moghaddasi M, Mirzaii-Dizgah MR. Saliva and Serum Acetylcholinesterase Activity in Multiple Sclerosis. Mol Neurobiol 2023; 60:2884-2888. [PMID: 36746849 DOI: 10.1007/s12035-022-03187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis is mediated by the immune system that damages the myelin sheath. Most patients experience inflammation. Since one of the factors that have a role in reducing inflammation is acetylcholine, and according to the benefits of saliva, in this study, the level of salivary and serum cholinesterase activity in patients with multiple sclerosis and healthy were evaluated. Thirty women with multiple sclerosis who were hospitalized in the neurology ward of Imam Reza and Hazrat Rasoul Hospitals and 30 healthy females participated in the study. The severity of multiple sclerosis was calculated by expanded disability status scale (EDSS). Saliva and serum samples were collected in the morning. Cholinesterase activity was assessed by a photometric method. The mean cholinesterase activity in stimulated and unstimulated saliva and serum significantly reduced in the multiple sclerosis group. The cutoff for differentiation of multiple sclerosis patients from healthy individuals by assessing cholinesterase activity (IU/L) was 3577 in serum, 241 in unstimulated saliva, and 266 in stimulated saliva. It seems that cholinesterase activity decreases in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Roghayeh Koshkzari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Mirzaii-Dizgah
- Dep. of Physiology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| | - Mehdi Moghaddasi
- Department of Neurology, School of Medicine, Skull Base Research Center, Five Senses Health Research Institute, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Akyuz E, Celik BR, Aslan FS, Sahin H, Angelopoulou E. Exploring the Role of Neurotransmitters in Multiple Sclerosis: An Expanded Review. ACS Chem Neurosci 2023; 14:527-553. [PMID: 36724132 DOI: 10.1021/acschemneuro.2c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Betul Rana Celik
- Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Feyza Sule Aslan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Humeyra Sahin
- School of Medicine, Bezmialem Vakif University, Istanbul, Turkey, 34093
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 115 27
| |
Collapse
|
9
|
Rahimlou M, Nematollahi S, Husain D, Banaei-Jahromi N, Majdinasab N, Hosseini SA. Probiotic supplementation and systemic inflammation in relapsing-remitting multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Front Neurosci 2022; 16:901846. [PMID: 36203797 PMCID: PMC9531126 DOI: 10.3389/fnins.2022.901846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex inflammatory disease in which demyelination occurs in the central nervous system affecting approximately 2.5 million people worldwide. Intestinal microbiome changes play an important role in the etiology of chronic diseases. Objective This study aimed to investigate the effect of probiotic supplementation on systemic inflammation in patients with MS. Methods A 12-week double-blind clinical trial study was designed and seventy patients with MS were randomly divided into two groups receiving probiotics and placebo. Patients in the intervention group received two capsules containing multi-strain probiotics daily and patients in the control group received the same amount of placebo. Factors associated with systemic inflammation were assessed at the beginning and end of the study. Results Sixty-five patients were included in the final analysis. There was no significant difference between the two groups in terms of baseline variables except for the duration of the disease (P > 0.05). At the end of the study, probiotic supplementation compared to the placebo caused a significant reduction in the serum levels of CRP (-0.93 ± 1.62 vs. 0.05 ± 1.74, P = 0.03), TNF-α (-2.09 ± 1.88 vs. 0.48 ± 2.53, P = 0.015) and IFN-γ (-13.18 ± 7.33 vs. -1.93 ± 5.99, P < 0.001). Also, we found a significant increase in the FOXP3 and TGF-β levels in the intervention group (P < 0.05). Conclusion The results of our study showed that supplementation with probiotics can have beneficial effects on serum levels of some factors associated with systemic inflammation. Clinical trial registration [http://www.irct.ir], identifier [IRCT20181210041 918N1].
Collapse
Affiliation(s)
- Mehran Rahimlou
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shima Nematollahi
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Durdana Husain
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Banaei-Jahromi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Majdinasab
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Kutryb-Zajac B, Kawecka A, Caratis F, Urbanowicz K, Braczko A, Furihata T, Karaszewski B, Smolenski RT, Rutkowska A. The impaired distribution of adenosine deaminase isoenzymes in multiple sclerosis plasma and cerebrospinal fluid. Front Mol Neurosci 2022; 15:998023. [PMID: 36204140 PMCID: PMC9530629 DOI: 10.3389/fnmol.2022.998023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Adenosine deaminase (ADA) via two isoenzymes, ADA1 and ADA2, regulates intra- and extracellular adenosine concentrations by converting it to inosine. In the central nervous system (CNS), adenosine modulates the processes of neuroinflammation and demyelination that together play a critical role in the pathophysiology of multiple sclerosis (MS). Except for their catalytic activities, ADA isoenzymes display extra-enzymatic properties acting as an adhesion molecule or a growth factor. Aims This study aimed to explore the distribution and activity of ADA1 and ADA2 in the plasma and the CSF of MS patients as well as in the human brain microvascular endothelial cells (HBMEC), human brain vascular pericytes and human astrocytes. Methods and results The enzyme assay following reverse phase-high performance liquid chromatography (HPLC) analysis was used to detect the ADA1 and ADA2 activities and revealed an increased ratio of ADA1 to ADA2 in both the plasma and the CSF of MS patients. Plasma ADA1 activity was significantly induced in MS, while ADA2 was decreased in the CSF, but significance was not reached. The brain astrocytes, pericytes and endothelial cells revealed on their surface the activity of ADA1, with its basal level being five times higher in the endothelial cells than in the astrocytes or the pericytes. In turn, ADA2 activity was only observed in pericytes and endothelial cells. Stimulation of the cells with pro-inflammatory cytokines TNFα/IL17 for 18 h decreased intracellular nucleotide levels measured by HPLC only in pericytes. The treatment with TNFα/IL17 did not modulate cell-surface ATP and AMP hydrolysis nor adenosine deamination in pericytes or astrocytes. Whereas in endothelial cells it downregulated AMP hydrolysis and ADA2 activity and upregulated the ADA1, which reflects the ADA isoenzyme pattern observed here in the CSF of MS patients. Conclusion In this study, we determined the impaired distribution of both ADA isoenzymes in the plasma and the CSF of patients with MS. The increased ADA1 to ADA2 ratio in the CSF and plasma may translate to unfavorable phenotype that triggers ADA1-mediated pro-inflammatory mechanisms and decreases ADA2-dependent neuroprotective and growth-promoting effects in MS.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Barbara Kutryb-Zajac,
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| | | | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
- Aleksandra Rutkowska,
| |
Collapse
|
11
|
Boshra H, Awad M, Hussein M, Elyamani E. Vascular dysfunction and dyslipidemia in multiple sclerosis: are they correlated with disease duration and disability status? Egypt Heart J 2022; 74:9. [PMID: 35147792 PMCID: PMC8837734 DOI: 10.1186/s43044-022-00244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is strong evidence that vascular dysfunction is considered one of the possible causes of morbidity and mortality in patients suffering from multiple sclerosis (MS). This work aimed at assessing the arterial function and serum lipids in MS patients and correlating them with clinical and radiological findings. RESULTS This case-control study included 50 patients with MS and 50 age- and sex-matched controls. The arterial function was significantly reduced in MS patients, confirmed by significantly higher pulse wave velocity (PWV) and augmentation index (AIX), while the carotid IMT did not show significant difference between the two groups with no plaques in any of our patients. A significant positive correlation was found between PWV and both disease duration and disability. MS patients had significantly higher serum levels of T-cholesterol and triglycerides, and significantly lower serum levels of HDL-cholesterol, compared to controls. No significant correlation was found between serum lipids and either disease duration or disability. CONCLUSIONS There was a significant impairment in arterial function (assessed by the brachial cuff-based method via Mobil-O-Graph device) in MS patients compared to controls. Such impairment was significantly correlated with both disease duration and disability. MS patients had also significantly higher levels of T-cholesterol and triglycerides, compared to controls with no significant correlation between serum lipids and either disease duration or disability.
Collapse
Affiliation(s)
- Hesham Boshra
- Department of Cardiology, Beni-Suef University, Beni-suef, Egypt
| | - Marina Awad
- Department of Cardiology, Beni-Suef University, Beni-suef, Egypt
| | - Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-suef, 62511, Egypt.
| | - Ehab Elyamani
- Department of Cardiology, Beni-Suef University, Beni-suef, Egypt
| |
Collapse
|
12
|
Olasehinde TA, Olaniran AO. Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes. Toxicol Res 2022; 38:365-377. [DOI: 10.1007/s43188-021-00115-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
|
13
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
14
|
Possible Role of Butyrylcholinesterase in Fat Loss and Decreases in Inflammatory Levels in Patients with Multiple Sclerosis after Treatment with Epigallocatechin Gallate and Coconut Oil: A Pilot Study. Nutrients 2021; 13:nu13093230. [PMID: 34579104 PMCID: PMC8465111 DOI: 10.3390/nu13093230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background. Multiple sclerosis (MS) is characterised by the loss of muscle throughout the course of the disease, which in many cases is accompanied by obesity and related to inflammation. Nonetheless, consuming epigallocatechin gallate (EGCG) and ketone bodies (especially β-hydroxybutyrate (βHB)) produced after metabolising coconut oil, have exhibited anti-inflammatory effects and a decrease in body fat. In addition, butyrylcholinesterase (BuChE), seems to be related to the pathogenesis of the disease associated with inflammation, and serum concentrations have been related to lipid metabolism. Objective. The aim of the study was to determine the role of BuChE in the changes caused after treatment with EGCG and ketone bodies on the levels of body fat and inflammation state in MS patients. (2) Methods. A pilot study was conducted for 4 months with 51 MS patients who were randomly divided into an intervention group and a control group. The intervention group received 800 mg of EGCG and 60 mL of coconut oil, and the control group was prescribed a placebo. Fat percentage and concentrations of the butyrylcholinesterase enzyme (BuChE), paraoxonase 1 (PON1) activity, triglycerides, interleukin 6 (IL-6), albumin and βHB in serum were measured. (3) Results. The intervention group exhibited significant decreases in IL-6 and fat percentage and significant increases in BuChE, βHB, PON1, albumin and functional capacity (determined by the Expanded Disability Status Scale (EDSS)). On the other hand, the control group only exhibited a decrease in IL-6. After the intervention, BuChE was positively correlated with the activity of PON1, fat percentage and triglycerides in the intervention group, whereas these correlations were not observed in the control group (4). Conclusions. BuChE seems to have an important role in lipolytic activity and the inflammation state in MS patients, evidenced after administering EGCG and coconut oil as a βHB source.
Collapse
|
15
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
16
|
Odumade OA, Plotkin AL, Pak J, Idoko OT, Pettengill MA, Kollmann TR, Ozonoff A, Kampmann B, Levy O, Smolen KK. Plasma Adenosine Deaminase (ADA)-1 and -2 Demonstrate Robust Ontogeny Across the First Four Months of Human Life. Front Immunol 2021; 12:578700. [PMID: 34122398 PMCID: PMC8190399 DOI: 10.3389/fimmu.2021.578700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Human adenosine deaminases (ADAs) modulate the immune response: ADA1 via metabolizing adenosine, a purine metabolite that inhibits pro-inflammatory and Th1 cytokine production, and the multi-functional ADA2, by enhancing T-cell proliferation and monocyte differentiation. Newborns are relatively deficient in ADA1 resulting in elevated plasma adenosine concentrations and a Th2/anti-inflammatory bias compared to adults. Despite the growing recognition of the role of ADAs in immune regulation, little is known about the ontogeny of ADA concentrations. Methods In a subgroup of the EPIC002-study, clinical data and plasma samples were collected from 540 Gambian infants at four time-points: day of birth; first week of life; one month of age; and four months of age. Concentrations of total extracellular ADA, ADA1, and ADA2 were measured by chromogenic assay and evaluated in relation to clinical data. Plasma cytokines/chemokine were measured across the first week of life and correlated to ADA concentrations. Results ADA2 demonstrated a steady rise across the first months of life, while ADA1 concentration significantly decreased 0.79-fold across the first week then increased 1.4-fold by four months of life. Males demonstrated significantly higher concentrations of ADA2 (1.1-fold) than females at four months; newborns with early-term (37 to <39 weeks) and late-term (≥41 weeks) gestational age demonstrated significantly higher ADA1 at birth (1.1-fold), and those born to mothers with advanced maternal age (≥35 years) had lower plasma concentrations of ADA2 at one month (0.93-fold). Plasma ADA1 concentrations were positively correlated with plasma CXCL8 during the first week of life, while ADA2 concentrations correlated positively with TNFα, IFNγ and CXCL10, and negatively with IL-6 and CXCL8. Conclusions The ratio of plasma ADA2/ADA1 concentration increased during the first week of life, after which both ADA1 and ADA2 increased across the first four months of life suggesting a gradual development of Th1/Th2 balanced immunity. Furthermore, ADA1 and ADA2 were positively correlated with cytokines/chemokines during the first week of life. Overall, ADA isoforms demonstrate robust ontogeny in newborns and infants but further mechanistic studies are needed to clarify their roles in early life immune development and the correlations with sex, gestational age, and maternal age that were observed.
Collapse
Affiliation(s)
- Oludare A. Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children’s Hospital, Boston, MA, United States
| | - Alec L. Plotkin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Olubukola T. Idoko
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew A. Pettengill
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tobias R. Kollmann
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Therapeutic Value of Single Nucleotide Polymorphisms on the Efficacy of New Therapies in Patients with Multiple Sclerosis. J Pers Med 2021; 11:jpm11050335. [PMID: 33922540 PMCID: PMC8146426 DOI: 10.3390/jpm11050335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
The introduction of new therapies for the treatment of multiple sclerosis (MS) is a very recent phenomenon and little is known of their mechanism of action. Moreover, the response is subject to interindividual variability and may be affected by genetic factors, such as polymorphisms in the genes implicated in the pathologic environment, pharmacodynamics, and metabolism of the disease or in the mechanism of action of the medications, influencing the effectiveness of these therapies. This review evaluates the impact of pharmacogenetics on the response to treatment with new therapies in patients diagnosed with MS. The results suggest that polymorphisms detected in the GSTP1, ITGA4, NQO1, AKT1, and GP6 genes, for treatment with natalizumab, ZMIZ1, for fingolimod and dimethyl fumarate, ADA, for cladribine, and NOX3, for dimethyl fumarate, may be used in the future as predictive markers of treatment response to new therapies in MS patients. However, there are few existing studies and their samples are small, making it difficult to generalize the role of these genes in treatment with new therapies. Studies with larger sample sizes and longer follow-up are therefore needed to confirm the results of these studies.
Collapse
|
18
|
Bolton C. An evaluation of the recognised systemic inflammatory biomarkers of chronic sub-optimal inflammation provides evidence for inflammageing (IFA) during multiple sclerosis (MS). Immun Ageing 2021; 18:18. [PMID: 33853634 PMCID: PMC8045202 DOI: 10.1186/s12979-021-00225-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023]
Abstract
The pathogenesis of the human demyelinating disorder multiple sclerosis (MS) involves the loss of immune tolerance to self-neuroantigens. A deterioration in immune tolerance is linked to inherent immune ageing, or immunosenescence (ISC). Previous work by the author has confirmed the presence of ISC during MS. Moreover, evidence verified a prematurely aged immune system that may change the frequency and profile of MS through an altered decline in immune tolerance. Immune ageing is closely linked to a chronic systemic sub-optimal inflammation, termed inflammageing (IFA), which disrupts the efficiency of immune tolerance by varying the dynamics of ISC that includes accelerated changes to the immune system over time. Therefore, a shifting deterioration in immunological tolerance may evolve during MS through adversely-scheduled effects of IFA on ISC. However, there is, to date, no collective proof of ongoing IFA during MS. The Review addresses the constraint and provides a systematic critique of compelling evidence, through appraisal of IFA-related biomarker studies, to support the occurrence of a sub-optimal inflammation during MS. The findings justify further work to unequivocally demonstrate IFA in MS and provide additional insight into the complex pathology and developing epidemiology of the disease.
Collapse
|
19
|
Nazeri M, Bazrafshan H, Abolhasani Foroughi A. Serum inflammatory markers in patients with multiple sclerosis and their association with clinical manifestations and MRI findings. Acta Neurol Belg 2021; 122:1187-1193. [PMID: 33837496 DOI: 10.1007/s13760-021-01647-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
Inflammation in a myelinated portion of the nervous system is the mainstay of multiple sclerosis (MS). Elevation of inflammatory markers such as procalcitonin, ESR and hs-CRP is suspected to occur in MS patients. However, their prognostic role and their relationship with the severity of clinical symptoms of MS and MRI evidences has remained unnoticed in the literature. Hence, we aim to evaluate the serum level of inflammatory markers in the acute attack of MS patients and demonstrate the potential prognostic role of these inflammatory markers. This study was carried on case and control groups of definite MS patients. The cases were patients with active MS and were further allocated into four subgroups, while as control group included patients with non-active MS. Furthermore, all the participants underwent brain and cervical magnetic resonance imaging (MRI) using a contrast agent. A significant difference was detected in hs-CRP level (p = 0.009) across the subgroups of the cases. The highest level of hs-CRP was reported in patients with cerebellar and brain stem symptoms (mean = 6998.13 ± 3501.16), while the lowest in patients with pyramidal and urinary incontinence symptoms (mean = 1958.91 ± 2662.16). Moreover, correlation coefficient between values of MRI contrast-enhanced lesions and ESR level was statistically significant (Rs = 0.503 and p = 0.001). Elevation of ESR serum level positively correlates with disease activity evidenced by values of contrast-enhanced plaques of MRI in relapsing-remitting MS patients which may predict the disease activity. In addition, MS relapse with cerebellar and brain stem symptoms is associated with a high concentration of hs-CRP plasma level.
Collapse
Affiliation(s)
- Masoume Nazeri
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Bazrafshan
- Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Abolhasani Foroughi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Gao ZW, Wang X, Zhang HZ, Lin F, Liu C, Dong K. The roles of adenosine deaminase in autoimmune diseases. Autoimmun Rev 2020; 20:102709. [PMID: 33197575 DOI: 10.1016/j.autrev.2020.102709] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases patients are characterized by the autoimmune disorders, whose immune system can't distinguish between auto- and foreign- antigens. Thus, Immune homeostasis disorder is the key factor for autoimmune diseases development. Adenosine deaminase (ADA) is the degrading enzyme for an immunosuppressive signal - adenosine, and play an important role in immune homeostasis regulation. Increasing evidences have shown that ADA is involved in various autoimmune diseases. ADA activity were changed in multiple autoimmune diseases patients and could be served as a biomarker for clinical diagnosis. In this study, we analyze the change of ADA activity in patients with autoimmune diseases, and we underline its potential diagnostic value for autoimmune diseases patients.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Xi Wang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Hui-Zhong Zhang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Fang Lin
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Chong Liu
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Ke Dong
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China.
| |
Collapse
|
21
|
A Single Nucleotide ADA Genetic Variant Is Associated to Central Inflammation and Clinical Presentation in MS: Implications for Cladribine Treatment. Genes (Basel) 2020; 11:genes11101152. [PMID: 33007809 PMCID: PMC7601054 DOI: 10.3390/genes11101152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
In multiple sclerosis (MS), activated T and B lymphocytes and microglial cells release various proinflammatory cytokines, promoting neuroinflammation and negatively affecting the course of the disease. The immune response homeostasis is crucially regulated by the activity of the enzyme adenosine deaminase (ADA), as evidenced in patients with genetic ADA deficiency and in those treated with cladribine tablets. We investigated in a group of patients with MS the associations of a single nucleotide polymorphism (SNP) of ADA gene with disease characteristics and cerebrospinal fluid (CSF) inflammation. The SNP rs244072 of the ADA gene was determined in 561 patients with MS. Disease characteristics were assessed at the time of diagnosis; furthermore, in 258 patients, proinflammatory and anti-inflammatory molecules were measured in the CSF. We found a significant association between rs244072 and both clinical characteristics and central inflammation. In C-carriers, significantly enhanced disability and increased CSF levels of TNF, IL-5 and RANTES was observed. In addition, lower CSF levels of the anti-inflammatory cytokine IL-10 were found. Finally, the presence of the C allele was associated with a tendency of increased lymphocyte count. In MS patients, ADA SNP rs244072 is associated with CSF inflammation and disability. The selective targeting of the ADA pathway through cladribine tablet therapy could be effective in MS by acting on a pathogenically relevant biological mechanism.
Collapse
|
22
|
Zhang SY, Gui LN, Liu YY, Shi S, Cheng Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front Neurosci 2020; 14:823. [PMID: 32982663 PMCID: PMC7479227 DOI: 10.3389/fnins.2020.00823] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress has been suggested to play a key role in multiple sclerosis (MS), but clinical data on oxidative stress markers in MS patients were inconsistent. This study sought to quantitatively summarize the data of oxidative stress markers in the blood and cerebrospinal fluid (CSF) of patients with MS in the literature. We conducted a systematic search of PubMed and Web of Science and included studies if they provided data on the concentrations of oxidative stress markers in the peripheral blood and CSF of MS patients and healthy control (HC) subjects. The systematic search resulted in the inclusion of 31 studies with 2,001 MS patients and 2,212 HC subjects for meta-analysis. Random-effects meta-analysis demonstrated that patients with MS had significantly increased concentrations of blood oxidative stress markers compared with HC subjects for malondialdehyde (MDA; Hedges' g, 2.252; 95% CI, 1.080 to 3.424; p < 0.001) and lipid hydroperoxide by tert-butyl hydroperoxide-initiated chemiluminescence (CL-LOOH; Hedges' g, 0.383; 95% CI, 0.065 to 0.702; p = 0.018). In contrast, concentrations of albumin (Hedges' g, −1.036; CI, −1.679 to −0.394; p = 0.002) were significantly decreased in MS patients when compared with those in HC subjects. However, the other analyzed blood oxidative stress markers did not show significant differences between cases and controls. Furthermore, this meta-analysis showed significant association between CSF MDA and MS (Hedges' g, 3.275; 95% CI, 0.859 to 5.691; p = 0.008). Taken together, our results revealed increased blood and CSF MDA and decreased blood albumin levels in patients with MS, strengthening the clinical evidence of increased oxidative stress in MS.
Collapse
Affiliation(s)
- Shu-Yao Zhang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lue-Ning Gui
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yi-Ying Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sha Shi
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
23
|
Håkansson I, Ernerudh J, Vrethem M, Dahle C, Ekdahl KN. Complement activation in cerebrospinal fluid in clinically isolated syndrome and early stages of relapsing remitting multiple sclerosis. J Neuroimmunol 2020; 340:577147. [PMID: 31951875 DOI: 10.1016/j.jneuroim.2020.577147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
To assess if markers of complement activation are associated with disease activity, C1q, C3, C3a and sC5b-9 levels in plasma and cerebrospinal fluid (CSF) were determined in 41 patients with clinically isolated syndrome (CIS) or remitting multiple sclerosis (RRMS), in a prospective longitudinal four-year cohort study. C1q in CSF (CSF-C1q) was significantly higher in patients than in controls. Baseline CSF-C1q and CSF-C3a correlated with several neuroinflammatory markers and neurofilament light chain levels. Baseline CSF-C3a correlated with the number of T2 lesions at baseline and new T2 lesions during follow-up. Baseline CSF-C3a was also significantly higher in patients with (n = 21) than in patients without (n = 20) signs of disease activity according to the NEDA-3 concept during one year of follow-up (p ≤ .01) Study results support that complement activation is involved in MS pathophysiology and that CSF-C3a carries prognostic information.
Collapse
Affiliation(s)
- Irene Håkansson
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kristina N Ekdahl
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019; 141:1246-1257. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase is a critical enzyme in purine metabolism that regulates intra and extracellular adenosine concentrations by converting it to inosine. Adenosine is an important purine that regulates numerous physiological functions by interacting with its receptors. Adenosine and consequently adenosine deaminase can have pro or anti-inflammatory effects on tissues depending on how much time has passed from the start of the injury. In addition, an increase in adenosine deaminase activity has been reported for various diseases and the significant effect of deaminase inhibition on the clinical course of different diseases has been reported. However, the use of inhibitors is limited to only a few medical indications. Data on the increase of adenosine deaminase activity in different diseases and the impact of its inhibition in various cases have been collected and are discussed in this review. Overall, the evidence shows that many studies have been done to introduce inhibitors, however, in vivo studies have been much less than in vitro, and often have not been expanded for clinical use.
Collapse
Affiliation(s)
- S Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
25
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
26
|
Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? J Neurol Sci 2018; 392:8-21. [PMID: 30097157 DOI: 10.1016/j.jns.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
|
27
|
Bagatini MD, dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB. The Impact of Purinergic System Enzymes on Noncommunicable, Neurological, and Degenerative Diseases. J Immunol Res 2018; 2018:4892473. [PMID: 30159340 PMCID: PMC6109496 DOI: 10.1155/2018/4892473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/03/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022] Open
Abstract
Evidences show that purinergic signaling is involved in processes associated with health and disease, including noncommunicable, neurological, and degenerative diseases. These diseases strike from children to elderly and are generally characterized by progressive deterioration of cells, eventually leading to tissue or organ degeneration. These pathological conditions can be associated with disturbance in the signaling mediated by nucleotides and nucleosides of adenine, in expression or activity of extracellular ectonucleotidases and in activation of P2X and P2Y receptors. Among the best known of these diseases are atherosclerosis, hypertension, cancer, epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The currently available treatments present limited effectiveness and are mostly palliative. This review aims to present the role of purinergic signaling highlighting the ectonucleotidases E-NTPDase, E-NPP, E-5'-nucleotidase, and adenosine deaminase in noncommunicable, neurological, and degenerative diseases associated with the cardiovascular and central nervous systems and cancer. In conclusion, changes in the activity of ectonucleotidases were verified in all reviewed diseases. Although the role of ectonucleotidases still remains to be further investigated, evidences reviewed here can contribute to a better understanding of the molecular mechanisms of highly complex diseases, which majorly impact on patients' quality of life.
Collapse
Affiliation(s)
- Margarete Dulce Bagatini
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Andréia Machado Cardoso
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline Mânica
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Ruedell Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fabiano Barbosa Carvalho
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Quercetin treatment regulates the Na +,K +-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination. Nutr Res 2018; 55:45-56. [PMID: 29914627 DOI: 10.1016/j.nutres.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 01/13/2023]
Abstract
Quercetin is reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet has attracted the attention of the scientific community, resulting in a huge output of in vitro and in vivo (preclinical) studies. Therefore, we hypothesized that quercetin can protect Na+,K+-ATPase activity in the central nervous system, reestablish the peripheral cholinesterases activities, and reduce oxidative stress during demyelination events in rats. In line with this expectation, our study aims to find out how quercetin acts on the Na+,K+-ATPase activity in the central nervous system, peripheral cholinesterases, and stress oxidative markers in an experimental model of demyelinating disease. Wistar rats were divided into 4 groups: vehicle, quercetin, ethidium bromide (EB), and EB plus quercetin groups. The animals were treated once a day with vehicle (ethanol 20%) or quercetin 50 mg/kg for 7 (demyelination phase, by gavage) or 21 days (remyelination phase) after EB (0.1%, 10 μL) injection (intrapontine).The encephalon was removed, and the pons, hypothalamus, cerebral cortex, hippocampus, striatum, and cerebellum were dissected to verify the Na+,K+-ATPase activity. Our results showed that quercetin protected against reduction in Na+,K+-ATPase in the pons and cerebellum in the demyelination phase, and it increased the activity of this enzyme in the remyelination phase. During the demyelination, quercetin promoted the increase in acetylcholinesterase activity in whole blood and lymphocytes induced by EB, and it reduced the increase in acetylcholinesterase activity in lymphocytes in the remyelination phase. On day 7, EB increased the superoxide dismutase and decreased catalase activities, as well as increased the thiobarbituric acid-reactive substance levels. Taken together, these results indicated that quercetin regulates the Na+,K+-ATPase activity, affects the alterations of redox state, and participates in the reestablishment of peripheral cholinergic activity during demyelinating and remyelination events.
Collapse
|
29
|
Afolabi IS, Nwachukwu IC, Ezeoke CS, Woke RC, Adegbite OA, Olawole TD, Martins OC. Production of a New Plant-Based Milk from Adenanthera pavonina Seed and Evaluation of Its Nutritional and Health Benefits. Front Nutr 2018; 5:9. [PMID: 29556498 PMCID: PMC5845130 DOI: 10.3389/fnut.2018.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
A new plant milk was discovered from the seed of Adenanthera pavonina. The physicochemical and nutritional properties of the new pro-milk extract were assessed, and their biochemical effects were compared with those of soy bean extracts. Eleven groups of three albino rats each were used to assess the health benefits of the pro-milk. Groups were separately administered 3.1, 6.1, and 9.2 µl/g animal wt. pro-milk extract from A. pavonina seed, 6.1 µl/g animal wt. milk extract from soybean, and 6.1 µl/g animal wt. normal saline for 7 or 14 days. The “baseline” group consisted of those sacrificed on day 0. Among the physical properties considered, the pro-milk from A. pavonina had significantly higher (P < 0.05) hue color value and significantly lower (P < 0.05) L* than that from soy bean did. The pro-milk from A. pavonina had a significantly higher (P < 0.05) level of protein (36.14 ± 0.12%), Ca (440.99 ± 0.93 mg/l), Mg (96.69 ± 0.03 mg/l), K (190.41 ± 0.11 mg/l), Na (64.24 ± 0.24 mg/l), and Cu (0.55 ± 0.24 mg/l), and a significantly lower (P < 0.05) level of Mn (0.04 ± 0.01 mg/l) and vitamins A (undetectable), C (1.87 ± 0.01 mg/100 g), and E (0.12 ± 0.01 mg/100 g) compared to those of soy milk. The daily consumption of the pro-milk extract from A. pavonina for 14 days significantly reduced (P < 0.05) Ca2+-adenosine triphosphate synthase (Ca2+-ATPase) at low dose (3.1 µl/g animal wt.), but significantly increased (P < 0.05) Mg2+-ATPase at high dose (9.2 µl/g animal wt.). Daily administration of the A. pavonina extract for 14 days caused a significant reduction (P < 0.05) in acetylcholinesterase activity in the liver, intestine, heart, and kidney, suggesting that the pro-milk may facilitate ions transportation across the membrane. The pro-milk offers promising beneficial effects for patients with neurological diseases, as well as supporting general health owing to the high protein and mineral content. Vitamins fortification is recommended during production.
Collapse
Affiliation(s)
- Israel Sunmola Afolabi
- Biochemistry Department, College of Science and Technology, Covenant University, Ota, Nigeria
| | | | | | - Ruth Chineme Woke
- Biochemistry Department, College of Science and Technology, Covenant University, Ota, Nigeria
| | | | - Tolulope Dorcas Olawole
- Biochemistry Department, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Olubukola C Martins
- Lagos State University Teaching Hospital (LASUTH) Complex, Lagos State Drug Quality Control Laboratory, Ikeja, Nigeria
| |
Collapse
|
30
|
Impaired Cardiac Function in Patients with Multiple Sclerosis by Comparison with Normal Subjects. Sci Rep 2018; 8:3300. [PMID: 29459794 PMCID: PMC5818507 DOI: 10.1038/s41598-018-21599-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/25/2018] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS), neurologic disease affecting young population, may cause cardiovascular dysfunction, due to autonomous nervous dysfunction, physical invalidity, increased oxidative stress, and systemic inflammatory status. However, cardiovascular function is rarely evaluated in these patients. We assessed left and right ventricular (LV and RV) function by 2D, 3D, tissue Doppler, and speckle tracking echocardiography, and vascular function by remodeling, stiffness, and endothelial dysfunction parameters in patients with MS, compared to control subjects. 103 subjects (35 ± 10 years,70 women) were studied: 67 patients with MS and 36 control subjects. Patients with MS had decreased LV systolic function, confirmed by lower 2D and 3D ejection fraction, mitral annular plane systolic excursion, longitudinal myocardial systolic velocities, and 2D and 3D global longitudinal strain. The RV function was also decreased, as demonstrated by lower fractional area change, tricuspid annular plane systolic excursion, longitudinal systolic velocities, and longitudinal strain. Additionally, LV diastolic and left atrial (LA) function were decreased compared to controls. The parameters of arterial and endothelial function were similar between groups. Patients with MS have impaired biventricular function by comparison with normal subjects, with reduced LA function, but normal arterial and endothelial function. The noninvasive echocardiographic techniques might help to determine patients with MS at risk of developing cardiovascular dysfunction.
Collapse
|
31
|
Gerhauser I, Li L, Li D, Klein S, Elmarabet SA, Deschl U, Kalkuhl A, Baumgärtner W, Ulrich R, Beineke A. Dynamic changes and molecular analysis of cell death in the spinal cord of SJL mice infected with the BeAn strain of Theiler’s murine encephalomyelitis virus. Apoptosis 2018; 23:170-186. [DOI: 10.1007/s10495-018-1448-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Ben Anes A, Ben Nasr H, Garrouch A, Bennour S, Bchir S, Hachana M, Benzarti M, Tabka Z, Chahed K. Alterations in acetylcholinesterase and butyrylcholinesterase activities in chronic obstructive pulmonary disease: relationships with oxidative and inflammatory markers. Mol Cell Biochem 2017; 445:1-11. [DOI: 10.1007/s11010-017-3246-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
|
33
|
In Vivo PET Imaging of Adenosine 2A Receptors in Neuroinflammatory and Neurodegenerative Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6975841. [PMID: 29348737 PMCID: PMC5733838 DOI: 10.1155/2017/6975841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Adenosine receptors are G-protein coupled P1 purinergic receptors that are broadly expressed in the peripheral immune system, vasculature, and the central nervous system (CNS). Within the immune system, adenosine 2A (A2A) receptor-mediated signaling exerts a suppressive effect on ongoing inflammation. In healthy CNS, A2A receptors are expressed mainly within the neurons of the basal ganglia. Alterations in A2A receptor function and expression have been noted in movement disorders, and in Parkinson's disease pharmacological A2A receptor antagonism leads to diminished motor symptoms. Although A2A receptors are expressed only at a low level in the healthy CNS outside striatum, pathological challenge or inflammation has been shown to lead to upregulation of A2A receptors in extrastriatal CNS tissue, and this has been successfully quantitated using in vivo positron emission tomography (PET) imaging and A2A receptor-binding radioligands. Several radioligands for PET imaging of A2A receptors have been developed in recent years, and A2A receptor-targeting PET imaging may thus provide a potential additional tool to evaluate various aspects of neuroinflammation in vivo. This review article provides a brief overview of A2A receptors in healthy brain and in a selection of most important neurological diseases and describes the recent advances in A2A receptor-targeting PET imaging studies.
Collapse
|
34
|
Baldissarelli J, Pillat MM, Schmatz R, Cardoso AM, Abdalla FH, de Oliveira JS, Polachini CRN, Casali E, Bornemann CP, Ulrich H, Morsch VM, Schetinger MRC. Post-thyroidectomy hypothyroidism increases the expression and activity of ectonucleotidases in platelets: Possible involvement of reactive oxygen species. Platelets 2017; 29:801-810. [PMID: 29090621 DOI: 10.1080/09537104.2017.1361017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Signaling mediated by purines is a widespread mechanism of cell-cell communication related to vasomotor responses and the control of platelet function in the vascular system. However, little is known about the involvement of this signaling as well as the role of reactive oxygen species (ROS) in the development of hypothyroidism. Therefore, the present study investigates changes in the purinergic system, including enzyme activities and expression in platelets, and oxidative profiles in patients with post-thyroidectomy hypothyroidism. The nucleoside triphosphate diphosphohydrolase 1 (NTPDase/CD39) expression in patients increased by 40%, and the adenosine triphosphate (ATP) or adenosine diphosphate (ADP) hydrolyzing activity increased by 82% and 70%, respectively. The activities of ecto-5´-nucleotidase and adenosine deaminase (ADA) also significantly enhanced (39% and 52%, respectively), which correlates with a 45% decrease in adenosine concentration. Furthermore, these patients demonstrated an increased production of ROS (42%), thiobarbituric acid reactive substances (TBARS) (115%), carbonyl protein (30%) and a decreased glutathione S-transferase (GST) activity (20%). This study demonstrates that hypothyroidism interferes with adenine nucleoside and nucleotide hydrolysis and this is correlated with oxidative stress, which might be responsible for the increase in ADA activity. This increase causes rapid adenosine deamination, which can generate a decrease in their concentration in the systemic circulation, which can be associated with the development of vascular complications.
Collapse
Affiliation(s)
- Jucimara Baldissarelli
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| | - Micheli M Pillat
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| | - Roberta Schmatz
- b Instituto Federal de Educação , Ciência e Tecnologia do Rio Grande do Sul, Campus Bento Gonçalves , RS , Brasil
| | | | - Fátima H Abdalla
- d Universidade Luterana do Brasil, Unidade Universitária de Carazinho , RS , Brasil
| | - Juliana S de Oliveira
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| | - Carla R N Polachini
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| | - Emerson Casali
- e Universidade Federal do Rio Grande do Sul , Instituto de Ciências Básicas da Saúde , Porto Alegre , RS , Brasil
| | | | - Henning Ulrich
- g Departamento de Bioquímica , Instituto de Química, Universidade de São Paulo , São Paulo , Brasil
| | - Vera M Morsch
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| | - Maria R C Schetinger
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| |
Collapse
|
35
|
Farrokhi M, Jahanbani-Ardakani H, Eskandari N, Shaygannejad V, Ghafari S. Cerebrospinal Fluid and Serum Markers of Inflammation in Patients with Multiple Sclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.3233/nib-170121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mehrdad Farrokhi
- Medical student, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Jahanbani-Ardakani
- Medical student, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Medical Students Research Center (IMSRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Shaygannejad
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Ghafari
- Medical student, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Medical Students Research Center (IMSRC), Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Samuraki M, Sakai K, Odake Y, Yoshita M, Misaki K, Nakada M, Yamada M. Multiple sclerosis showing elevation of adenosine deaminase levels in the cerebrospinal fluid. Mult Scler Relat Disord 2017; 13:44-46. [PMID: 28427701 DOI: 10.1016/j.msard.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/16/2016] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
An 80-year-old man developed dysarthria, quadriplegia, sensory disturbance and ataxia in all limbs. Brain and spinal magnetic resonance imaging (MRI) revealed multiple enhanced lesions. Cerebrospinal fluid (CSF) levels of adenosine deaminase (ADA) remarkably elevated. Tuberculosis DNA was not detected, and tuberculosis was not cultured either in the CSF. Brain biopsy revealed the inflammatory demyelinating lesions. With the diagnosis of multiple sclerosis, corticosteroid therapy resulted in rapid improvement of his symptoms and MRI abnormalities. CSF levels of ADA also decreased. Multiple sclerosis should be included in differential diagnosis of disorders with ADA elevation in the CSF.
Collapse
Affiliation(s)
- Miharu Samuraki
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan.
| | - Yasuko Odake
- Department of Neurology, National Hospital Organization, Hokuriku Hospital, Japan
| | - Mitsuhiro Yoshita
- Department of Neurology, National Hospital Organization, Hokuriku Hospital, Japan
| | | | | | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Japan
| |
Collapse
|
37
|
Baldissarelli J, Santi A, Schmatz R, Abdalla FH, Cardoso AM, Martins CC, Dias GRM, Calgaroto NS, Pelinson LP, Reichert KP, Loro VL, Morsch VMM, Schetinger MRC. Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin. Cell Mol Neurobiol 2017; 37:53-63. [PMID: 26879755 PMCID: PMC11482073 DOI: 10.1007/s10571-016-0342-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.
Collapse
Affiliation(s)
- Jucimara Baldissarelli
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Adriana Santi
- Conselho de Ensino e Pesquisa, Curso de Medicina, Universidade Federal de Mato Grosso, Parque Sagrada Família, Rondonópolis, MT, Brazil
| | - Roberta Schmatz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Ibirubá, Ibirubá, RS, Brazil
| | - Fátima Husein Abdalla
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | | | - Caroline Curry Martins
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Glaecir R Mundstock Dias
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Cidade Universitária Galeão, Rio de Janeiro, RJ, Brazil
| | - Nicéia Spanholi Calgaroto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Luana Paula Pelinson
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Karine Paula Reichert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
38
|
Di Bari M, Reale M, Di Nicola M, Orlando V, Galizia S, Porfilio I, Costantini E, D'Angelo C, Ruggieri S, Biagioni S, Gasperini C, Tata AM. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients. Int J Mol Sci 2016; 17:ijms17122009. [PMID: 27916909 PMCID: PMC5187809 DOI: 10.3390/ijms17122009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.
Collapse
Affiliation(s)
- Maria Di Bari
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Viviana Orlando
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Sabrina Galizia
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Italo Porfilio
- School of Hygiene and Preventive Medicine, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Erica Costantini
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Chiara D'Angelo
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Serena Ruggieri
- Department of Neurology and Psichiatry, Sapienza University of Rome, 00185 Rome, Italy.
- Department of Neurosciences, San Camillo Forlanini Hospital, 00185 Rome, Italy.
| | - Stefano Biagioni
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00185 Rome, Italy.
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
39
|
Investigation of cerebral microbleeds in multiple sclerosis as a potential marker of blood-brain barrier dysfunction. Mult Scler Relat Disord 2016; 7:61-4. [DOI: 10.1016/j.msard.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 11/22/2022]
|
40
|
Salehabadi M, Farimani M, Tavilani H, Ghorbani M, Poormonsefi F, Poorolajal J, Shafiei G, Ghasemkhani N, Khodadadi I. Association of G22A and A4223C ADA1 gene polymorphisms and ADA activity with PCOS. Syst Biol Reprod Med 2016; 62:213-22. [DOI: 10.3109/19396368.2016.1143055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers, and Vitamin D Levels in Patients with Multiple Sclerosis. Neurotox Res 2015; 29:230-42. [DOI: 10.1007/s12640-015-9584-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
42
|
MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: Relevance of GNbAC1 in multiple sclerosis treatment. J Neuroimmunol 2015; 291:29-38. [PMID: 26857492 DOI: 10.1016/j.jneuroim.2015.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis associated retrovirus envelope protein (MSRV-Env) was repeatedly detected in brain lesions and blood of multiple sclerosis (MS) patients. We performed the first pharmacological characterisation of MSRV-Env on recombinant and native human TLR4. MSRV-Env is a full and highly potent TLR4 agonist of endogenous origin. MSRV-Env induces TLR4-dependent pro-inflammatory stimulation of immune cells in vitro and in vivo, and impairs oligodendrocytes precursor cells differentiation to myelinating oligodendrocytes. MSRV-Env may play a role in chronic inflammation and impaired remyelination in MS. GNbAC1, a selective monoclonal antibody, antagonizes MSRV-Env pathogenic effects and represents an innovative therapeutic approach of MS.
Collapse
|