1
|
Radermacher J, Erhardt VKJ, Walzer O, Haas EC, Kuppler KN, Zügner JSR, Lauer AA, Hartmann T, Grimm HS, Grimm MOW. Influence of Ibuprofen on glycerophospholipids and sphingolipids in context of Alzheimer´s Disease. Biomed Pharmacother 2025; 185:117969. [PMID: 40073745 DOI: 10.1016/j.biopha.2025.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disorder associated with neuroinflammation, elevated oxidative stress, lipid alterations as well as amyloid-deposits and the formation of neurofibrillary tangles. Ibuprofen, a globally used analgesic, is discussed to influence disease progression due to its anti-inflammatory effect. However, changes in lipid-homeostasis induced by Ibuprofen have not yet been analyzed. Here we investigate the effect of Ibuprofen on lipid classes known to be associated with AD. Ibuprofen treatment leads to a significant increase in phosphatidylcholine, sphingomyelin and triacylglyceride (TAG) species whereas plasmalogens, which are highly susceptible for oxidation, were significantly decreased. The observed alterations in phosphatidylcholine and sphingomyelin levels in presence of Ibuprofen might counteract the reduced phosphatidylcholine- and sphingomyelin-levels found in AD brain tissue with potential positive aspects on synaptic plasticity and ceramide-induced apoptotic effects. On the other hand, Ibuprofen leads to elevated TAG-level resulting in the formation of lipid droplets which are associated with neuroinflammation. Reduction of plasmalogen-levels might accelerate decreased plasmalogen-levels found in AD brains. Treatment of Ibuprofen in terms of lipid-homeostasis reveals both potentially positive and negative changes relevant to AD. Therefore, understanding the influence of Ibuprofen on lipid-homeostasis may help to understand the heterogeneous results of studies treating AD with Ibuprofen.
Collapse
Affiliation(s)
| | | | - Oliver Walzer
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany.
| | | | | | | | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| |
Collapse
|
2
|
Ramires Júnior OV, Silveira JS, Gusso D, Krupp Prauchner GR, Ferrary Deniz B, Almeida WD, Pereira LO, Wyse AT. Homocysteine decreases VEGF, EGF, and TrkB levels and increases CCL5/RANTES in the hippocampus: Neuroprotective effects of rivastigmine and ibuprofen. Chem Biol Interact 2024; 403:111260. [PMID: 39357784 DOI: 10.1016/j.cbi.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Homocysteine (Hcy) is produced through methionine transmethylation. Elevated Hcy levels are termed Hyperhomocysteinemia (HHcy) and represent a risk factor for neurodegenerative conditions such as Alzheimer's disease. This study aimed to explore the impact of mild HHcy and the neuroprotective effects of ibuprofen and rivastigmine via immunohistochemical analysis of glial markers (Iba-1 and GFAP). Additionally, we assessed levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), chemokine ligand 5 (CCL5/RANTES), CX3C chemokine ligand 1 (CX3CL1), and the NGF/p75NTR/tropomyosin kinase B (TrkB) pathway in the hippocampus of adult rats. Mild chronic HHcy was induced chemically in Wistar rats by subcutaneous administration of Hcy (4 mg/kg body weight) twice daily for 30 days. Rivastigmine (0.5 mg/kg) and ibuprofen (40 mg/kg) were administered intraperitoneally once daily. Results revealed elevated levels of CCL5/RANTES and reduced levels of VEGF, EGF, and TrkB in the hippocampus of HHcy-exposed rats. Rivastigmine mitigated the neurotoxic effects of HHcy by increasing TrkB and VEGF levels. Conversely, ibuprofen attenuated CCL5/RANTES levels against the neurotoxicity of HHcy, significantly reducing this chemokine's levels. HHcy-induced neurochemical impairment in the hippocampus may jeopardize neurogenesis, synapse formation, axonal transport, and inflammatory balance, leading to neurodegeneration. Treatments with rivastigmine and ibuprofen alleviated some of these detrimental effects. Reversing HHcy-induced damage through these compounds could serve as a potential neuroprotective strategy against brain damage.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Fisiologia e Farmacologia, Instiruto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wellington de Almeida
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Si Y, Meng B, Qi F. Age- and Genotype-Dependent Effects of Chronic Nicotine on Presenilin1/2 Double Knockout Mice: From Behavior to Molecular Pathways. Curr Alzheimer Res 2024; 21:817-832. [PMID: 39936411 DOI: 10.2174/0115672050363992250127072919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025]
Abstract
Introduction The potential therapeutic role of nicotine in Alzheimer's disease (AD) remains controversial, particularly regarding its age-dependent effects and underlying mechanisms. Methods This study investigated the impact of chronic nicotine administration on cognitive function and molecular pathways in Presenilin 1/2 double knockout (DKO) mice, an amyloid-β: (Aβ:)- independent model of AD. Three-month-old and eight-month-old DKO and wild-type (WT) mice received oral nicotine treatment (100 μg/ml) for three months. Behavioral assessments revealed that while the 6-month-old cohort showed no significant differences between nicotine-treated and control groups regardless of genotype, nicotine improved contextual fear memory in 11-month- old DKO mice but impaired nest-building ability and cued fear memory in age-matched WT controls. Transcriptome analysis of the prefrontal cortex identified distinct molecular responses to nicotine between genotypes. Results In DKO mice, nicotine modulated neuropeptide signaling and reduced astrocyte activation, while in WT mice, it disrupted cytokine-cytokine receptor interaction and neuroactive ligand- receptor interaction pathways. Western blot analysis revealed that nicotine treatment significantly reduced tau hyperphosphorylation and Glial Fibrillary Acidic Protein (GFAP) expression in 11-month-old DKO mice, which was further confirmed by immunohistochemistry showing decreased astrocyte activation in multiple brain regions Conclusion These findings demonstrate that nicotine's effects on cognition and molecular pathways are both age- and genotype-dependent, suggesting its therapeutic potential may be limited to specific stages of neurodegeneration while potentially having adverse effects in healthy aging brains.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Feiyan Qi
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| |
Collapse
|
4
|
Dziemidowicz K, Kellaway SC, Guillemot-Legris O, Matar O, Trindade RP, Roberton VH, Rayner MLD, Williams GR, Phillips JB. Development of ibuprofen-loaded electrospun materials suitable for surgical implantation in peripheral nerve injury. BIOMATERIALS ADVANCES 2023; 154:213623. [PMID: 37837905 DOI: 10.1016/j.bioadv.2023.213623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/16/2023]
Abstract
The development of nerve wraps for use in the repair of peripheral nerves has shown promise over recent years. A pharmacological effect to improve regeneration may be achieved by loading such materials with therapeutic agents, for example ibuprofen, a non-steroidal anti-inflammatory drug with neuroregenerative properties. In this study, four commercially available polymers (polylactic acid (PLA), polycaprolactone (PCL) and two co-polymers containing different ratios of PLA to PCL) were used to fabricate ibuprofen-loaded nerve wraps using blend electrospinning. In vitro surgical handling experiments identified a formulation containing a PLA/PCL 70/30 molar ratio co-polymer as the most suitable for in vivo implantation. In a rat model, ibuprofen released from electrospun materials significantly improved the rate of axonal growth and sensory recovery over a 21-day recovery period following a sciatic nerve crush. Furthermore, RT-qPCR analysis of nerve segments revealed that the anti-inflammatory and neurotrophic effects of ibuprofen may still be observed 21 days after implantation. This suggests that the formulation developed in this work could have potential to improve nerve regeneration in vivo.
Collapse
Affiliation(s)
- Karolina Dziemidowicz
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland.
| | - Simon C Kellaway
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Owein Guillemot-Legris
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Omar Matar
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Rita Pereira Trindade
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Victoria H Roberton
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Melissa L D Rayner
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Gareth R Williams
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - James B Phillips
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
5
|
Si Y, Chen J, Shen Y, Kubra S, Mei B, Qin ZS, Pan B, Meng B. Circadian rhythm sleep disorders and time-of-day-dependent memory deficiency in Presenilin1/2 conditional knockout mice with long noncoding RNA expression profiling changes. Sleep Med 2023; 103:146-158. [PMID: 36805914 DOI: 10.1016/j.sleep.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Alzheimer's disease (AD) patients exhibit sleep and circadian disturbances prior to the onset of cognitive decline, and these disruptions worsen with disease severity. However, the molecular mechanisms behind sleep and circadian disruptions in AD patients are poorly understood. In this study, we investigated sleep pattern and circadian rhythms in Presenilin-1/2 conditional knockout (DKO) mice. Assessment of EEG and EMG recordings showed that DKO mice displayed increased NREM sleep time but not REM sleep during the dark phase compared to WT mice at the age of two months; at the age of six months, the DKO mice showed increased wakefulness periods and decreased total time spent in both NREM and REM sleep. WT exhibited time-of-day dependent modulation of contextual and cued memory. Compared with WT mice, 4-month-old DKO mice exhibited the deficiency regardless trained and tested in the same light/night phase or not. Particularly interesting was that DKO showed circadian modulation deficiency when trained in the resting period but not in the active period. Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 200 nucleotides, and they have rhythmic expression in mammals. To date no study has investigated rhythmic lncRNA expression in Alzheimer's disease. We applied RNA-seq technology to profile hippocampus expression of lncRNAs in DKO mice during the light (/resting) and dark (/active) phases and performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the cis lncRNA targets. Expression alteration of lncRNAs associated with immune response and metallodipeptidase activity may contribute to the circadian disruptions of DKO mice. Especially we identified some LncRNAs which expression change oppositely between day and light in DKO mice compared to WT mice and are worthy to be studied further. Our results exhibited the circadian rhythm sleep disorders and a noteworthy time-of-day-dependent memory deficiency in AD model mice and provide a useful resource for studying the expression and function of lncRNAs during circadian disruptions in Alzheimer's disease.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jing Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yang Shen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Syeda Kubra
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Bing Mei
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Boxi Pan
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China.
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Gao J, Wang L, Zhao C, Wu Y, Lu Z, Gu Y, Ba Z, Wang X, Wang J, Xu Y. Peony seed oil ameliorates neuroinflammation-mediated cognitive deficits by suppressing microglial activation through inhibition of NF-κB pathway in presenilin 1/2 conditional double knockout mice. J Leukoc Biol 2021; 110:1005-1022. [PMID: 34494312 DOI: 10.1002/jlb.3ma0821-639rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic neuroinflammation has been shown to exert adverse influences on the pathology of Alzheimer's disease (AD), associated with the release of abundant proinflammatory mediators by excessively activated microglia, causing synaptic dysfunction, neuronal degeneration, and memory deficits. Thus, the prevention of microglial activation-associated neuroinflammation is important target for deterring neurodegenerative disorders. Peony seed oil (PSO) is a new food resource, rich in α-linolenic acid, the precursor of long chain omega-3 polyunsaturated fatty acids, including docosahexaenoic acid and eicosapentaenoic acid, which exhibit anti-inflammatory properties by altering cell membrane phospholipid fatty acid compositions, disrupting lipid rafts, and inhibiting the activation of the proinflammatory transcription factor NF-κB. However, few studies have examined the anti-neuroinflammatory effects of PSO in AD, and the relevant molecular mechanisms remain unclear. Presenilin1/2 conditional double knockout (PS cDKO) mice display obvious AD-like phenotypes, such as neuroinflammatory responses, synaptic dysfunction, and cognitive deficits. Here, we assessed the potential neuroprotective effects of PSO against neuroinflammation-mediated cognitive deficits in PS cDKO using behavioral tests and molecular biologic analyses. Our study demonstrated that PSO suppressed microglial activation and neuroinflammation through the down-regulation of proinflammatory mediators, such as inducible NOS, COX-2, IL-1β, and TNF-α, in the prefrontal cortex and hippocampus of PS cDKO mice. Further, PSO significantly lessened memory impairment by reversing hyperphosphorylated tau and synaptic proteins deficits in PS cDKO mice. Importantly, PSO's therapeutic effects on cognitive deficits were due to inhibiting neuroinflammatory responses mediated by NF-κB signaling pathway. Taken together, PSO may represent an effective dietary supplementation to restrain the neurodegenerative processes of AD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lijun Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Zhao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyuan Lu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yining Gu
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Zongtao Ba
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Xingyu Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Gao J, Zhou N, Wu Y, Lu M, Wang Q, Xia C, Zhou M, Xu Y. Urinary metabolomic changes and microbiotic alterations in presenilin1/2 conditional double knockout mice. J Transl Med 2021; 19:351. [PMID: 34399766 PMCID: PMC8365912 DOI: 10.1186/s12967-021-03032-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background Given the clinical low efficient treatment based on mono-brain-target design in Alzheimer’s disease (AD) and an increasing emphasis on microbiome-gut-brain axis which was considered as a crucial pathway to affect the progress of AD along with metabolic changes, integrative metabolomic signatures and microbiotic community profilings were applied on the early age (2-month) and mature age (6-month) of presenilin1/2 conditional double knockout (PS cDKO) mice which exhibit a series of AD-like phenotypes, comparing with gender and age-matched C57BL/6 wild-type (WT) mice to clarify the relationship between microbiota and metabolomic changes during the disease progression of AD. Materials and methods Urinary and fecal samples from PS cDKO mice and gender-matched C57BL/6 wild-type (WT) mice both at age of 2 and 6 months were collected. Urinary metabolomic signatures were measured by the gas chromatography-time-of-flight mass spectrometer, as well as 16S rRNA sequence analysis was performed to analyse the microbiota composition at both ages. Furthermore, combining microbiotic functional prediction and Spearman’s correlation coefficient analysis to explore the relationship between differential urinary metabolites and gut microbiota. Results In addition to memory impairment, PS cDKO mice displayed metabolic and microbiotic changes at both of early and mature ages. By longitudinal study, xylitol and glycine were reduced at both ages. The disturbed metabolic pathways were involved in glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, starch and sucrose metabolism, and citrate cycle, which were consistent with functional metabolic pathway predicted by the gut microbiome, including energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. Besides reduced richness and evenness in gut microbiome, PS cDKO mice displayed increases in Lactobacillus, while decreases in norank_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, Mucispirillum, and Odoribacter. Those altered microbiota were exceedingly associated with the levels of differential metabolites. Conclusions The urinary metabolomics of AD may be partially mediated by the gut microbiota. The integrated analysis between gut microbes and host metabolism may provide a reference for the pathogenesis of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03032-9.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mengna Lu
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qixue Wang
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
8
|
Upadhyay A, Amanullah A, Joshi V, Dhiman R, Prajapati VK, Poluri KM, Mishra A. Ibuprofen-based advanced therapeutics: breaking the inflammatory link in cancer, neurodegeneration, and diseases. Drug Metab Rev 2021; 53:100-121. [PMID: 33820460 DOI: 10.1080/03602532.2021.1903488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
9
|
Salmani H, Hosseini M, Baghcheghi Y, Samadi-Noshahr Z. The brain consequences of systemic inflammation were not fully alleviated by ibuprofen treatment in mice. Pharmacol Rep 2021; 73:130-142. [PMID: 32696348 DOI: 10.1007/s43440-020-00141-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Extensive data point to the immune system as an important factor underlying the pathogenesis of brain diseases. Epidemiological studies have shown that long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) significantly reduces the onset and progression of Alzheimer's disease. The present study aimed to investigate whether ibuprofen (IBU) is able to prevent the long-lasting alterations of brain function induced by systemic inflammation. METHODS Mice received intraperitoneal injections of lipopolysaccharide (LPS; 250 µg/kg/day) for seven consecutive days. Ibuprofen administration (40 mg/kg/day) was started three days before the LPS injections and continued until the last day of LPS injection. Within the next 2 weeks, mice performances on the behavioral tests were evaluated, and then brain tissue samples for biochemical analyses were collected. RESULTS The findings showed that ibuprofen significantly improved mice's performance in the passive avoidance test and reduced anxiety- and depressive-like behaviors. However, ibuprofen could not significantly improve spatial memory in the Morris water maze test and recognition ability in the novel object recognition test. TNF-α and IL-1β cytokines levels and malondialdehyde (MDA) concentration in the hippocampal tissues of LPS-treated mice were significantly lowered by ibuprofen treatment, whereas no significant effects on IL-10 production and hippocampal BDNF levels were observed. In addition, ibuprofen did not significantly reduce amyloid-β1-40 levels in the hippocampus of LPS-treated animals. CONCLUSION Overall, the findings of the present study suggest that some, but not all, of the adverse effects of systemic inflammation are alleviated by ibuprofen treatment.
Collapse
Affiliation(s)
- Hossein Salmani
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Yousef Baghcheghi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Samadi-Noshahr
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Trans-cinnamaldehyde improves neuroinflammation-mediated NMDA receptor dysfunction and memory deficits through blocking NF-κB pathway in presenilin1/2 conditional double knockout mice. Brain Behav Immun 2019; 82:45-62. [PMID: 31376499 DOI: 10.1016/j.bbi.2019.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
A chronic neuroinflammatory response has been considered as a critical pathogenesis promoting neurodegenerative progression in Alzheimer's disease (AD). During neuroinflammatory process, microglia are excessively activated and simultaneously release numerous pro-inflammatory mediators that cause synaptic dysfunction in the forebrain prior to neuronal degeneration and memory deficits in AD. Thus, prevention of neuroinflammation-mediated synaptic dysfunction may be a potential therapeutic approach against neurodegenerative disorders. Trans-cinnamaldehyde (TCA) is a primary bioactive component derived from the stem bark of Cinnamomum cassia, and it possesses potent anti-inflammatory and neuroprotective activities in in vivo and in vitro experiments. However, the in-depth molecular mechanisms of TCA underlying anti-neuroinflammatory and neuroprotective effects on memory deficits in AD are still unclear. The presenilin 1 and 2 conditional double knockout (PS cDKO) mice exhibit AD-like phenotypes including obvious neuroinflammatory responses and synaptic dysfunction and memory deficits. Here, PS cDKO were used to evaluate the potential neuroprotective effects of TCA against neuroinflammation-mediated dementia by performing behavioral tests, electrophysiological recordings and molecular biology analyses. We observed that TCA treatment reversed abnormal expression of synaptic proteins and tau hyperphosphorylation in the hippocampus and prefrontal cortex of PS cDKO mice. TCA treatment also ameliorated NMDA receptor (NMDAR) dysfunction including impaired NMDAR-mediated responses and long-term potentiation (LTP) induction in the hippocampus of PS cDKO mice. Moreover, TCA possesses an ability to suppress neuroinflammatory responses by diminishing microglial activation and levels of pro-inflammatory mediators in the hippocampus and prefrontal cortex of PS cDKO mice. Importantly, improving NMDAR dysfunction and memory deficits of PS cDKO mice was due to the inhibition of neuroinflammatory responses through TCA's interruptive effect on the nuclear factor kappa B (NF-κB) signaling pathway. Therefore, TCA may be a potential anti-neuroinflammatory agent for deterring neurodegenerative progression of AD.
Collapse
|
11
|
Hui CW, Song X, Ma F, Shen X, Herrup K. Ibuprofen prevents progression of ataxia telangiectasia symptoms in ATM-deficient mice. J Neuroinflammation 2018; 15:308. [PMID: 30400801 PMCID: PMC6220455 DOI: 10.1186/s12974-018-1338-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/18/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Inflammation plays a critical role in accelerating the progression of neurodegenerative diseases, such as Alzheimer's disease (AD) and ataxia telangiectasia (A-T). In A-T mouse models, LPS-induced neuroinflammation advances the degenerative changes found in cerebellar Purkinje neurons both in vivo and in vitro. In the current study, we ask whether ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), can have the opposite effect and delay the symptoms of the disease. METHODS We tested the beneficial effects of ibuprofen in both in vitro and in vivo models. Conditioned medium from LPS stimulated primary microglia (LM) applied to cultures of dissociated cortical neurons leads to numerous degenerative changes. Pretreatment of the neurons with ibuprofen, however, blocked this damage. Systemic injection of LPS into either adult wild-type or adult Atm-/- mice produced an immune challenge that triggered profound behavioral, biochemical, and histological effects. We used a 2-week ibuprofen pretreatment regimen to investigate whether these LPS effects could be blocked. We also treated young presymptomatic Atm-/- mice to determine if ibuprofen could delay the appearance of symptoms. RESULTS Adding ibuprofen directly to neuronal cultures significantly reduced LM-induced degeneration. Curiously, adding ibuprofen to the microglia cultures before the LPS challenge had little effect, thus implying a direct effect of the NSAID on the neuronal cultures. In vivo administration of ibuprofen to Atm-/- animals before a systemic LPS immune challenge suppressed cytological damage. The ibuprofen effects were widespread as microglial activation, p38 phosphorylation, DNA damage, and neuronal cell cycle reentry were all reduced. Unfortunately, ibuprofen only slightly improved the LPS-induced behavioral deficits. Yet, while the behavioral symptoms could not be reversed once they were established in adult Atm-/- animals, administration of ibuprofen to young mutant pups prevented their symptoms from appearing. CONCLUSION Inflammatory processes impact the normal progression of A-T implying that modulation of the immune system can have therapeutic benefit for both the behavioral and cellular symptoms of this neurodegenerative disease.
Collapse
Affiliation(s)
- Chin Wai Hui
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuan Song
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fulin Ma
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuting Shen
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Present address: School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neurobiology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
12
|
Salama RAM, El Gayar NH, Georgy SS, Hamza M. Equivalent intraperitoneal doses of ibuprofen supplemented in drinking water or in diet: a behavioral and biochemical assay using antinociceptive and thromboxane inhibitory dose-response curves in mice. PeerJ 2016; 4:e2239. [PMID: 27547547 PMCID: PMC4958011 DOI: 10.7717/peerj.2239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/19/2016] [Indexed: 11/22/2022] Open
Abstract
Background. Ibuprofen is used chronically in different animal models of inflammation by administration in drinking water or in diet due to its short half-life. Though this practice has been used for years, ibuprofen doses were never assayed against parenteral dose–response curves. This study aims at identifying the equivalent intraperitoneal (i.p.) doses of ibuprofen, when it is administered in drinking water or in diet. Methods. Bioassays were performed using formalin test and incisional pain model for antinociceptive efficacy and serum TXB2 for eicosanoid inhibitory activity. The dose–response curve of i.p. administered ibuprofen was constructed for each test using 50, 75, 100 and 200 mg/kg body weight (b.w.). The dose–response curves were constructed of phase 2a of the formalin test (the most sensitive phase to COX inhibitory agents), the area under the ‘change in mechanical threshold’-time curve in the incisional pain model and serum TXB2 levels. The assayed ibuprofen concentrations administered in drinking water were 0.2, 0.35, 0.6 mg/ml and those administered in diet were 82, 263, 375 mg/kg diet. Results. The 3 concentrations applied in drinking water lay between 73.6 and 85.5 mg/kg b.w., i.p., in case of the formalin test; between 58.9 and 77.8 mg/kg b.w., i.p., in case of the incisional pain model; and between 71.8 and 125.8 mg/kg b.w., i.p., in case of serum TXB2 levels. The 3 concentrations administered in diet lay between 67.6 and 83.8 mg/kg b.w., i.p., in case of the formalin test; between 52.7 and 68.6 mg/kg b.w., i.p., in case of the incisional pain model; and between 63.6 and 92.5 mg/kg b.w., i.p., in case of serum TXB2 levels. Discussion. The increment in pharmacological effects of different doses of continuously administered ibuprofen in drinking water or diet do not parallel those of i.p. administered ibuprofen. It is therefore difficult to assume the equivalent parenteral daily doses based on mathematical calculations.
Collapse
Affiliation(s)
- Raghda A M Salama
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesreen H El Gayar
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sonia S Georgy
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - May Hamza
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Fortin JS, Benoit-Biancamano MO. Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs. Can J Physiol Pharmacol 2016; 94:35-48. [DOI: 10.1139/cjpp-2015-0117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute an important pharmacotherapeutic class that, over the past decade, have expanded in application to a panoply of medical conditions. They have been tested for neurodegenerative diseases such as Alzheimer’s to reduce inflammation and also in the attempt to abrogate amyloid deposition. However, the use of NSAIDs as aggregation inhibitors has not been extensively studied in pancreatic amyloid deposition. Pancreatic amyloidosis involves the misfolding of islet amyloid polypeptide (IAPP) and contributes to the progression of type-2 diabetes in humans and felines. To ascertain their antiamyloidogenic activity, several NSAIDs were tested using fluorometric thioflavin-T assays, circular dichroism, photo-induced cross-linking assays, and cell culture. Celecoxib, diclofenac, indomethacin, meloxicam, niflumic acid, nimesulide, phenylbutazone, piroxicam, sulindac, and tenoxicam reduced fibrillization at a molar ratio of 1:10. The circular dichroism spectra of diclofenac, piroxicam, and sulindac showed characteristic spectral signatures found in predominantly α-helical structures. The oligomerization of human IAPP was abrogated with diclofenac and sulindac at a molar ratio of 1:5. The cytotoxic effects of pre-incubated human IAPP on cultured INS-1 cells were noticeably reduced in the presence of diclofenac, meloxicam, phenylbutazone, sulindac, and tenoxicam at a molar ratio of 1:10. Our results demonstrate that NSAIDs can provide chemical scaffolds to generate new and promising antiamyloidogenic agents that can be used alone or as a coadjuvant therapy.
Collapse
Affiliation(s)
- Jessica S. Fortin
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Odile Benoit-Biancamano
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|