1
|
Su X, Vasilkovska T, Fröhlich N, Garaschuk O. Characterization of cell type-specific S100B expression in the mouse olfactory bulb. Cell Calcium 2021; 94:102334. [PMID: 33460952 DOI: 10.1016/j.ceca.2020.102334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
S100B is an EF-hand type Ca2+-binding protein of the S100 family, known to support neurogenesis and to promote the interactions between brain's nervous and immune systems. Here, we characterized the expression of S100B in the mouse olfactory bulb, a neurogenic niche comprising mature and adult-born neurons, astrocytes, oligodendrocytes and microglia. Besides astrocytes, for which S100B is a classical marker, S100B was also expressed in NG2 cells and, surprisingly, in APC-positive myelinating oligodendrocytes but not in mature/adult-born neurons or microglia. Various layers of the bulb differed substantially in the composition of S100B-positive cells, with the highest fraction of the APC-positive oligodendrocytes found in the granule cell layer. Across all layers, ∼50 % of NG2 cells were S100B-negative. Finally, our data revealed a strong correlation between the fraction of myelinating oligodendrocytes among the S100B-positive cells and the oligodendrocyte density in different brain areas, underscoring the importance of S100B for the establishment and maintenance of myelin sheaths.
Collapse
Affiliation(s)
- Xin Su
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tamara Vasilkovska
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nicole Fröhlich
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Su Y, Liu J, Yu B, Ba R, Zhao C. Brpf1 Haploinsufficiency Impairs Dendritic Arborization and Spine Formation, Leading to Cognitive Deficits. Front Cell Neurosci 2019; 13:249. [PMID: 31213987 PMCID: PMC6558182 DOI: 10.3389/fncel.2019.00249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of the bromodomain and PHD finger-containing protein 1 (BRPF1) gene causes intellectual disability (ID), which is characterized by impaired intellectual and cognitive function; however, the neurological basis for ID and the neurological function of BRPF1 dosage in the brain remain unclear. Here, by crossing Emx1-cre mice with Brpf1fl/fl mice, we generated Brpf1 heterozygous mice to model BRPF1-related ID. Brpf1 heterozygotes showed reduced dendritic complexity in both hippocampal granule cells and cortical pyramidal neurons, accompanied by reduced spine density and altered spine and synapse morphology. An in vitro study of Brpf1 haploinsufficiency also demonstrated decreased frequency and amplitude of miniature EPSCs that may subsequently contribute to abnormal behaviors, including decreased anxiety levels and defective learning and memory. Our results demonstrate a critical role for Brpf1 dosage in neuron dendrite arborization, spine morphogenesis and behavior and provide insight into the pathogenesis of BRPF1-related ID.
Collapse
Affiliation(s)
- Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Zwaveling-Soonawala N, Alders M, Jongejan A, Kovacic L, Duijkers FA, Maas SM, Fliers E, van Trotsenburg ASP, Hennekam RC. Clues for Polygenic Inheritance of Pituitary Stalk Interruption Syndrome From Exome Sequencing in 20 Patients. J Clin Endocrinol Metab 2018; 103:415-428. [PMID: 29165578 DOI: 10.1210/jc.2017-01660] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Pituitary stalk interruption syndrome (PSIS) consists of a small/absent anterior pituitary lobe, an interrupted/absent pituitary stalk, and an ectopic posterior pituitary lobe. Mendelian forms of PSIS are detected infrequently (<5%), and a polygenic etiology has been suggested. GLI2 variants have been reported at a relatively high frequency in PSIS. OBJECTIVE To provide further evidence for a non-Mendelian, polygenic etiology of PSIS. METHODS Exome sequencing (trio approach) in 20 patients with isolated PSIS. In addition to searching for (potentially) pathogenic de novo and biallelic variants, a targeted search was performed in a panel of genes associated with midline brain development (223 genes). For GLI2 variants, both (potentially) pathogenic and relatively rare variants (<5% in the general population) were studied. The frequency of GLI2 variants was compared with that of a reference population. RESULTS We found four additional candidate genes for isolated PSIS (DCHS1, ROBO2, CCDC88C, and KIF14) and one for syndromic PSIS (KAT6A). Eleven GLI2 variants were present in six patients. A higher frequency of a combination of two GLI2 variants (M1352V + D1520N) was found in the study group compared with a reference population (10% vs 0.68%). (Potentially) pathogenic variants were identified in genes associated with midline brain anomalies, including holoprosencephaly, hypogonadotropic hypogonadism, and absent corpus callosum and in genes involved in ciliopathies. CONCLUSION Combinations of variants in genes associated with midline brain anomalies are frequently present in PSIS and sustain the hypothesis of a polygenic cause of PSIS.
Collapse
Affiliation(s)
- Nitash Zwaveling-Soonawala
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lidija Kovacic
- Novartis Ireland Ltd, Beech Hill Office Campus, Dublin, Ireland
| | - Floor A Duijkers
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Li GF, Zhao HX, Zhou H, Yan F, Wang JY, Xu CX, Wang CZ, Niu LL, Meng L, Wu S, Zhang HL, Qiu WB, Zheng HR. Improved Anatomical Specificity of Non-invasive Neuro-stimulation by High Frequency (5 MHz) Ultrasound. Sci Rep 2016; 6:24738. [PMID: 27093909 PMCID: PMC4837374 DOI: 10.1038/srep24738] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 11/09/2022] Open
Abstract
Low frequency ultrasound (<1 MHz) has been demonstrated to be a promising approach for non-invasive neuro-stimulation. However, the focal width is limited to be half centimeter scale. Minimizing the stimulation region with higher frequency ultrasound will provide a great opportunity to expand its application. This study first time examines the feasibility of using high frequency (5 MHz) ultrasound to achieve neuro-stimulation in brain, and verifies the anatomical specificity of neuro-stimulation in vivo. 1 MHz and 5 MHz ultrasound stimulation were evaluated in the same group of mice. Electromyography (EMG) collected from tail muscles together with the motion response videos were analyzed for evaluating the stimulation effects. Our results indicate that 5 MHz ultrasound can successfully achieve neuro-stimulation. The equivalent diameter (ED) of the stimulation region with 5 MHz ultrasound (0.29 ± 0.08 mm) is significantly smaller than that with 1 MHz (0.83 ± 0.11 mm). The response latency of 5 MHz ultrasound (45 ± 31 ms) is also shorter than that of 1 MHz ultrasound (208 ± 111 ms). Consequently, high frequency (5 MHz) ultrasound can successfully activate the brain circuits in mice. It provides a smaller stimulation region, which offers improved anatomical specificity for neuro-stimulation in a non-invasive manner.
Collapse
Affiliation(s)
- Guo-Feng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Information Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Hui-Xia Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Yan
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing-Yao Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chang-Xi Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Cong-Zhi Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Li-Li Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Song Wu
- Shenzhen Luohu People's Hospital, Shenzhen, 518001, China
| | - Huai-Ling Zhang
- School of Information Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Wei-Bao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hai-Rong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|