1
|
Parekh S, Kaur T. Cochlear inflammaging: cellular and molecular players of the innate and adaptive immune system in age-related hearing loss. Front Neurol 2023; 14:1308823. [PMID: 38073631 PMCID: PMC10702987 DOI: 10.3389/fneur.2023.1308823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2025] Open
Abstract
Age-related hearing loss is the most common sensory disorder worldwide that contributes to numerous health conditions in the aging population. Despite its prevalence, current treatments, including hearing aids, are unsatisfactory in improving hearing deficits or slowing or reversing its pathophysiology. Immunosenescence is a key driver of neurodegenerative disease, and a similar mechanism has recently come to attention in age-related hearing loss. Imbalanced levels of cytokines and chemokines contribute to aberrant immune cell activity and a chronic pro-inflammatory microenvironment that may lead to degradation of inner ear structure and function. Macrophages, typically guardians of organ homeostasis, are found to develop dysregulated activity with aging due to unidentified factors, and they interact with other components of the innate immune system to damage sensory hair cells, synapses, neurons, and other structures of the inner ear critical to sensory signal transmission. They also increasingly trigger the inflammasome, a protein complex involved in inflammatory cell death, and the complement cascade, to perpetuate a cycle of inflammation and cellular damage in the cochlea, resulting in hearing loss. Senescence in certain T cell populations have indicated a role of adaptive immunity in age-related hearing loss as well. Deciphering the mechanisms of immune dysregulation is a critical first step in producing targeted therapies for hearing loss. This brief review describes the current and emerging research surrounding the dysregulation of the innate and adaptive immune systems in age-related hearing loss and its parallels with other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shailee Parekh
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | | |
Collapse
|
2
|
Li P, Qian T, Sun S. Spatial architecture of the cochlear immune microenvironment in noise-induced and age-related sensorineural hearing loss. Int Immunopharmacol 2023; 114:109488. [PMID: 36470117 DOI: 10.1016/j.intimp.2022.109488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The cochlea encodes sound stimuli and transmits them to the central nervous system, and damage to sensory cells and synapses in the cochlea leads to hearing loss. The inner ear was previously considered to be an immune privileged organ to protect the auditory organ from reactions with the immune system. However, recent studies have revealed the presence of resident macrophages in the cochlea, especially in the spiral ligament, spiral ganglion, and stria vascularis. The tissue-resident macrophages are responsible for the detection, phagocytosis, and clearance of cellular debris and pathogens from the tissues, and they initiate inflammation and influence tissue repair by producing inflammatory cytokines and chemokines. Insult to the cochlea can activate the cochlear macrophages to initiate immune responses. In this review, we describe the distribution and functions of cochlear macrophages in noise-induced hearing impairment and age-related hearing disabilities. We also focus on potential therapeutic interventions concerning hearing loss by modulating local immune responses.
Collapse
Affiliation(s)
- Peifan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
3
|
Nelson L, Johns JD, Gu S, Hoa M. Utilizing Single Cell RNA-Sequencing to Implicate Cell Types and Therapeutic Targets for SSNHL in the Adult Cochlea. Otol Neurotol 2021; 42:e1410-e1421. [PMID: 34510123 PMCID: PMC8595752 DOI: 10.1097/mao.0000000000003356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify genes implicated in sudden sensorineural hearing loss (SSNHL) and localize their expression in the cochlea to further explore potential pathogenic mechanisms and therapeutic targets. STUDY DESIGN Systematic literature review and bioinformatics analysis. DATA SOURCES The following sources were searched from inception through July 2, 2020: PubMed-NCBI, MEDLINE, Embase, CINAHL, Cochrane Library, ClinicalTrials.gov, OpenGrey, GreyNet, GreyLiterature Report, and European Union Clinical Trials Registry. PubMed-NCBI and MEDLINE were additionally searched for human temporal bone histopathologic studies related to SSNHL. METHODS Literature review of candidate SSNHL genes was conducted according to PRISMA guidelines. Existing temporal bone studies from SSNHL patients were analyzed to identify the most commonly affected inner ear structures. Previously published single-cell and single-nucleus RNA-Seq datasets of the adult mouse stria vascularis, as well as postnatal day 7 and 15 mouse cochlear hair cells and supporting cells, were utilized for localization of the SSNHL-related genes curated through literature review. CONCLUSIONS We report 92 unique single nucleotide polymorphisms (SNPs) in 76 different genes that have been investigated in relation to SSNHL in the literature. We demonstrate that a subset of these genes are expressed by cell types in the adult mouse stria vascularis and organ of Corti, consistent with findings from temporal bone studies in human subjects with SSNHL. We highlight several potential genetic targets relevant to current and possible future SSNHL treatments.
Collapse
Affiliation(s)
- Lacey Nelson
- Georgetown University School of Medicine, Washington, D.C
| | - J. Dixon Johns
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Michael Hoa
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| |
Collapse
|
4
|
Mechanism of aseptic inflammation upon the inner ear injury. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Role of Macrophage Migration Inhibitory Factor in NLRP3 Inflammasome Expression in Otitis Media. Otol Neurotol 2020; 41:364-370. [DOI: 10.1097/mao.0000000000002537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Zhu WY, Jin X, Ma YC, Liu ZB. Correlations of MIF polymorphism and serum levels of MIF with glucocorticoid sensitivity of sudden sensorineural hearing loss. J Int Med Res 2019; 48:300060519893870. [PMID: 31889466 PMCID: PMC7607528 DOI: 10.1177/0300060519893870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective This study explored the relationship between macrophage migration inhibitory
factor (MIF) gene polymorphism (−173G/C) and glucocorticoid sensitivity in
sudden sensorineural hearing loss (SSNHL). Methods A total of 120 patients with SSNHL were divided into a
glucocorticoid-sensitive group and a glucocorticoid-resistant group. A group
of 93 healthy individuals served as the control group. Serum MIF levels of
the participants were measured and MIF genotyping was
performed. Results The frequency of the MIF −173C allele was significantly
higher in glucocorticoid-sensitive patients than in glucocorticoid-resistant
patients. Serum MIF levels were significantly higher in SSNHL patients than
in healthy controls, and higher in the glucocorticoid-sensitive group than
in the glucocorticoid-resistant group of SSNHL patients, which was
unexpected. Compared with patients with the GG genotype, patients with the
−173C allele (GC and CC genotypes) had significantly higher levels of serum
MIF and superoxide dismutase activity and lower levels of tumor necrosis
factor-α and malondialdehyde. Conclusion The MIF −173G/C polymorphism is associated with
glucocorticoid sensitivity in SSNHL patients. The C allele can result in
higher MIF production, reduced oxidative stress, and greater glucocorticoid
sensitivity.
Collapse
Affiliation(s)
- Wen-Yan Zhu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| | - Xin Jin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| | - Yong-Chi Ma
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| | - Zhi-Biao Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China
| |
Collapse
|
7
|
Targeted PCR Array Analysis of Genes in Innate Immunity and Glucocorticoid Signaling Pathways in Mice Cochleae Following Acoustic Trauma. Otol Neurotol 2018; 39:e593-e600. [DOI: 10.1097/mao.0000000000001874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhu WY, Jin X, Ma YC, Liu ZB. MIF protects against oxygen-glucose deprivation-induced ototoxicity in HEI-OC1 cochlear cells by enhancement of Akt-Nrf2-HO-1 pathway. Biochem Biophys Res Commun 2018; 503:665-670. [PMID: 29908183 DOI: 10.1016/j.bbrc.2018.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
Ischemia and oxidative stress play crucial roles in the pathophysiology of sudden sensorineural hearing loss (SSNHL). Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine and serves an important role in hearing function. The present study was designed to evaluate the effect of MIF on oxygen-glucose deprivation (OGD)-induced ototoxicity and to elucidate its molecular mechanism. In HEI-OC1 auditory cells, OGD reduced cell viability and increased supernatant lactate dehydrogenase (LDH) and MIF in a time-dependent manner. However, the reduced cell viability exerted by OGD was attenuated by antioxidant and MIF. Luciferase reporter assay demonstrated that MIF could activate NF-E2-related factor 2 (Nrf2), and real-time PCR showed increased mRNA expressions of Nrf2 and two Nrf2-responsive genes, including heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). MIF also suppressed oxidative stress induced by OGD, as demonstrated by decreased MDA and increased GSH in cellular supernatant. Inhibition of Nrf2 using siRNA suppressed HO-1 protein expression, the protective effect on OGD-induced injury and decrease in oxidative stress by MIF. Moreover, MIF prevented OGD-induced reduction of Akt1 phosphorylation at Ser473. LY294002, an inhibitor of PI3K/Akt signaling, attenuated the enhancement of Nrf2 protein and protective effect of MIF in OGD-treated cochlear cells. We demonstrate that MIF protects cochlear cells against OGD-induced injury through activation of Akt-Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Wen-Yan Zhu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jinagsu Province, China.
| | - Xin Jin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jinagsu Province, China
| | - Yong-Chi Ma
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jinagsu Province, China
| | - Zhi-Biao Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jinagsu Province, China
| |
Collapse
|
9
|
Zhang W, Zheng J, Meng J, Neng L, Chen X, Qin Z. Macrophage migration inhibitory factor knockdown inhibit viability and induce apoptosis of PVM/Ms. Mol Med Rep 2017; 16:8643-8648. [PMID: 28990052 PMCID: PMC5779918 DOI: 10.3892/mmr.2017.7684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies have suggested that macrophage migration inhibitory factor (MIF) serves an important role in hearing function; however, the underlying mechanism remains unclear. In the present study, perivascular‑resident macrophage‑like melanocytes (PVM/Ms) from the stria vascularis of the lateral cochlear wall in young and aged mice were isolated. The mRNA and protein expression levels of MIF were determined using reverse transcription‑quantitative polymerase chain reaction analysis, and western blotting, respectively. MIF expression was knocked down in vitro and in vivo using small interfering RNA. Cell viability was determined using an MTT assay and cell apoptosis was determined using flow cytometry analysis. The hearing ability was assessed through the auditory brain stem response in vivo. The results of the current study demonstrated that the expression of MIF was significantly downregulated in aged mice compared with in young mice. Furthermore, the viability of PVM/Ms in aged mice was significantly decreased and the number of apoptotic PVM/Ms was significantly increased compared with that in young mice. Further studies demonstrated that the MIF knockdown accentuated hearing loss in young mice as compared with the scramble control group. In addition, the MIF knockdown in PVM/Ms significantly inhibited cell viability and lead to a significant increase in the apoptotic cell number as compared with the control group. In summary, these results revealed that the MIF knockdown significantly accentuates hearing loss in young mice in vivo, and significantly inhibits the viability and induces the apoptosis of PVM/Ms in vitro. Thus, the results of the present study may provide a novel potential therapeutic approach and prevention method for presbycusis.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jian Zheng
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Juan Meng
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Lingling Neng
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xiaohua Chen
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Zhaobing Qin
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
10
|
Cochlear Histopathologic Findings in Patients With Systemic Lupus Erythematosus: A Human Temporal Bone Study. Otol Neurotol 2017; 37:593-7. [PMID: 27050650 DOI: 10.1097/mao.0000000000001017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS We hypothesized that, in archived human temporal bone samples from patients with systemic lupus erythematosus (SLE), a pathologic condition exists in the stria vascularis and cochlear hair cells. BACKGROUND Sensorineural hearing loss is a common feature in SLE patients. However, the pathophysiologic mechanism of cochlear dysfunction is unclear. METHODS We examined 15 temporal bone samples from 8 SLE patients, along with 17 samples from 10 age-matched healthy control patients. The samples were serially sectioned in the horizontal plane and stained with hematoxylin and eosin. We determined the area of the stria vascularis in a midmodiolar section of each cochlear turn. Then, we made cytocochleograms and calculated the percentage of missing inner and outer hair cells. RESULTS The area of the stria vascularis in our SLE group was significantly smaller than in our control group. The number of remaining inner hair cells in our SLE group was smaller than in our control group; however, the difference did not reach statistical significance. The loss of outer hair cells in our SLE group was significantly higher than in our control group. There was a tendency toward a positive correlation between the loss of cochlear hair cells and the duration of SLE. CONCLUSION The stria vascularis and cochlear hair cells are affected in SLE patients. Our findings could provide the histopathologic basis for the cochlear dysfunction, including sensorineural hearing loss, experienced by SLE patients.
Collapse
|
11
|
Zhang W, Zheng J, Meng J, Neng L, Chen X, Qin Z. Macrophage migration inhibitory factor mediates viability and apoptosis of PVM/Ms through PI3K/Akt pathway. Neuroscience 2017; 360:220-229. [PMID: 28694172 DOI: 10.1016/j.neuroscience.2017.06.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Macrophage migration inhibitory factor (MIF) plays an important role in hearing function; however, the underlying mechanism remains indistinct. PVM/Ms from the stria vascularis of lateral wall of cochlea in young and aged mice were isolated, and the mRNA and protein expression levels were detected. MIF was knocked down or overexpresssed in vitro, and transfection was performed in vivo. Cell viability and apoptosis were determined by MTT assay and flow cytometry analysis, respectively. The hearing ability was tested by the auditory brain stem response. The results showed that MIF expression was significantly downregulated in aged mice. In aged mice, the viability of PVM/Ms significantly decreased, but the apoptotic number markedly increased. MIF knockdown in PVM/Ms in vitro significantly inhibited cell viability and induced cell apoptosis, but MIF overexpression showed contrasting results. Further studies showed that MIF knockdown in young mice resulted in serious hearing loss, but MIF overexpression in aged mice restored the hearing. Si-MIF inhibited the viability and induced apoptosis of PVM/Ms from young mice, whereas Ad-MIF induced the viability and inhibited apoptosis of PVM/Ms from aged mice. Moreover, MIF effectively altered the expression levels of CDK1, BRAF, p-ERK1/2, p-PI3K, and p-Akt. Furthermore, ERK inhibitor PD98059 or PI3K inhibitor LY294002 significantly reversed the effects of Si-MIF on PVM/Ms from young mice, whereas ERK activator EGF or PI3K activator IGF significantly reversed the effects of Ad-MIF on PVM/Ms from aged mice. Taken together, MIF mediates the viability and apoptosis of PVM/Ms, at least partially, through MAPK and/or PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jian Zheng
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Juan Meng
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lingling Neng
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaohua Chen
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhaobing Qin
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
12
|
Ishihara H, Kariya S, Okano M, Zhao P, Maeda Y, Nishizaki K. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media. Acta Otolaryngol 2016; 136:1011-6. [PMID: 27181906 DOI: 10.1080/00016489.2016.1179786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. OBJECTIVES Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. METHOD BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. RESULTS PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.
Collapse
Affiliation(s)
- Hisashi Ishihara
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuhiro Okano
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Pengfei Zhao
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukihide Maeda
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Busch A, Holm A, Wagner N, Ergün S, Rosenfeld M, Otto C, Baur J, Kellersmann R, Lorenz U. Extra- and Intraluminal Elastase Induce Morphologically Distinct Abdominal Aortic Aneurysms in Mice and Thus Represent Specific Subtypes of Human Disease. J Vasc Res 2016; 53:49-57. [DOI: 10.1159/000447263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/28/2016] [Indexed: 11/19/2022] Open
|
14
|
Macrophage Migration Inhibitory Factor Deficiency Causes Prolonged Hearing Loss After Acoustic Overstimulation. Otol Neurotol 2016; 36:1103-8. [PMID: 25853607 DOI: 10.1097/mao.0000000000000755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HYPOTHESIS Macrophage migration inhibitory factor plays an important role in noise-induced hearing loss. BACKGROUND Macrophage migration inhibitory factor is an essential factor in axis formation and neural development. Macrophage migration inhibitory factor is expressed in the inner ear, but its function remains to be elucidated. METHODS Macrophage migration inhibitory factor-deficient mice (MIF(-/-) mice) were used in this study. Wild-type and MIF(-/-) mice received noise exposure composed of octave band noise. Auditory brainstem response thresholds were examined before (control) and at 0, 12, and 24 hours and 2 weeks after the intense noise exposure. Morphological findings of cochlear hair cells were investigated using scanning electron microscopy. Histopathological examination with hematoxylin and eosin staining and TUNEL assay were also performed. RESULTS In both the wild-type and MIF(-/-) mice, acoustic overstimulation induced significant hearing loss compared with the control level. Two weeks after the intense noise exposure, the MIF(-/-) mice had an increased hearing threshold compared with the wild-type mice. Scanning electron microscopy demonstrated that the outer hair cells in the MIF(-/-) mice were affected 2 weeks after noise exposure compared with the wild-type mice. TUNEL-positive cells were identified in the organ of Corti of the MIF(-/-) mice. CONCLUSION The MIF(-/-) mice had prolonged hearing loss and significant loss of cochlear hair cells after intense noise exposure. Macrophage migration inhibitory factor may play an important role in recovery from acoustic trauma. Management of macrophage migration inhibitory factor may be a novel therapeutic option for noise-induced hearing loss.
Collapse
|
15
|
Cochlear afferent innervation development. Hear Res 2015; 330:157-69. [DOI: 10.1016/j.heares.2015.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/02/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023]
|