1
|
Nwabudike I, Che A. Early-life maturation of the somatosensory cortex: sensory experience and beyond. Front Neural Circuits 2024; 18:1430783. [PMID: 39040685 PMCID: PMC11260818 DOI: 10.3389/fncir.2024.1430783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation. In this mini review, we discuss the specific effects of postnatal sensory experience, sleep, social isolation, and substance exposure on barrel cortex development. Considering these concurrent factors will improve understanding of the etiology of atypical sensory perception in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ijeoma Nwabudike
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Young TR, Yamamoto M, Kikuchi SS, Yoshida AC, Abe T, Inoue K, Johansen JP, Benucci A, Yoshimura Y, Shimogori T. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat Commun 2023; 14:6077. [PMID: 37770450 PMCID: PMC10539368 DOI: 10.1038/s41467-023-41749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.
Collapse
Affiliation(s)
- Timothy R Young
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
3
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Chen J, Ding Q, An L, Wang H. Ca2+-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Front Pharmacol 2022; 13:949384. [PMID: 36188604 PMCID: PMC9523369 DOI: 10.3389/fphar.2022.949384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
As the main secondary messengers, cyclic AMP (cAMP) and Ca2+ trigger intracellular signal transduction cascade and, in turn, regulate many aspects of cellular function in developing and mature neurons. The group I adenylyl cyclase (ADCY, also known as AC) isoforms, including ADCY1, 3, and 8 (also known as AC1, AC3, and AC8), are stimulated by Ca2+ and thus functionally positioned to integrate cAMP and Ca2+ signaling. Emerging lines of evidence have suggested the association of the Ca2+-stimulated ADCYs with bipolar disorder, schizophrenia, major depressive disorder, post-traumatic stress disorder, and autism. In this review, we discuss the molecular and cellular features as well as the physiological functions of ADCY1, 3, and 8. We further discuss the recent therapeutic development to target the Ca2+-stimulated ADCYs for potential treatments of psychiatric and neurodevelopmental disorders.
Collapse
|
5
|
Fassier C, Nicol X. Retinal Axon Interplay for Binocular Mapping. Front Neural Circuits 2021; 15:679440. [PMID: 34149367 PMCID: PMC8213063 DOI: 10.3389/fncir.2021.679440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
In most mammals, retinal ganglion cell axons from each retina project to both sides of the brain. The segregation of ipsi and contralateral projections into eye-specific territories in their main brain targets-the dorsolateral geniculate nucleus and the superior colliculus-is critical for the processing of visual information. The investigation of the developmental mechanisms contributing to the wiring of this binocular map in mammals identified competitive mechanisms between axons from each retina while interactions between axons from the same eye were challenging to explore. Studies in vertebrates lacking ipsilateral retinal projections demonstrated that competitive mechanisms also exist between axons from the same eye. The development of a genetic approach enabling the differential manipulation and labeling of neighboring retinal ganglion cells in a single mouse retina revealed that binocular map development does not only rely on axon competition but also involves a cooperative interplay between axons to stabilize their terminal branches. These recent insights into the developmental mechanisms shaping retinal axon connectivity in the brain will be discussed here.
Collapse
Affiliation(s)
- Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
6
|
Rao MS, Mizuno H. Elucidating mechanisms of neuronal circuit formation in layer 4 of the somatosensory cortex via intravital imaging. Neurosci Res 2020; 167:47-53. [PMID: 33309867 DOI: 10.1016/j.neures.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
The cerebral cortex has complex yet perfectly wired neuronal circuits that are important for high-level brain functions such as perception and cognition. The rodent's somatosensory system is widely used for understanding the mechanisms of circuit formation during early developmental periods. In this review, we summarize the developmental processes of circuit formation in layer 4 of the somatosensory cortex, and we describe the molecules involved in layer 4 circuit formation and neuronal activity-dependent mechanisms of circuit formation. We also introduce the dynamic mechanisms of circuit formation in layer 4 revealed by intravital two-photon imaging technologies, which include time-lapse imaging of neuronal morphology and calcium imaging of neuronal activity in newborn mice.
Collapse
Affiliation(s)
- Madhura S Rao
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
7
|
Erzurumlu RS, Gaspar P. How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 2020; 40:6460-6473. [PMID: 32817388 PMCID: PMC7486654 DOI: 10.1523/jneurosci.0582-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013
| |
Collapse
|
8
|
Vitalis T, Dauphinot L, Gressens P, Potier MC, Mariani J, Gaspar P. RORα Coordinates Thalamic and Cortical Maturation to Instruct Barrel Cortex Development. Cereb Cortex 2019; 28:3994-4007. [PMID: 29040410 DOI: 10.1093/cercor/bhx262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) is well-known for its role in cerebellar development and maturation as revealed in staggerer mice. However, its potential involvement in the development of other brain regions has hardly been assessed. Here, we describe a new role of RORα in the development of primary somatosensory maps. Staggerer mice showed a complete disruption of barrels in the somatosensory cortex and of barreloids in the thalamus. This phenotype results from a severe reduction of thalamocortical axon (TCA) branching and a defective maturation of layer IV cortical neurons during postnatal development. Conditional deletion of RORα was conducted in the thalamus or the cortex to determine the specific contribution of RORα in each of these structures to these phenotypes. This showed that RORα is cell-autonomously required in the thalamus for the organization of TCAs into periphery-related clusters and in the somatosensory cortex for the dendritic maturation of layer IV neurons. Microarray analyses revealed that Sema7a, Neph, and Adcy8 are RORα regulated genes that could be implicated in TCA and cortical maturation. Overall, our study outlines a new role of RORα for the coordinated maturation of the somatosensory thalamus and cortex during the assembly of columnar barrel structures.
Collapse
Affiliation(s)
- Tania Vitalis
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Luce Dauphinot
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Claude Potier
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Jean Mariani
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS, UMR 8256, Institut de Biologie de Paris Seine (IBPS), Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France
- APHP, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Patricia Gaspar
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- INSERM, UMR-S839, Institut du Fer à Moulin, Paris, France
| |
Collapse
|
9
|
Vantomme G, Osorio-Forero A, Lüthi A, Fernandez LMJ. Regulation of Local Sleep by the Thalamic Reticular Nucleus. Front Neurosci 2019; 13:576. [PMID: 31231186 PMCID: PMC6560175 DOI: 10.3389/fnins.2019.00576] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
In spite of the uniform appearance of sleep as a behavior, the sleeping brain does not produce electrical activities in unison. Different types of brain rhythms arise during sleep and vary between layers, areas, or from one functional system to another. Local heterogeneity of such activities, here referred to as local sleep, overturns fundamental tenets of sleep as a globally regulated state. However, little is still known about the neuronal circuits involved and how they can generate their own specifically-tuned sleep patterns. NREM sleep patterns emerge in the brain from interplay of activity between thalamic and cortical networks. Within this fundamental circuitry, it now turns out that the thalamic reticular nucleus (TRN) acts as a key player in local sleep control. This is based on a marked heterogeneity of the TRN in terms of its cellular and synaptic architecture, which leads to a regional diversity of NREM sleep hallmarks, such as sleep spindles, delta waves and slow oscillations. This provides first evidence for a subcortical circuit as a determinant of cortical local sleep features. Here, we review novel cellular and functional insights supporting TRN heterogeneity and how these elements come together to account for local NREM sleep. We also discuss open questions arising from these studies, focusing on mechanisms of sleep regulation and the role of local sleep in brain plasticity and cognitive functions.
Collapse
Affiliation(s)
- Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Simi A, Studer M. Developmental genetic programs and activity-dependent mechanisms instruct neocortical area mapping. Curr Opin Neurobiol 2018; 53:96-102. [DOI: 10.1016/j.conb.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
|
11
|
López-Bendito G. Development of the Thalamocortical Interactions: Past, Present and Future. Neuroscience 2018; 385:67-74. [PMID: 29932982 DOI: 10.1016/j.neuroscience.2018.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
12
|
Iwasato T, Erzurumlu RS. Development of tactile sensory circuits in the CNS. Curr Opin Neurobiol 2018; 53:66-75. [PMID: 29908482 DOI: 10.1016/j.conb.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Molecular identification of neuronal types and genetic and imaging approaches to characterize their properties reveal morphological, physiological and dynamic aspects of sensory circuit development. Here we focus on the mouse tactile sensory circuitry, with particular emphasis on the main trigeminal pathway that connects the whiskers, the major tactile organ in rodents, to the neocortex. At each level of this pathway, neurogenesis, axonal elongation, pathfinding, target recognition and circuit reorganization including dendritic refinement of cortical layer 4 neurons occur contemporaneously and a multitude of molecular signals are used in differing combinations. We highlight recent advances in development of tactile circuitry and note gaps in our understanding.
Collapse
Affiliation(s)
- Takuji Iwasato
- National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI, Mishima, Japan
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
13
|
Antón-Bolaños N, Espinosa A, López-Bendito G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 2018; 52:33-41. [PMID: 29704748 DOI: 10.1016/j.conb.2018.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.
Collapse
Affiliation(s)
- Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Ana Espinosa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
14
|
Lee LJ, Tsytsarev V, Erzurumlu RS. Structural and functional differences in the barrel cortex of Mecp2 null mice. J Comp Neurol 2017; 525:3951-3961. [PMID: 28857161 DOI: 10.1002/cne.24315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
Abstract
Functional deficits in sensory systems are commonly noted in neurodevelopmental disorders, such as the Rett syndrome (RTT). Defects in methyl CpG binding protein gene (MECP2) largely accounts for RTT. Manipulations of the Mecp2 gene in mice provide useful models to probe into various aspects of brain development associated with the RTT. In this study, we focused on the somatosensory cortical phenotype in the Bird mouse model of RTT. We used voltage-sensitive dye imaging to evaluate whisker sensory evoked activity in the barrel cortex of mice. We coupled this functional assay with morphological analyses in postnatal mice and investigated the dendritic differentiation of barrel neurons and individual thalamocortical axon (TCA) arbors that synapse with them. We show that in Mecp2-deficient male mice, whisker-evoked activity is roughly topographic but weak in the barrel cortex. At the morphological level, we find that TCA arbors fail to develop into discrete, concentrated patches in barrel hollows, and the complexity of the dendritic branches in layer IV spiny stellate neurons is reduced. Collectively, our results indicate significant structural and functional impairments in the barrel cortex of the Bird mouse line, a popular animal model for the RTT. Such structural and functional anomalies in the primary somatosensory cortex may underlie orofacial tactile sensitivity issues and sensorimotor stereotypies characteristic of RTT.
Collapse
Affiliation(s)
- Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan, ROC.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Martini FJ, Moreno-Juan V, Filipchuk A, Valdeolmillos M, López-Bendito G. Impact of thalamocortical input on barrel cortex development. Neuroscience 2017; 368:246-255. [PMID: 28412498 DOI: 10.1016/j.neuroscience.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/22/2023]
Abstract
The development of cortical maps requires the balanced interaction between genetically determined programs and input/activity-dependent signals generated spontaneously or triggered from the environment. The somatosensory pathway of mice provides an excellent scenario to study cortical map development because of its highly organized cytoarchitecture, known as the barrel field. This precise organization makes evident even small alterations in the cortical map layout. In this review, we will specially focus on the thalamic factors that control barrel field development. We will summarize the role of thalamic input integration and identity, neurotransmission and spontaneous activity in cortical map formation and early cross-modal plasticity.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
16
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
17
|
Luo W, Mizuno H, Iwata R, Nakazawa S, Yasuda K, Itohara S, Iwasato T. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo. Sci Rep 2016; 6:35747. [PMID: 27775045 PMCID: PMC5075795 DOI: 10.1038/srep35747] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
Here we describe “Supernova” series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain.
Collapse
Affiliation(s)
- Wenshu Luo
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Hidenobu Mizuno
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Ryohei Iwata
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Shingo Nakazawa
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Kosuke Yasuda
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| |
Collapse
|
18
|
Chen X, Dong G, Zheng C, Wang H, Yun W, Zhou X. A reduced susceptibility to chemoconvulsant stimulation in adenylyl cyclase 8 knockout mice. Epilepsy Res 2015; 119:24-9. [PMID: 26656781 DOI: 10.1016/j.eplepsyres.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/18/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Adenylyl cyclases (ACs) catalyze the synthesis of cAMP from ATP, and cAMP signaling affects a large number of neuronal processes. Ca(2+)-stimulated adenylyl cyclase 8 (AC8) expressed in the CNS plays a role in synaptic plasticity, drug addiction and ethanol sensitivity, and chronic pain. This study was to aim at examining the contributions of AC8 to epileptogenesis. METHODS In this study, we observed the seizure behavior induced by kainic acid (20 mg/kg or 30 mg/kg) or pilocarpine (350 mg/kg) in AC8 KO and wild-type mice. Next we injected kainic acid or pilocarpine to induce status epilepticus (SE), and examined neuronal degeneration (by Fluoro-Jade B staining) and mossy fiber sprouting (by Timm staining) 24h and 2 weeks after SE termination in the hippocampus, respectively. Finally, 15 min after intraperitoneal injection of kainic acid (30 mg/kg), we examined phosphor-ERK1/2 in the hippocampus by Western blot and immunochemistry staining. RESULTS We first observed that AC8 KO mutants display reduced susceptibility (including seizure latency and episodes) to two chemoconvulsants, kainic acid and pilocarpine. Moreover, we found that degenerative neurons and mossy fiber sprouting induced by chemoconvulsants were significant decreased in the hippocampus. Further, Western blot and immunochemistry analysis revealed that the MAPK signaling in the hippocampus was attenuated in kainic acid-injected AC8 KO mice. CONCLUSION AC8 is involved in epileptogenesis, and may serve as a potential target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xia Chen
- Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213003, China
| | - Guoying Dong
- Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213003, China
| | - Changhong Zheng
- Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213003, China
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Wenwei Yun
- Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213003, China.
| | - Xianju Zhou
- Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213003, China.
| |
Collapse
|
19
|
Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice. J Neurosci 2015; 35:6452-63. [PMID: 25904796 DOI: 10.1523/jneurosci.2450-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the dorsal raphe nucleus (DRN) has long been linked to neural control of aggression, little is known about the regulatory influences of the DRN when an animal engages in either adaptive species-typical aggressive behavior or escalated aggression. Therefore it is important to explore which neurotransmitter inputs into the DRN determine the escalation of aggression in male mice. Previously, we observed that microinjection of the GABAB receptor agonist baclofen into the DRN escalates aggressive behavior in male mice. Here, we used a serotonin (5-HT) neuron-specific GABAB receptor knock-out mouse to demonstrate that baclofen acts on nonserotonergic neurons to escalate aggression. Intra-DRN baclofen administration increased glutamate release, but did not alter GABA release, within the DRN. Microinjection of l-glutamate into the DRN escalated dose-dependently attack bites toward an intruder. In vivo microdialysis showed that glutamate release increased in the DRN during an aggressive encounter, and the level of glutamate was further increased when the animal was engaged in escalated aggressive behavior after social instigation. Finally, 5-HT release was increased within the DRN and also in the medial prefrontal cortex when animals were provoked by social instigation, and during escalated aggression after social instigation, but this increase in 5-HT release was not observed when animals were engaged in species-typical aggression. In summary, glutamate input into the DRN is enhanced during escalated aggression, which causes a phasic increase of 5-HT release from the DRN 5-HT neurons.
Collapse
|