1
|
Kunikullaya U K. An integrated approach to understanding the effects of exposome on neuroplasticity. Behav Brain Res 2025; 485:115516. [PMID: 40024484 DOI: 10.1016/j.bbr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Anthropogenic factors are those that occur due to human activities. The exposome is proposed to complement the genome, wherein an individual's exposure begins before birth. The range of exposures includes physical, chemical, dietary, lifestyle, biological, and occupational sources. Exposome has a positive or negative influence on neuroplasticity during different stages of life. A comprehensive study of the exposome is thus necessary to incorporate these factors and their influence on the individual, community, and the population as a whole. Exposomic research and global health present significant opportunities for interdisciplinary research. This review gives an overview of the exposome and its influence on neuroplasticity. It proposes methods to study the exposome on neuroplasticity across the lifespan of the individual. This is possible with the use of self-reported data, large-scale cohort formation, physiological sensors, neuroimaging, omics, molecular biology, and systems approaches. These approaches aim to provide a holistic understanding of an individual's neurological well-being and its implications for the population at large. This will also enable the designing of novel preventive and treatment strategies for managing neurological disorders.
Collapse
Affiliation(s)
- Kirthana Kunikullaya U
- MeDH, Department of Medicine, Huddinge, Karolinska Universitetssjukhuset Huddinge, Stockholm 14186, Sweden.
| |
Collapse
|
2
|
Ferhat L, Soussi R, Masse M, Kyriatzis G, Girard S, Gassiot F, Gaudin N, Laurencin M, Bernard A, Bôle A, Ferracci G, Smirnova M, Roman F, Dive V, Cisternino S, Temsamani J, David M, Lécorché P, Jacquot G, Khrestchatisky M. A peptide-neurotensin conjugate that crosses the blood-brain barrier induces pharmacological hypothermia associated with anticonvulsant, neuroprotective, and anti-inflammatory properties following status epilepticus in mice. eLife 2025; 13:RP100527. [PMID: 40152901 PMCID: PMC11952754 DOI: 10.7554/elife.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Preclinical and clinical studies show that mild to moderate hypothermia is neuroprotective in sudden cardiac arrest, ischemic stroke, perinatal hypoxia/ischemia, traumatic brain injury, and seizures. Induction of hypothermia largely involves physical cooling therapies, which induce several clinical complications, while some molecules have shown to be efficient in pharmacologically induced hypothermia (PIH). Neurotensin (NT), a 13 amino acid neuropeptide that regulates body temperature, interacts with various receptors to mediate its peripheral and central effects. NT induces PIH when administered intracerebrally. However, these effects are not observed if NT is administered peripherally, due to its rapid degradation and poor passage of the blood-brain barrier (BBB). We conjugated NT to peptides that bind the low-density lipoprotein receptor (LDLR) to generate 'vectorized' forms of NT with enhanced BBB permeability. We evaluated their effects in epileptic conditions following peripheral administration. One of these conjugates, VH-N412, displayed improved stability, binding potential to both the LDLR and NTSR-1, rodent/human cross-reactivity and improved brain distribution. In a mouse model of kainate (KA)-induced status epilepticus (SE), VH-N412 elicited rapid hypothermia associated with anticonvulsant effects, potent neuroprotection, and reduced hippocampal inflammation. VH-N412 also reduced sprouting of the dentate gyrus mossy fibers and preserved learning and memory skills in the treated mice. In cultured hippocampal neurons, VH-N412 displayed temperature-independent neuroprotective properties. To the best of our knowledge, this is the first report describing the successful treatment of SE with PIH. In all, our results show that vectorized NT may elicit different neuroprotection mechanisms mediated by hypothermia and/or by intrinsic neuroprotective properties.
Collapse
Affiliation(s)
- Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | - Rabia Soussi
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | - Maxime Masse
- VECT-HORUS SAS, Faculté de MédecineMarseilleFrance
| | | | - Stéphane Girard
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
- VECT-HORUS SAS, Faculté de MédecineMarseilleFrance
| | | | | | | | - Anne Bernard
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | - Angélique Bôle
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | | | - Maria Smirnova
- Université Paris Cité, INSERM UMRS 1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - François Roman
- Aix-Marseille Univ, CNRS, INP, Inst NeurophysiopatholMarseilleFrance
| | | | - Salvatore Cisternino
- Université Paris Cité, INSERM UMRS 1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
- Pharmacie, Hôpital Universitaire Necker – Enfants Malades, AP-HPParisFrance
| | | | - Marion David
- VECT-HORUS SAS, Faculté de MédecineMarseilleFrance
| | | | | | | |
Collapse
|
3
|
Ghotbeddin Z, Jahromi MA, Shahriari A, Peysokhan M, Dezfouli AM. Neonatal febrile seizures: Dimethyl itaconate's role in behavioral recovery and glutathione enzyme modulation in adult rats. PLoS One 2025; 20:e0318430. [PMID: 40131987 PMCID: PMC11936269 DOI: 10.1371/journal.pone.0318430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 03/27/2025] Open
Abstract
Febrile seizures are common in children and can lead to neurological deficits like motor impairments, memory problems, and cognitive decline. Research on dimethyl itaconate aims to mitigate these effects and improve the quality of life for affected people. By exploring its potential as a protective agent against oxidative stress during seizures, this study in adult male rats measures the activity of key enzymes related to oxidative stress and behavioral performance. Pregnant rats were divided into control, sham, DMI, febrile seizure, and DMI + febrile seizure groups. Seizure severity was evaluated through threshold and frequency measurements, while memory, motor function, and balance were assessed using shuttle box, rotarod, open field, and wire hanging tests. After that, the hippocampus tissue was removed from the brain and the levels of MDA, SOD, GSH, TAC, GR, GPx, and catalase were measured through biochemical methods. Results show that dimethyl itaconate raised the seizure threshold and reduced tonic-clonic seizures. The DMI + febrile seizure group also showed improved memory, movement, and balance compared to the febrile seizure group (p < 0.05 in all cases). Overall, dimethyl itaconate decreased oxidative stress and improved neurological outcomes in fever-affected rats.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Abiri Jahromi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Peysokhan
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Anahita Memar Dezfouli
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Specchio N, Auvin S. To what extent does status epilepticus contribute to brain damage in the developmental and epileptic Encephalopathies. Epilepsy Behav 2025; 164:110271. [PMID: 39883989 DOI: 10.1016/j.yebeh.2025.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
This paper is based on a presentation made at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures in April 2024. Status Epilepticus (SE) is a neurological emergency involving prolonged seizures that disrupt brain function and may cause severe, long-term neurological damage. Developmental and Epileptic Encephalopathies (DEEs), a group of severe genetic disorders with early-onset epilepsy, often exhibit SE episodes that compound their inherent cognitive and developmental challenges. In patients with DEEs, SE may intensify excitotoxicity, metabolic strain, and neuroinflammatory processes, exacerbating developmental delays and cognitive deficits. SE episodes in DEEs frequently resist conventional anti-seizure medications, posing heightened risks of progressive neurological decline and mortality. This paper explores how SE contributes to worsening neurodevelopmental outcomes in DEEs, particularly through sustained structural and functional brain alterations observed in human neuroimaging and animal models. Findings from clinical studies and neuroimaging highlight SE's role in structural damage, including cortical atrophy, hippocampal sclerosis, and gray matter loss. Rodent models replicate SE through chemical or electrical induction, providing insights into SE-induced neurodegeneration, network reorganization, especially in critical areas like the hippocampus, which is more known, however few of scientists look that much outside it. The models reveal a progressive cycle where recurrent SE episodes increase brain excitability, predisposing to further seizures and cumulative developmental impairment. Moreover, genetic animal models of DEEs suggest that early-life seizures exacerbate the severity of the epilepsy phenotype and neurocognitive deficits. This paper underscores the need for advanced, individualized therapies to manage SE in DEE patients and prevent recurrence, aiming to minimize long-term neurological and developmental sequelae.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology Epilepsy and Movement Disorders Unit Bambino Gesù Children's Hospital IRCCS Full Member of European Reference Network On Rare and Complex Epilepsies EpiCARE Rome Italy; University Hospitals KU Leuven Belgium.
| | - Stéphane Auvin
- APHP. Service de Neurologie Pédiatrique Centre de Référence Epilepsies Rares Membre EpiCARE Hôpital Universitaire Robert-Debré Université Paris-Cité INSERM Neuro Diderot Institut Universitaire de France (IUF) Paris France
| |
Collapse
|
5
|
Mareš P. Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague. Physiol Res 2024; 73:S67-S82. [PMID: 38752773 PMCID: PMC11412343 DOI: 10.33549/physiolres.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Starting from simple clinical statistics, the spectrum of methods used in epilepsy research in the Institute of Physiology of the Czechoslovak (now Czech) Academy of Sciences progressively increased. Professor Servít used electrophysiological methods for study of brain activity in lower vertebrates, neuropathology was focused on electronmicroscopic study of cortical epileptic focus and ion-sensitive microelectrodes were used for studies of cortical direct current potentials. Developmental studies used electrophysiological methods (activity and projection of cortical epileptic foci, EEG under the influence of convulsant drugs, hippocampal, thalamic and cortical electrical stimulation for induction of epileptic afterdischarges and postictal period). Extensive pharmacological studies used seizures elicited by convulsant drugs (at first pentylenetetrazol but also other GABA antagonists as well as agonists of glutamate receptors). Motor performance and behavior were also studied during brain maturation. The last but not least molecular biology was included into the spectrum of methods. Many original data were published making a background of position of our laboratory in the first line of laboratories interested in brain development.
Collapse
Affiliation(s)
- P Mareš
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Lin V, Tian C, Wahlster S, Castillo-Pinto C, Mainali S, Johnson NJ. Temperature Control in Acute Brain Injury: An Update. Semin Neurol 2024; 44:308-323. [PMID: 38593854 DOI: 10.1055/s-0044-1785647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Temperature control in severe acute brain injury (SABI) is a key component of acute management. This manuscript delves into the complex role of temperature management in SABI, encompassing conditions like traumatic brain injury (TBI), acute ischemic stroke (AIS), intracerebral hemorrhage (ICH), aneurysmal subarachnoid hemorrhage (aSAH), and hypoxemic/ischemic brain injury following cardiac arrest. Fever is a common complication in SABI and is linked to worse neurological outcomes due to increased inflammatory responses and intracranial pressure (ICP). Temperature management, particularly hypothermic temperature control (HTC), appears to mitigate these adverse effects primarily by reducing cerebral metabolic demand and dampening inflammatory pathways. However, the effectiveness of HTC varies across different SABI conditions. In the context of post-cardiac arrest, the impact of HTC on neurological outcomes has shown inconsistent results. In cases of TBI, HTC seems promising for reducing ICP, but its influence on long-term outcomes remains uncertain. For AIS, clinical trials have yet to conclusively demonstrate the benefits of HTC, despite encouraging preclinical evidence. This variability in efficacy is also observed in ICH, aSAH, bacterial meningitis, and status epilepticus. In pediatric and neonatal populations, while HTC shows significant benefits in hypoxic-ischemic encephalopathy, its effectiveness in other brain injuries is mixed. Although the theoretical basis for employing temperature control, especially HTC, is strong, the clinical outcomes differ among various SABI subtypes. The current consensus indicates that fever prevention is beneficial across the board, but the application and effectiveness of HTC are more nuanced, underscoring the need for further research to establish optimal temperature management strategies. Here we provide an overview of the clinical evidence surrounding the use of temperature control in various types of SABI.
Collapse
Affiliation(s)
- Victor Lin
- Department of Neurology, University of Washington, Seattle, Washington
| | - Cindy Tian
- Department of Emergency Medicine, University of Washington, Seattle, Washington
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Neurosurgery, University of Washington, Seattle, Washington
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | | | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Nicholas J Johnson
- Department of Emergency Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Wasterlain C. Fifty years of research on status epilepticus: Seizures use hippocampal memory circuits to generate status epilepticus and disrupt brain development. Epilepsy Behav 2023; 141:109142. [PMID: 36907081 DOI: 10.1016/j.yebeh.2023.109142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
This is a review of my laboratory's interest in status epilepticus (SE), which spanned five decades. It started with a study of the role of brain mRNAs in memory, and with the use of electroconvulsive seizures to disrupt recently acquired memories. This led to biochemical studies of brain metabolism during seizures, and to the serendipitous development of the first model of self-sustaining SE. The profound inhibition of brain protein synthesis by seizures had implications for brain development, and we showed that severe seizures and SE in the absence of hypoxemia and other metabolic complications can disrupt brain and behavioral development, a concept that was not widely accepted at that time. We also showed that many experimental models of SE can cause neuronal death in the immature brain, even at very young ages. Our studies of self-sustaining SE showed that the transition from single seizures to SE is accompanied by internalization and transient inactivation of synaptic GABAA receptors, while extrasynaptic GABAA receptors are untouched. At the same time, NMDA and AMPA receptors move to the synaptic membrane, creating a "perfect storm" combining failure of inhibition and runaway excitation. Major maladaptive changes in protein kinases and neuropeptides, particularly galanin and tachykinins, also contribute to the maintenance of SE. The therapeutic implications of these results are that our current practice to start the treatment of SE with benzodiazepine monotherapy leaves the changes in glutamate receptors untreated and that sequential use of drugs gives seizures more time to aggravate changes in receptor trafficking. In experimental SE, we showed that drug combinations based on the receptor trafficking hypothesis are far superior to monotherapy in stopping SE late in its course. Combinations that include an NMDA receptor blocker such as ketamine are much better than combinations that follow current evidence-based guidelines, and simultaneous delivery of the drugs is far more effective than sequential delivery of the same drugs at the same dose. This paper was presented as a Keynote Lecture at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Claude Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA and Greater Los Angeles VA Health Care System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA; Department of Neurology, Yale University School of Medicine, USA.
| |
Collapse
|
8
|
Fang Q, Zheng S, Chen Q, Chen L, Yang Y, Wang Y, Zhang H, Chen J. The protective effect of inhibiting mitochondrial fission on the juvenile rat brain following PTZ kindling through inhibiting the BCL2L13/LC3 mitophagy pathway. Metab Brain Dis 2023; 38:453-466. [PMID: 36094724 DOI: 10.1007/s11011-022-01077-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Maintaining the balance of mitochondrial fission and mitochondrial autophagy on seizures is helpful to find a solution to control seizures and reduce brain injuries. The present study is to investigate the protective effect of inhibiting mitochondrial fission on brain injury in juvenile rat epilepsy induced by pentatetrazol (PTZ) by inhibiting the BCL2L13/LC3-mediated mitophagy pathway. PTZ was injected (40 mg/kg) to induce kindling once every other day, for a total of 15 times. In the PTZ + DMSO (DMSO), PTZ + Mdivi-1 (Mdivi-1), and PTZ + WY14643 (WY14643) groups, rats were pretreated with DMSO, Mdivi-1 and WY14643 for half an hour prior to PTZ injection. The seizure attacks of young rats were observed for 30 min after model establishment. The Morris water maze (MWM) was used to test the cognition of experimental rats. After the test, the numbers of NeuN(+) neurons and GFAP(+) astrocytes were observed and counted by immunofluorescence (IF). The protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampus of young rats were detected by immunohistochemistry (IHC) and Western blotting (WB). Compared with the PTZ and DMSO groups, the seizure latency in the Mdivi-1 group was longer (P < 0.01), and the severity degree and frequency of seizures were lower (P < 0.01). The MWM test showed that the incubation periods of crossing the platform in the Mdivi-1 group was significantly shorter. The number of platform crossings, the platform stay time, and the ratio of residence time/total stay time were significantly increased in the Mdivi-1 group (P < 0.01). The IF results showed that the number of NeuN(+) neurons in the Mdivi-1 group was greater, while the number of GFAP(+) astrocytes was lower. IHC and WB showed that the average optical density (AOD) and relative protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampi of rats in the Mdivi-1 group were higher (P < 0.05). The above results in the WY14643 group were opposite to those in the Mdivi-1 group. Inhibition of mitochondrial fission could reduce seizure attacks, protect injured neurons, and improve cognition following PTZ-induced epilepsy by inhibiting mitochondrial autophagy mediated by the BCL2L13/LC3 mitophagy pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Shaojuan Zheng
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Ying Wang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Huixia Zhang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jiafan Chen
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
9
|
Caffeine intoxication: Behavioral and electrocorticographic patterns in Wistar rats. Food Chem Toxicol 2022; 170:113452. [DOI: 10.1016/j.fct.2022.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
|
10
|
Kubová H, Mikulecká A, Mareš P. The outcome of early life status epilepticus—lessons from laboratory animals. Epilepsia Open 2022; 8 Suppl 1:S90-S109. [PMID: 36352789 PMCID: PMC10173850 DOI: 10.1002/epi4.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Status epilepticus (SE) is the most common neurologic emergency in children. Both clinical and laboratory studies have demonstrated that SE in early life can cause brain damage and permanent behavioral abnormalities, trigger epileptogenesis, and interfere with normal brain development. In experimental rodent models, the consequences of seizures are dependent upon age, the model used, and seizure duration. In studies involving neonatal and infantile animals, the model used, experimental design, conditions during the experiment, and manipulation of animals can significantly affect the course of the experiments as well as the results obtained. Standardization of laboratory approaches, harmonization of scientific methodology, and improvement in data collection can improve the comparability of data among laboratories.
Collapse
Affiliation(s)
- Hana Kubová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Anna Mikulecká
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Pavel Mareš
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| |
Collapse
|
11
|
Katsarou AM, Kubova H, Auvin S, Mantegazza M, Barker-Haliski M, Galanopoulou AS, Reid CA, Semple BD. A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3-WG1B, Pediatric and Genetic Models Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35950641 DOI: 10.1002/epi4.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy/American Epilepsy Society Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research; that is, to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hana Kubova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, INSERM UMR 1141, APHP, Université de Paris, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Massimo Mantegazza
- Inserm, LabEx ICST, Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne-Sophia Antipolis, France
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher A Reid
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Thompson K. Status epilepticus and early development: neuronal injury, neurodegeneration, and their consequences. Epilepsia Open 2022; 8 Suppl 1:S110-S116. [PMID: 35434910 PMCID: PMC10173843 DOI: 10.1002/epi4.12601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022] Open
Abstract
Evidence showing that the immature brain is vulnerable to seizure-induced damage has been accumulating for decades. Clinical data have always suggested that some early-life seizures are associated with negative sequelae, but clinical observations are frequently obscured by multiple uncontrolled contributing factors and can rarely establish causality. Determining with certainty that seizures, per se, can cause neuronal death and can irreversibly disrupt critical developmental processes, required the development of suitable model systems. Several experimental seizure models clearly show that the immature brain can sustain neuronal injury as a result of uncontrolled seizure activity and that even in the absence of observable neuronal death, the developing brain is selectively vulnerable to interruptions of required growth programs. Severe early-life seizures inhibit DNA, RNA, and protein synthesis, and they can reduce the accumulation of myelin and synaptic markers in the developing nervous system, leading to functional delays in development. Depending on the seizure pathway involved, and the developmental period under study, classic neurodegeneration, excitotoxicity, and apoptosis can result in permanent damage to critical neural networks in the temporal lobe and in many other brain regions. This conclusion is further supported by recent clinical studies showing that prolonged febrile status epilepticus can lead to hippocampal injury, which evolves into hippocampal atrophy and hippocampal sclerosis. A growing body of experimental data demonstrates that the metabolic compromise and cellular loss produced by seizures during critical phases of brain development negatively affect later hippocampal physiology including learning and memory functions in maturity.
Collapse
Affiliation(s)
- Kerry Thompson
- Occidental College Department of Biology, 1600 Campus Rd Los Angeles CA USA
| |
Collapse
|
13
|
Gulcebi MI, Bartolini E, Lee O, Lisgaras CP, Onat F, Mifsud J, Striano P, Vezzani A, Hildebrand MS, Jimenez-Jimenez D, Junck L, Lewis-Smith D, Scheffer IE, Thijs RD, Zuberi SM, Blenkinsop S, Fowler HJ, Foley A, Sisodiya SM, Berkovic S, Cavalleri G, Correa DJ, Martins Custodio H, Galovic M, Guerrini R, Henshall D, Howard O, Hughes K, Katsarou A, Koeleman BP, Krause R, Lowenstein D, Mandelenaki D, Marini C, O'Brien TJ, Pace A, De Palma L, Perucca P, Pitkänen A, Quinn F, Selmer KK, Steward CA, Swanborough N, Thijs R, Tittensor P, Trivisano M, Weckhuysen S, Zara F. Climate change and epilepsy: Insights from clinical and basic science studies. Epilepsy Behav 2021; 116:107791. [PMID: 33578223 PMCID: PMC9386889 DOI: 10.1016/j.yebeh.2021.107791] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change.
Collapse
Affiliation(s)
- Medine I. Gulcebi
- Department of Medical Pharmacology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy.
| | - Omay Lee
- Department of Neurology and Clinical Neurophysiology, St. George's University Hospitals NHS Foundation Trust, London, UK.
| | - Christos Panagiotis Lisgaras
- New York University Langone Health, 100 First Ave., New York, NY 10016, USA; The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Filiz Onat
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey,Department of Medical Pharmacology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Janet Mifsud
- Department of Clinical Pharmacology and Therapeutics, University of Malta, Msida MSD2040, Malta.
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS “Giannina Gaslini” Institute, Genova, Italy
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy.
| | - Michael S. Hildebrand
- Department of Medicine (Austin Health), University of Melbourne, and Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Diego Jimenez-Jimenez
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK and Chalfont Centre for Epilepsy, Bucks, UK.
| | - Larry Junck
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Ingrid E. Scheffer
- University of Melbourne, Austin Health and Royal Children’s Hospital, Florey Institute and Murdoch Children’s Research Institute, Melbourne, Australia
| | - Roland D. Thijs
- Department of Neurology, Leiden University Medical Centre (LUMC), PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Sameer M. Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children & Institute of Health & Wellbeing, University of Glasgow, Fraser of Allander Neurosciences Unit, Royal Hospital for Children, UK
| | | | - Hayley J. Fowler
- Centre for Earth Systems Engineering Research, School of Engineering, Newcastle University, UK
| | - Aideen Foley
- Department of Geography, Birkbeck College University of London, London, UK.
| | - Epilepsy Climate Change ConsortiumBalestriniSimonaaaBerkovicSamuelabCavalleriGianpieroacCorreaDaniel JoséadMartins CustodioHelenaaeGalovicMarianafGuerriniRenzoagHenshallDavidahHowardOlgaaiHughesKelvinajKatsarouAnnaakKoelemanBobby P.C.alKrauseRolandamLowensteinDanielanMandelenakiDespoinaaoMariniCarlaapO’BrienTerence J.aqPaceAdrianarDe PalmaLucaasPeruccaPieroatPitkänenAslaauQuinnFinolaavSelmerKaja KristineawStewardCharles A.axSwanboroughNicolaayThijsRolandazTittensorPhilbaTrivisanoMarinabbWeckhuysenSarahbcZaraFedericobdDepartment of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK and Chalfont Centre for Epilepsy, Bucks, UKEpilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, AustraliaDepartment of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin 2, Ireland; The FutureNeuro Research Centre, Dublin 2, IrelandSaul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, 1410 Pelham Parkway South, K-312, Bronx, NY 10461, USADepartment of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Bucks, UKUniversity Hospital Zurich, SwitzerlandDepartment of Child Neurology and Psychiatry, University of Pisa and IRCCS Fondazione Stella Maris, 56018 Calambrone, Pisa, ItalyFutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin D02 YN77, IrelandUCB Pharma Ltd, Slough, UKDravet Syndrome UK, UKLaboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USAUniversity Medical Center, Utrecht, The NetherlandsLuxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, LuxembourgDepartment of Neurology, University of California, San Francisco, CA, USADepartment of Pediatric Neurology, Queen Fabiola Children’s University Hospital, Brussels, Brussels Capital Region, BelgiumNeuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, ItalyMelbourne Brain Centre, Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, VIC, Australia; Departments of Neuroscience and Neurology, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, AustraliaGozo General Hospital, MaltaNeurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, ItalyDepartment of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, AustraliaA.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, FinlandILAE-IBE Congress Secretariat, Dublin, IrelandNational Centre for Rare Epilepsy-related Disorders, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, NorwayCongenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK; Wellcome Sanger InstituteWellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UKEpilepsy Society, Bucks, UKStichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UKRoyal Wolverhampton NHS Trust, Wolverhampton, UKRare and Complex Epilepsy Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, ItalyNeurogenetics Group, Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, BelgiumUnit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Italy
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK and Chalfont Centre for Epilepsy, Bucks, UK,Corresponding author at: Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vega-García A, Feria-Romero I, García-Juárez A, Munguia-Madera AC, Montes-Aparicio AV, Zequeida-Muñoz E, Garcia-Albavera E, Orozco-Suárez S. Cannabinoids: A New Perspective on Epileptogenesis and Seizure Treatment in Early Life in Basic and Clinical Studies. Front Behav Neurosci 2021; 14:610484. [PMID: 33510627 PMCID: PMC7835327 DOI: 10.3389/fnbeh.2020.610484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Neural hyperexcitability in the event of damage during early life, such as hyperthermia, hypoxia, traumatic brain injury, status epilepticus, or a pre-existing neuroinflammatory condition, can promote the process of epileptogenesis, which is defined as the sequence of events that converts a normal circuit into a hyperexcitable circuit and represents the time that occurs between the damaging event and the development of spontaneous seizure activity or the establishment of epilepsy. Epilepsy is the most common neurological disease in the world, characterized by the presence of seizures recurring without apparent provocation. Cannabidiol (CBD), a phytocannabinoid derived from the subspecies Cannabis sativa (CS), is the most studied active ingredient and is currently studied as a therapeutic strategy: it is an anticonvulsant mainly used in children with catastrophic epileptic syndromes and has also been reported to have anti-inflammatory and antioxidant effects, supporting it as a therapeutic strategy with neuroprotective potential. However, the mechanisms by which CBD exerts these effects are not entirely known, and the few studies on acute and chronic models in immature animals have provided contradictory results. Thus, it is difficult to evaluate the therapeutic profile of CBD, as well as the involvement of the endocannabinoid system in epileptogenesis in the immature brain. Therefore, this review focuses on the collection of scientific data in animal models, as well as information from clinical studies on the effects of cannabinoids on epileptogenesis and their anticonvulsant and adverse effects in early life.
Collapse
Affiliation(s)
- Angélica Vega-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Anais García-Juárez
- División de Ciencias Biológicas y Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Ch Munguia-Madera
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Alexia V Montes-Aparicio
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | | | | | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| |
Collapse
|
15
|
Outin H, Gueye P, Alvarez V, Auvin S, Clair B, Convers P, Crespel A, Demeret S, Dupont S, Engels JC, Engrand N, Freund Y, Gelisse P, Girot M, Marcoux MO, Navarro V, Rossetti A, Santoli F, Sonneville R, Szurhaj W, Thomas P, Titomanlio L, Villega F, Lefort H, Peigne V. Recommandations Formalisées d’Experts SRLF/SFMU : Prise en charge des états de mal épileptiques en préhospitalier, en structure d’urgence et en réanimation dans les 48 premières heures (A l’exclusion du nouveau-né et du nourrisson). ANNALES FRANCAISES DE MEDECINE D URGENCE 2020. [DOI: 10.3166/afmu-2020-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
La Société de réanimation de langue française et la Société française de médecine d’urgence ont décidé d’élaborer de nouvelles recommandations sur la prise en charge de l’état mal épileptique (EME) avec l’ambition de répondre le plus possible aux nombreuses questions pratiques que soulèvent les EME : diagnostic, enquête étiologique, traitement non spécifique et spécifique. Vingt-cinq experts ont analysé la littérature scientifique et formulé des recommandations selon la méthodologie GRADE. Les experts se sont accordés sur 96 recommandations. Les recommandations avec le niveau de preuve le plus fort ne concernent que l’EME tonico-clonique généralisé (EMTCG) : l’usage des benzodiazépines en première ligne (clonazépam en intraveineux direct ou midazolam en intramusculaire) est recommandé, répété 5 min après la première injection (à l’exception du midazolam) en cas de persistance clinique. En cas de persistance 5 min après cette seconde injection, il est proposé d’administrer la seconde ligne thérapeutique : valproate de sodium, (fos-)phénytoïne, phénobarbital ou lévétiracétam. La persistance avérée de convulsions 30 min après le début de l’administration du traitement de deuxième ligne signe l’EMETCG réfractaire. Il est alors proposé de recourir à un coma thérapeutique au moyen d’un agent anesthésique intraveineux de type midazolam ou propofol. Des recommandations spécifiques à l’enfant et aux autres EME sont aussi énoncées.
Collapse
|
16
|
Jung S, Ballheimer YE, Brackmann F, Zoglauer D, Geppert CI, Hartmann A, Trollmann R. Seizure-induced neuronal apoptosis is related to dysregulation of the RNA-edited GluR2 subunit in the developing mouse brain. Brain Res 2020; 1735:146760. [PMID: 32142720 DOI: 10.1016/j.brainres.2020.146760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
Ca2+-permeable AMPA receptors (AMPAR) which crucially modify maturational programs of the developing brain are involved in seizure-induced glutamate excitotoxicity and apoptosis. Regulatory effects on AMPAR subunit composition and RNA-editing in the developing brain and their significance as therapeutic targets are not well understood. Here, we analyzed acute effects of recurrent pilocarpine-induced neonatal seizures on age- and region-specific expression of AMPAR subunits and adenosine deaminases (ADAR) in the developing mouse brain (P10). After recurrent seizure activity and regeneration periods of 6-72 h cerebral mRNA levels of GluR (glutamate receptor subunit) 1, GluR2, GluR3, and GluR4 were unaffected compared to controls. However, ratio of GluR2 and GluR4 to pooled GluR1-4 mRNA concentration significantly decreased in seizure-exposed brains in comparison to controls. After a regeneration period of 24-72 h ADAR1 and ADAR2 mRNA expression was significantly lower in seizure-exposed brains than in those of controls. This was confirmed at the protein level in the hippocampal CA3 region. We observed a regionally increased apoptosis (TUNEL+ and CC3+ cells) in the hippocampus, parietal cortex and subventricular zone of seizure-exposed brains in comparison to controls. Together, present in vivo data demonstrate the maturational age-specific, functional role of RNA-edited GluR2 in seizure-induced excitotoxicity in the developing mouse brain. In response to recurrent seizure activity, we observed reduced expression of GluR2 and the GluR2 mRNA-editing enzymes ADAR1 and ADAR2 accompanied by increased apoptosis in a region-specific manner. Thus, AMPA receptor subtype-specific mRNA editing is assessed as a promising target of novel neuroprotective treatment strategies in consideration of age-related developmental mechanisms.
Collapse
Affiliation(s)
- Susan Jung
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Yili E Ballheimer
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Brackmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Zoglauer
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Carol-Immanuel Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
17
|
Molinero I, Galanopoulou AS, Moshé SL. Rodent models: Where it all started with these "truths". Eur J Paediatr Neurol 2020; 24:61-65. [PMID: 31875833 PMCID: PMC7179510 DOI: 10.1016/j.ejpn.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Isaac Molinero
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; 111 East 210th Street, Montefiore Medical Center, Bronx, NY, 10467, USA.
| | - Aristea S Galanopoulou
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA.
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; 1410 Pelham Parkway South, Kennedy Center Rm 316, Bronx, NY, 10461, USA.
| |
Collapse
|
18
|
Chena-Becerra F, Coria-Avila GA, Beltrán-Parrazal L, Manzo J, López-Meraz ML. Long-term effects of status epilepticus during infancy in male rats: Sexual behavior and brain response upon exposure to sexually receptive females. Epilepsy Behav 2020; 102:106676. [PMID: 31756620 DOI: 10.1016/j.yebeh.2019.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/18/2022]
Abstract
Previous research in female rats showed that induction of status epilepticus (SE) during infancy impairs proceptive sexual behavior at the long run in adulthood but temporarily, since full proceptivity is recovered after four mating trials. In male rats, such equivalent effects have not been explored yet. Thus, SE was experimentally induced by injecting lithium chloride (3 mEq/kg, i.p.) in thirteen-day-old (P13) male pups and then, on P14, pilocarpine hydrochloride (100 mg/kg, s.c.). Controls received the same volume of saline. For Experiment 1, at P90, we analyzed c-Fos immunoreactivity (c-Fos-IR) as a measure of unconditioned brain activity after exposing them to sexually receptive females, but without physical contact. For Experiment 2, a different group of males was tested for locomotor activity, and their sexual behavior was assessed during five trials. Then, serum testosterone and corticosterone levels were measured. Our results showed that a lower proportion of SE males performed mounts, intromissions, and ejaculations, and repeated training did not improve their behavior. The levels of testosterone in SE males were reduced, but corticosterone, c-Fos-IR, and locomotion were similar to controls. These results suggest that SE during infancy impairs adult sexual behavior by reducing testosterone.
Collapse
Affiliation(s)
| | | | - Luis Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana Xalapa, Veracruz, Mexico
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana Xalapa, Veracruz, Mexico
| | | |
Collapse
|
19
|
Legriel S. Hypothermia as a treatment in status epilepticus: A narrative review. Epilepsy Behav 2019; 101:106298. [PMID: 31133509 DOI: 10.1016/j.yebeh.2019.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/19/2022]
Abstract
Status epilepticus (SE) is associated with high mortality and morbidity rates, notably in its refractory and super-refractory forms. This narrative review discusses recent data on the potential benefits of targeted temperature management. In studies of patients with cerebral injury due to various factors, therapeutic hypothermia had variable effects on survival and functional outcomes. Sources of this variability may include the underlying etiology, whether hypothermia was used for prophylaxis or treatment, the degree and duration of hypothermia, and the hypothermia application modalities. Data from animal studies strongly suggest benefits from therapeutic hypothermia in SE. In humans, beneficial effects have been described in anecdotal case reports and small case series, but the level of evidence is low. A randomized controlled trial found no evidence that moderate hypothermia (32-34 °C) was neuroprotective in critically ill patients with convulsive SE. Nevertheless, some promising effects were noted, suggesting that therapeutic hypothermia might have a role as an adjuvant to anticonvulsant drug therapy in patients with refractory or super-refractory SE. This article is part of a Special Issue entitled "Status Epilepticus". This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
Affiliation(s)
- Stéphane Legriel
- Medico-Surgical Intensive Care Department, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150 Le Chesnay Cedex, France; Paris Descartes University, Sorbonne Paris Cité-Medical School, Paris, France; INSERM U970, Paris Cardiovascular Research Center, Paris, France; IctalGroup, France.
| |
Collapse
|
20
|
Status Epilepticus Increases Cell Proliferation and Neurogenesis in the Developing Rat Cerebellum. THE CEREBELLUM 2019; 19:48-57. [PMID: 31656012 DOI: 10.1007/s12311-019-01078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Status epilepticus (SE) promotes neuronal proliferation and differentiation in the adult and developing rodent hippocampus. However, the effect of SE on other neurogenic brain regions such as the cerebellum has been less explored. To determine whether SE induced by pentylentetrazole (PTZ-SE) and lithium-pilocarpine (Li-Pilo-SE) increases cell proliferation and neurogenesis in the developing rat cerebellum. SE was induced in 14-day-old (P14) Wistar rat pups (both sexes). One hour after SE and the following day rats were injected intraperitoneally with 5-bromo-2'-deoxyuridine (BrdU, 50 mg/kg). Seven days after SE, immunohistochemistry was performed to detect BrdU-positive (BrdU+) cells or BrdU/NeuN+ cells in the cerebellar vermis. SE induced by PTZ or Li-Pilo statistically significant increased the number of cerebellar BrdU+ cells when compared with the control group (58% and 40%, respectively); maximal cell proliferation occurred in lobules II, III, VIb, VIc, VIII, IXa, and IXb of PTZ-SE group and II, V, VIc, VII, and X of Li-Pilo-SE group. An increased number of BrdU/NeuN+ cells was detected in lobules V (17 ± 1.9), VIc (25.8 ± 2.7), and VII (26.2 ± 3.4) after Li-Pilo-SE compared to their control group (9.8 ± 1.7, 12.8 ± 2.8, and 11 ± 1.7, respectively), while the number of BrdU/NeuN+ cells remained the same after PTZ-induced SE or control conditions. SE induced in the developing rat by different experimental models increases cell proliferation in the granular layer of the cerebellar vermis, but only SE of limbic seizures increases neurogenesis in specific cerebellar lobes.
Collapse
|
21
|
Liu F, Wu M, Kai J, Dong J, Zhang B, Liu L, Zhu F, Zeng LH. Effectiveness of low dose of rapamycin in preventing seizure-induced anxiety-like behaviour, cognitive impairment, and defects in neurogenesis in developing rats. Int J Neurosci 2019; 130:9-18. [PMID: 29883228 DOI: 10.1080/00207454.2018.1486827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aims: Previous studies have demonstrated that rapamycin prevents seizure-induced anxiety-like behaviors. However, rapamycin had been used at a higher dose of 3 mg/kg and resulted in side effects in immature animals. This work was designed to explore whether a lower dose of rapamycin has similar efficacy but has milder side effects.Methods: Acute seizures were induced by injection of pilocarpine at postnatal 10-day Sprague-Dawley rats. Western blot analysis was used to detect changes in mammalian target of rapamycin (mTOR) pathway after seizure. Immunofluorescent intensity of doublecortin (DCX) was conducted to evaluate the development of neurons in hippocampus. Morris water maze and Y-maze test were used to assess cognitive functions and open-field test and elevated plus maze were used to detect anxiety-like behaviors 4 weeks after seizure onset.Results: mTOR pathway was abnormally activated with two peaks after pilocarpine-induced seizures, and no difference of DCX-positive cells and body weight were noticed between control and pilocarpine-induced seizure rats. Pilocarpine-induced seizure in postnatal 10 days rats did not exert impairment on cognitive functions, but resulted in obvious anxiety-like behaviors. Low dose of rapamycin at 0.3 mg/kg significantly reversed seizure-induced increase of p-S6 levels as well as abnormal anxiety-like behaviors. In addition, rapamycin at the dose of 0.3mg/kg did not affect normal development and cognitive functions.Conclusion: lower doses of rapamycin should be used in infants compared with older children or adults.
Collapse
Affiliation(s)
- Furong Liu
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meiling Wu
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiejing Kai
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyin Dong
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Binbin Zhang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Luna Liu
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Ling-Hui Zeng
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
23
|
Comorbidities of early-onset temporal epilepsy: Cognitive, social, emotional, and morphologic dimensions. Exp Neurol 2019; 320:113005. [PMID: 31278943 DOI: 10.1016/j.expneurol.2019.113005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Epilepsy, the most common neurologic disorder in childhood, is associated with a subset of psychiatric dysfunctions, including cognitive deficits, and alterations in emotionality (e.g., anxiety and depression) and social functioning. In the present study, we evaluated an integrative set of behavioral responses, including cognitive/socio-cognitive and emotional dimensions, using a number of behavioral paradigms in the LiCl/pilocarpine model of status epilepticus (SE) in rats. The aims of the study were to examine whether SE affects: 1) non-associative learning (habituation of exploratory behavior); 2) investigatory response to an indifferent stimulus object; 3) sociability/social novelty preference; 4) social recognition or discrimination; and 4) short- and long-term memory in the Morris water maze (MWM). Finally, we investigated the morphology of key brain structures involved in the examined behavioral dysfunctions. SE did not affect habituation to an open-field arena in juvenile (P25), adolescent (P32), or adult (P80) rats. SE rats spent less time in the central part of the arena. SE adolescent rats (P32) displayed a higher number of rearings with a shorter duration. SE rats displayed a markedly attenuated investigatory response to an indifferent stimulus object. SE rats in all age groups demonstrated pronounced deficits in sociability and the preference for social novelty. In addition, SE rats spent a reduced amount of time investigating a juvenile rat upon first exposure. After 30 min re-exposure together with an additional, novel juvenile, the SE rats spent equal time investigating both juveniles. In the MWM task, acquisition was unimpaired but there was a deficit in delayed memory retention after 10 days. SE did not affect cognitive flexibility expressed by reversal learning. Together, these findings suggest that early-life SE leads to alterations in emotional/anxiety-related behavior and affects sociability/preference for social novelty and social discrimination. Early-life SE did not alter acquisition of spatial learning, but it impaired delayed retention. Using Fluoro Jade B staining performed 24 h after SE revealed apparent neurodegeneration in the dorsal hippocampus, mediodorsal thalamic nucleus and medial amygdala, brain areas that are critically involved in network underlying emotional behavior and cognitive functions.
Collapse
|
24
|
Thompson KW, Suchomelova L, Wasterlain CG. Treatment of early life status epilepticus: What can we learn from animal models? Epilepsia Open 2018; 3:169-179. [PMID: 30564776 PMCID: PMC6293069 DOI: 10.1002/epi4.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of status epilepticus (SE) in infants and children is challenging. There is a recognition that a broad set of developmental processes need to be considered to fully appreciate the physiologic complexity of severe seizures, and seizure outcomes, in infants and children. The development and use of basic models to elucidate important mechanisms will help further our understanding of these processes. Here we review some of the key experimental models and consider several areas relevant to treatment that could lead to productive translational research. Terminating seizures quickly is essential. Understanding pharmacoresistance of SE as it relates to receptor trafficking will be critical to seizure termination. Once a severe seizure is terminated, how will the developing brain respond? Basic studies suggest that there are important acute and long‐term histopathologic, and pathophysiologic, consequences that, if left unaddressed, will produce long‐lasting deficits on the form and function of the central nervous system. To fully utilize the evidence that basic models produce, age‐ and development‐ and model‐specific frameworks have to be considered carefully. Studies have demonstrated that severe seizures can cause perturbations to developmental processes during critical periods of development that lead to life‐long deficits. Unfortunately, some of the drugs that are commonly used to treat seizures may also produce negative outcomes by enhancing Cl‐‐mediated depolarization, or by accelerating programmed cell death. More research is needed to understand these phenomena and their relevance to the human condition, and to develop rational drugs that protect the developing brain from severe seizures to the fullest extent possible.
Collapse
Affiliation(s)
- Kerry W Thompson
- Department of Biology Occidental College Los Angeles California U.S.A
| | - Lucie Suchomelova
- Department of Neurology David Geffen School of Medicine at UCLA Los Angeles California U.S.A
| | - Claude G Wasterlain
- VA Greater Los Angeles Health Care System Los Angeles California U.S.A.,Department of Neurology David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,Brain Research Institute UCLA Los Angeles California U.S.A
| |
Collapse
|
25
|
Wang D, Hu B, Dai Y, Sun J, Liu Z, Feng Y, Cheng F, Zhang X. Serum Uric Acid Is Highly Associated with Epilepsy Secondary to Cerebral Infarction. Neurotox Res 2018; 35:63-70. [PMID: 30022372 DOI: 10.1007/s12640-018-9930-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023]
Abstract
In this study, we examined the association between serum uric acid levels and epilepsy secondary to cerebral infarction. Clinical data including age, gender, epileptic seizure type, imaging, and serum uric acid levels before and after seizures in patients with cerebral infarction that were collected and analyzed. One hundred patients with cerebral infarction but without epilepsy, 147 patients with epilepsy secondary to cerebral infarction, and 55 patients with status epilepticus secondary to cerebral infarction were recruited. Interestingly, epilepsy secondary to cerebral infarction was associated with both reduced uric acid (adjusted OR 2.09; 95% CI 1.07-4.08) and increased uric acid (adjusted OR 4.05; 95% CI 1.99-8.25); however, status epilepsy secondary to cerebral infarction was only associated with increased uric acid (adjusted OR 2.60; 95% CI 1.05-6.45). A U-shaped association between uric acid levels and seizures was observed by using a multivariable logistic regression model with restricted cubic spline. Serum uric acid levels are associated with both epilepsy secondary to cerebral infarction and status epilepticus secondary to cerebral infarction in patients with cerebral infarction. The appropriate intervention of serum uric acid level might be a therapeutic strategy to reduce epileptic seizures or inhibit the development of status epilepticus.
Collapse
Affiliation(s)
- Dongxing Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Bo Hu
- Department of Internal Medicine, Zhou Shi People's Hospital, Kunshan, Suzhou, 215004, China
| | - Yongping Dai
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Zhaoxia Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China.
| | - Feng Cheng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China.
| | - Xia Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, China.
| |
Collapse
|
26
|
Morales-Sosa M, Orozco-Suárez S, Vega-García A, Caballero-Chacón S, Feria-Romero IA. Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats. Pharmacol Biochem Behav 2018; 170:79-86. [DOI: 10.1016/j.pbb.2018.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
|
27
|
Abstract
PURPOSE OF REVIEW Status epilepticus (SE) is a multisystem disorder. Initially, complications of a massive catecholamine release followed by the side effects of medical therapies, impact patients' outcomes. The aim of this article is to provide an updated summary of the systemic complications following SE. RECENT FINDINGS In recent years, the importance of the multifaceted nature of SE and its relationship with clinical outcomes has been increasingly recognized. The cumulative systemic effects of prolonged seizures and their treatment contribute to morbidity and mortality in this condition. Most systemic complications after SE are predictable. Anticipating their occurrence and respecting a number of simple guidelines may improve the prognosis of these patients.
Collapse
Affiliation(s)
- Maximiliano A Hawkes
- Department of Neurology, Division of Critical Care Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| | - Sara E Hocker
- Department of Neurology, Division of Critical Care Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| |
Collapse
|
28
|
Abstract
OBJECTIVES Status epilepticus is a neurologic emergency with high morbidity and mortality requiring neurointensive care and treatment of systemic complications. This systematic review compiles the current literature on acute systemic complications of generalized convulsive status epilepticus in adults and their immediate clinical impact along with recommendations for optimal neurointensive care. DATA SOURCES We searched PubMed, Medline, Embase, and the Cochrane library for articles published between 1960 and 2016 and reporting on systemic complications of convulsive status epilepticus. STUDY SELECTION All identified studies were screened for eligibility by two independent reviewers. DATA EXTRACTION Key data were extracted using standardized data collection forms. DATA SYNTHESIS Thirty-two of 3,046 screened articles were included. Acute manifestations and complications reported in association with generalized convulsive status epilepticus can affect all organ systems fueling complex cascades and multiple organ interactions. Most reported complications result from generalized excessive muscle contractions that increase body temperature and serum potassium levels and may interfere with proper and coordinated function of respiratory muscles followed by hypoxia and respiratory acidosis. Increased plasma catecholamines can cause a decay of skeletal muscle cells and cardiac function, including stress cardiomyopathy. Systemic complications are often underestimated or misinterpreted as they may mimic underlying causes of generalized convulsive status epilepticus or treatment-related adverse events. CONCLUSIONS Management of generalized convulsive status epilepticus should center on the administration of antiseizure drugs, treatment of the underlying causes, and the attendant systemic consequences to prevent secondary seizure-related injuries. Heightened awareness, systematic clinical assessment, and diagnostic workup and management based on the proposed algorithm are advocated as they are keys to optimal outcome.
Collapse
|
29
|
Zhu K, Yuan B, Hu M, Feng GF, Liu Y, Liu JX. Reduced abnormal integration of adult-generated granule cells does not attenuate spontaneous recurrent seizures in mice. Epilepsy Res 2017; 133:58-66. [DOI: 10.1016/j.eplepsyres.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 11/26/2022]
|
30
|
Wang D, Lin Q, Su S, Liu K, Wu Y, Hai J. URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion by inhibiting mTOR-dependent autophagy. Neuroscience 2016; 344:293-304. [PMID: 28042028 DOI: 10.1016/j.neuroscience.2016.12.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is associated with various ischemic cerebrovascular diseases that are characterized by cognitive impairment. The role of autophagy in cognitive dysfunction under conditions of CCH is poorly understood. To address this issue, the present study investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on autophagy and cognition in a CCH model as well as the underlying mechanisms. Cognitive function was evaluated with the Morris water maze and by assessing long-term potentiation (LTP). The expression of autophagy-related proteins and mammalian target of rapamycin (mTOR) signaling pathway components was evaluated by immunofluorescence and western blot analyses, and ultrastructural changes were examined by transmission electron microscopy (EM). URB597 improved cognitive impairment by inhibiting CCH-induced autophagy, which was associated with mTOR signaling. Moreover, the ultrastructural deterioration resulting from CCH was improved by chronic treatment with URB597. These findings indicate that URB597 modulates autophagy in an mTOR-dependent manner, and mitigates neuronal damage and cognitive deterioration caused by CCH.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaohua Su
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China
| | - Kejia Liu
- Department of Cell Biology, Key Laboratory of Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifang Wu
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
31
|
Puig-Lagunes AA, Manzo J, Beltrán-Parrazal L, Morgado-Valle C, Toledo-Cárdenas R, López-Meraz ML. Pentylenetetrazole-induced seizures in developing rats prenatally exposed to valproic acid. PeerJ 2016; 4:e2709. [PMID: 27917314 PMCID: PMC5131616 DOI: 10.7717/peerj.2709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Epidemiological evidence indicates epilepsy is more common in patients with autism spectrum disorders (ASD) (20-25%) than in the general population. The aim of this project was to analyze seizure susceptibility in developing rats prenatally exposed to valproic acid (VPA) as autism model. METHODS Pregnant females were injected with VPA during the twelfth embryonic day. Seizures were induced in fourteen-days-old rat pups using two models of convulsions: pentylenetetrazole (PTZ) and lithium-pilocarpine (Li-Pilo). RESULTS Two subgroups with different PTZ-induced seizure susceptibility in rats exposed to VPA were found: a high susceptibility (VPA+) (28/42, seizure severity 5) and a low susceptibility (VPA-) (14/42, seizure severity 2). The VPA+ subgroup exhibited an increased duration of the generalized tonic-clonic seizure (GTCS; 45 ± 2.7 min), a higher number of rats showed several GTCS (14/28) and developed status epilepticus (SE) after PTZ injection (19/27) compared with control animals (36.6 ± 1.9 min; 10/39; 15/39, respectively). No differences in seizure severity, latency or duration of SE induced by Li-Pilo were detected between VPA and control animals. DISCUSSION Prenatal VPA modifies the susceptibility to PTZ-induced seizures in developing rats, which may be linked to an alteration in the GABAergic transmission. These findings contribute to a better understanding of the comorbidity between autism and epilepsy.
Collapse
Affiliation(s)
- Angel A. Puig-Lagunes
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Luis Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | | |
Collapse
|